JPS5985046A - Oil-pressure circuit of oil-pressure shovel - Google Patents

Oil-pressure circuit of oil-pressure shovel

Info

Publication number
JPS5985046A
JPS5985046A JP57194888A JP19488882A JPS5985046A JP S5985046 A JPS5985046 A JP S5985046A JP 57194888 A JP57194888 A JP 57194888A JP 19488882 A JP19488882 A JP 19488882A JP S5985046 A JPS5985046 A JP S5985046A
Authority
JP
Japan
Prior art keywords
pressure
pump
swing
control valve
variable pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57194888A
Other languages
Japanese (ja)
Other versions
JPS6338506B2 (en
Inventor
Takahiro Kobayashi
隆博 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP57194888A priority Critical patent/JPS5985046A/en
Publication of JPS5985046A publication Critical patent/JPS5985046A/en
Publication of JPS6338506B2 publication Critical patent/JPS6338506B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

PURPOSE:To obtain optimum pressure and flow rate characteristics for slewing by preventing the loss of pressure by reliefing by using a system in which a turning pump is controlled in terms of (fixed pressure)X(flow rate) basis in the oil-pressure circuit of three variable pumps having an exclusive variable pump for slewing. CONSTITUTION:In three pumps oil-pressure circuit having the first and second variable pumps 1 and 2 to supply pressure oil to an exclusive variable pump 3 for slewing, left and right-side running oil-pressure motors, a boom cylinder, a bucket cylinder and an arm cylinder, a serbo valve 84 operating by secondary pressure A3 from a remote control valve 6 to operate the switch valve for slewing is provided to the exclusive variable pump 3 for slewing. A pressure-cut off control valve 86 operating by the discharge pressure of the pump 3 is also provided, and a serbo valve 84 and a regulator 81 to control the discharge amount of the pump 3 by introducing pressure oil controlled by the pressure- cut off control valve 86 are provided.

Description

【発明の詳細な説明】 本発明は、旋回独立の油圧ショベルの油圧回路。[Detailed description of the invention] The present invention is a hydraulic circuit for a hydraulic excavator with independent swing.

に関するものである。It is related to.

油圧ショベルには左右の走行モータ、旋回モータ、ブー
ムシリンダ、アームシリンダ、パケットシリンダの6個
の油圧アクチュエータが具備されておシ、これらのアク
チュエータを作動させるために2ポンプ方式または3ポ
ンプ方式の油圧回路が用いられている。
A hydraulic excavator is equipped with six hydraulic actuators: a left and right travel motor, a swing motor, a boom cylinder, an arm cylinder, and a packet cylinder.To operate these actuators, a 2-pump system or a 3-pump system hydraulic system is used. circuit is used.

しかし、2ポンプ方式の油圧回路では、旋回とアーム、
ブーム2速、一方の走行の各回路が一方のポンプに対し
てパラレルに接続されているため、旋回とアームまたは
ブームとの複合作業時に互いに干渉し合い、作業性が悪
いという問題がある。
However, in a two-pump type hydraulic circuit, the swing and arm
Since each circuit for the two-speed boom and one traveling circuit is connected in parallel to one pump, there is a problem that they interfere with each other during combined work with the swing and the arm or boom, resulting in poor workability.

そこで、複合作業時の作業性を改善するために旋回用と
して定容量型の第6ポンプを用い、他のアクチュエータ
用として可変容量型の第1.第2ポンプを用いた6ポン
プ方式の油圧回路が公知である。しかしながら、第6ポ
ンプを固定容量型とした場合、旋回に高圧、大流量の出
力が得られるので旋回単独作業時の作業性はよいが、旋
回と他のアクチュエータとの複合作業時の旋回起動時、
第6ポンプが高圧、大流量の馬力を出力し、この馬力に
基いて第1.第2ポンプの馬力制御が行われるため、第
1.第2ポンプの馬力低下が大きく、他のアクチュエー
タの作業性が悪くなる。しかも、旋回起動時は旋回モー
タに高圧力を必要とするが流入流量は少ないため、第6
ポンプ(最大出力)の大部分がリリーフ弁によってリリ
ーフされ、このリリーフによりエンジン出力に大きな損
失が生じる。なお、このリリーフによる出力損失を防止
するために、第5ポンプの旋回余剰油をブーム2速に流
入させるようにした回路があるが、この回路によれば旋
回がブームの負荷圧力の影響を受け、旋回とブームの作
業性(マツチング)が悪くなムまた、上記エンジンの出
力損失を防止するために、第6ポンプを可変ポンプにし
て定馬力制御するようにしたものがあるが、この場合、
旋回単独作業時であっても第3ポンプに高圧、大流量の
出力が得られないため、傾斜地での旋回が困難となる。
Therefore, in order to improve workability during complex work, a constant displacement type sixth pump is used for turning, and a variable displacement type first pump is used for other actuators. A six-pump hydraulic circuit using a second pump is known. However, if the sixth pump is a fixed displacement type, high pressure and large flow output can be obtained for swinging, so workability is good during swinging work alone, but when starting swinging during combined work with swinging and other actuators. ,
The sixth pump outputs high pressure, large flow horsepower, and based on this horsepower, the first pump. Since the horsepower of the second pump is controlled, the horsepower of the second pump is controlled. The horsepower of the second pump is greatly reduced, and the workability of other actuators becomes worse. Moreover, when starting the swing, the swing motor requires high pressure, but the inflow flow rate is small, so the sixth
A large part of the pump (maximum output) is relieved by the relief valve, and this relief causes a large loss in engine power. In order to prevent output loss due to this relief, there is a circuit in which excess oil from the fifth pump's rotation flows into the second gear of the boom, but according to this circuit, the rotation is not affected by the load pressure of the boom. , The workability (matching) of swing and boom is poor.Furthermore, in order to prevent the output loss of the engine, there is a system in which the sixth pump is a variable pump and constant horsepower control is performed, but in this case,
Even when turning alone, the third pump cannot output high pressure and large flow, making it difficult to turn on slopes.

しかも、旋回起動時は圧力がIJ IJ−フ圧(高圧)
となり、流量はほとんど必要ないが、その後、定常旋回
になるまで圧力はほぼ一定で流量が次第に増加するのに
対し、この第6ポンプの定馬力制御によれば、定常旋回
になるまでの必要流量を追従して流入させることができ
ず、旋回作業の特性に適合しないという問題がある。
Moreover, when starting the rotation, the pressure is IJ IJ-fu pressure (high pressure)
Therefore, almost no flow rate is required, but after that, the pressure is almost constant and the flow rate gradually increases until steady rotation is achieved.However, according to the constant horsepower control of this sixth pump, the required flow rate until steady rotation is achieved. There is a problem in that it is not possible to follow and flow the flow, and it is not compatible with the characteristics of turning work.

本発明は、このような従来の問題点を解決するこめに開
発されたものであシ、その特徴とするところは、旋回専
用の可変ポンプと、他のアクチュエータ用可変ポンプと
を用い、旋回用方向制御弁を切換える旋回用リモコン弁
からの二次圧力によって作動されるサーボ弁と、旋回専
用可変ポンプの吐出圧力によって作動されるプレッシャ
カットオフ制御弁(以下PC制御弁と記す)とによって
、レギュレータに導く圧油を制御して旋回専用可変 5
− ポンプの吐出流量を制御し、旋回専用可変ポンプを定馬
力制御せずにプレッシャカットオフ制御(以下、pc制
御と記す)してエンジンの出力損失を極力少なくすると
共に、旋回専用ポンプの吐出て傾斜地であってもスムー
ズに旋回できるようにし、旋回の作業性を向上させた点
にある。
The present invention was developed to solve these conventional problems, and is characterized by the use of a variable pump exclusively for swinging and a variable pump for other actuators. The regulator is controlled by a servo valve operated by the secondary pressure from the swing remote control valve that switches the directional control valve, and a pressure cut-off control valve (hereinafter referred to as PC control valve) operated by the discharge pressure of the swing-specific variable pump. Variable only for turning by controlling the pressure oil that leads to 5
- Control the discharge flow rate of the pump and perform pressure cut-off control (hereinafter referred to as PC control) of the swing-only variable pump without constant horsepower control to minimize engine output loss, and reduce the output of the swing-only pump. The main feature is that it allows smooth turning even on sloping ground, improving the workability of turning.

また、第2の特徴点は、前記レギュレータにストッパを
設けて旋回専用可変ポンプの必要最低流量を補償して旋
回を確実に作動できるようにした点にある。
A second feature is that the regulator is provided with a stopper to compensate for the required minimum flow rate of the variable pump exclusively for swinging, thereby ensuring reliable swing operation.

さらに、第6の特徴点は、旋回専用可変ポンプと他のア
クチュエータ用可変ポンプとを相互に関連させて制御し
、旋回単独作業時には前記PC制御弁の設定値を最高値
にして高圧、大流量での旋回を可能にし、旋回と他のア
クチュエータとの複合作業時には、前記pc制御弁の設
定値を下げて旋回用可変ポンプの吐出圧力を下げると共
に、他のアクチュエータ用可変ポンプの吐出流量を少な
 6− くして、各ポンプの出力馬力の和が所定値以下となるよ
うに制御し、エンジンの出力を有効に利用しながら前記
複合作業時の作業性を向上できるようにした点にある。
Furthermore, the sixth characteristic point is that the swing-only variable pump and the other actuator variable pumps are controlled in relation to each other, and when the swing-only operation is performed, the setting value of the PC control valve is set to the highest value to achieve high pressure and large flow rate. When the swing is combined with other actuators, the set value of the PC control valve is lowered to lower the discharge pressure of the variable pump for swing, and the discharge flow rate of the variable pump for other actuators is reduced. 6- Thus, the sum of the output horsepower of each pump is controlled to be equal to or less than a predetermined value, and the workability during the complex work can be improved while effectively utilizing the output of the engine.

以下、本発明を図に示す実施例に基いて説明する。The present invention will be explained below based on embodiments shown in the drawings.

第1図は油圧ショベルの全体油圧回路図を示し1.2.
3は第1.第2.第6の各可変ポンプで、エンジン4に
よって駆動される。第1ポンプ1の吐出回路11にはI
J IJ−フ弁12、方向制御弁13.14を介してア
ームシリンダ15、左走行モータ16が接続され、第2
ポンプ2の吐出回路21にはリリーフ弁22、方向制御
弁23,24゜25を介してブームシリンダ26.パケ
ットシリンダ27、右走行モータ28が接続され、第6
ポンプ6の吐出回路31にはIJ IJ−フ弁62、方
向制御弁66を介して旋回モータ34が接続され、以っ
て、第6ポンプ6が旋回専用で、第1.第2ポンプ1,
2が他のアクチュエータ用となっている。35.36は
旋回用ブレーキ弁である。
Figure 1 shows the overall hydraulic circuit diagram of a hydraulic excavator 1.2.
3 is the first. Second. Each sixth variable pump is driven by the engine 4. The discharge circuit 11 of the first pump 1 has an I
The arm cylinder 15 and the left traveling motor 16 are connected via the J IJ valve 12 and the direction control valve 13.14, and the second
The discharge circuit 21 of the pump 2 is connected to a boom cylinder 26. The packet cylinder 27 and the right travel motor 28 are connected, and the sixth
A swing motor 34 is connected to the discharge circuit 31 of the pump 6 via an IJ-F valve 62 and a direction control valve 66, so that the sixth pump 6 is dedicated to swing, and the first... 2nd pump 1,
2 is for other actuators. 35 and 36 are swing brake valves.

前記各方向制御弁13. 14. 23. 24゜25
.33はそれぞれリモコン弁からの二次圧力\によって
切換えられるパイロット式切換弁で、図面では旋回用リ
モコン弁6とブーム用リモコン弁7のみを図示し、他の
リモコン弁は図示省略している。該リモコン弁6,7は
その一次側にパイロット用ポンプ5から一次圧力を導入
し、レバー61.71の操作角に応じて二次側の回路6
2゜66および同72.75に導出する二次圧力を制御
しうるもので、その二次圧力により前記方向制御弁65
.2:6を切換える。
Each direction control valve 13. 14. 23. 24°25
.. Reference numerals 33 denote pilot type switching valves which are switched by the secondary pressure from the remote control valves, and in the drawing, only the swing remote control valve 6 and the boom remote control valve 7 are shown, and the other remote control valves are omitted. The remote control valves 6 and 7 introduce primary pressure from the pilot pump 5 to their primary sides, and control the secondary circuit 6 according to the operating angle of the levers 61 and 71.
2.66 and 72.75, and the secondary pressure leads to the direction control valve 65.
.. Switch between 2:6.

前記各ポンプ1t  2,3は制御回路8,9によって
馬力等が制御されるもので、その制御回路8゜9の一具
体例を示せば第2図の通りである。
The horsepower and the like of each of the pumps 1t2, 3 are controlled by control circuits 8, 9, and a specific example of the control circuit 8.9 is shown in FIG.

第2図において、81は第6ポンプ用レギユレータ、8
2はそのピストン、83は最低吐出流量補償用ストッパ
、84はサーボ弁、85はそのスリーブ、86はPC制
御弁、87はその圧力設定弁、88は流量指令用可変減
圧弁、89はパイロット切換弁、91は第1.第2ポン
プ用レギユレータ、92はそのピストン、96はパイロ
ットピストンを示す。
In FIG. 2, 81 is a regulator for the sixth pump;
2 is its piston, 83 is a stopper for compensating the minimum discharge flow rate, 84 is a servo valve, 85 is its sleeve, 86 is a PC control valve, 87 is its pressure setting valve, 88 is a variable pressure reducing valve for flow rate command, 89 is a pilot switch Valve 91 is the first valve. The regulator for the second pump, 92 indicates its piston, and 96 indicates a pilot piston.

前記レギュレータ81のピストン82は第6ポンプ3の
斜板(または斜軸)およびサーボ弁84のスリーブ85
に連結され、かつ、第6ポンプ6の吐出回路31からパ
イロット回路37,37aによシ小径側油室に導かれる
第6ポンプ6の吐出油と、回路37bに導かれる第3ポ
ンプ6の吐出油をサーボ弁84およびPC制御弁86に
より制御して大径側油室に導かれる圧油によって作動さ
れ、この作動によシ第6ポンプ6の傾転角が制御されて
同ポンプ6の吐出流量Q3が制御され、また、ストッパ
86によりレギュレータ81のピストン82の移動が規
制され、第6ポ/プロの最小傾転角すなわち最低吐出流
量Q3minが補償される。
The piston 82 of the regulator 81 is connected to the swash plate (or slant shaft) of the sixth pump 3 and the sleeve 85 of the servo valve 84.
The discharge oil of the sixth pump 6 is connected to the discharge circuit 31 of the sixth pump 6 and guided to the small diameter side oil chamber by the pilot circuits 37, 37a, and the discharge oil of the third pump 6 is guided to the circuit 37b. The oil is controlled by the servo valve 84 and the PC control valve 86, and the pressure oil is guided to the large-diameter oil chamber.This operation controls the tilting angle of the sixth pump 6, and the discharge of the sixth pump 6 is controlled. The flow rate Q3 is controlled, the movement of the piston 82 of the regulator 81 is regulated by the stopper 86, and the minimum tilt angle of the sixth port/pro, that is, the minimum discharge flow rate Q3min is compensated.

サーボ弁84は旋回用リモコン弁乙の二次側回路62.
63からシャトル弁64によシ高圧選択して回路65に
導かれる二次圧力によって切換え制御される。
The servo valve 84 is connected to the secondary circuit 62 of the swing remote control valve B.
Switching is controlled by secondary pressure selected from 63 to high pressure by shuttle valve 64 and led to circuit 65.

PC制御弁86は、第6ポンプ6の吐出回路= 9− 61からサーボ弁84により制御されて回路86aに導
かれた圧油を、回路370により導かれた第6ポンプ乙
の吐出圧力P3に応じて制御して回路86bに導出し、
レギュレータ81の大径側油室に導く圧油を制御し、第
6ポンプ6をPC制御するものである。また、圧力設定
弁87はブーム用リモコン弁7の二次側回路72.73
からシャトル弁74により高圧選択して回路75に導か
れる二次圧力によって制御され、PC制御弁86の設定
値Pbを最高値P−σから最低値Pbm i nの範囲
で制御する。
The PC control valve 86 converts the pressure oil controlled by the servo valve 84 and guided from the discharge circuit 9-61 of the sixth pump 6 to the circuit 86a to the discharge pressure P3 of the sixth pump B guided by the circuit 370. controlled accordingly and guided to the circuit 86b,
It controls the pressure oil led to the large-diameter side oil chamber of the regulator 81, and PC-controls the sixth pump 6. In addition, the pressure setting valve 87 is connected to the secondary circuit 72 and 73 of the boom remote control valve 7.
It is controlled by the secondary pressure selected by the shuttle valve 74 and guided to the circuit 75, and the setting value Pb of the PC control valve 86 is controlled in the range from the maximum value P-σ to the minimum value Pbmin.

流量指令用減圧弁88は、パイロットポンプ5から一次
側に導入した圧力を前記レギュレータ81のピストン8
2の移動量すなわち第6ポンプ5の傾転角に応じて制御
して二次側の回路88aに導出し、その二次圧力をパイ
ロット切換弁89により回路89a、  89bに選択
的に導き、パイロットピストン96の大径側と小径側に
選択的導いてパイロットピストン96を作動させる。前
記切換弁89はブーム用リモコン弁7の二次側回路−1
〇− 72.73からシャトル弁74により高圧選択して回路
75に導かれた二次圧力によって切換えられる。
The flow rate command pressure reducing valve 88 transfers the pressure introduced into the primary side from the pilot pump 5 to the piston 8 of the regulator 81.
The secondary pressure is controlled according to the movement amount of the pump 2, that is, the tilt angle of the sixth pump 5, and is guided to the secondary side circuit 88a, and the secondary pressure is selectively guided to the circuits 89a and 89b by the pilot switching valve 89, and the pilot The pilot piston 96 is actuated by selectively guiding it to the large diameter side and the small diameter side of the piston 96. The switching valve 89 is the secondary side circuit-1 of the boom remote control valve 7.
〇- 72. The high pressure is selected by the shuttle valve 74 from 73 and switched by the secondary pressure led to the circuit 75.

第1.第2ポンプ1,2のレギュレータ91は該ポンプ
1,2の吐出回路21.31から回路17、”29によ
り導かれた吐出圧力P、、 p2と、前記パイロットピ
ストン93による押圧力によって作動され、そのピスト
ン92により第1.第2ポンプ1,2の斜板(i!、た
は斜軸)の傾転角を制御して第1.第2ポンプ1,2の
出力(吐出流量Q1゜Q2)を制御する。
1st. The regulator 91 of the second pump 1, 2 is operated by the discharge pressure P, p2 led from the discharge circuit 21.31 of the pump 1, 2 by the circuit 17, "29, and the pressing force by the pilot piston 93, The piston 92 controls the tilt angle of the swash plate (i!, or oblique shaft) of the first and second pumps 1 and 2, and the output (discharge flow rate Q1゜Q2) of the first and second pumps 1 and 2 is controlled. ).

次に、上記油圧回路の作動について説明する。Next, the operation of the above hydraulic circuit will be explained.

■、旋回単独作業時 旋回用リモコン弁6のレバー61を矢印A方向に倒すと
、二次回路62に二次圧力が導出され、その二次圧力が
矢印A1方向に導かれ、方向制御弁66が図面右位置に
切換えられ、第6ポンプろの吐出油が矢印A2方向に導
かれて旋回モータ64に流入する。
(3) When the lever 61 of the remote control valve 6 for swing is tilted in the direction of arrow A, secondary pressure is led to the secondary circuit 62, and the secondary pressure is guided in the direction of arrow A1, and the directional control valve 66 is switched to the right position in the figure, and the oil discharged from the sixth pump filter is guided in the direction of arrow A2 and flows into the swing motor 64.

このとき、第2図において、旋回用リモコン非ろの二次
圧力がシャトル弁64を経て矢印A3方向に導かれ、サ
ーボ弁84が図面下位置に切換える。
At this time, in FIG. 2, the secondary pressure of the rotary remote controller is guided in the direction of arrow A3 through the shuttle valve 64, and the servo valve 84 is switched to the lower position in the figure.

一方、この旋回単独作業時には、ブーム用リモコン弁7
のレバー71は中立位置にあり、回路75には二次圧力
が導かれていないので、PC制御弁86は最高設定値P
 b maXで当初図示の位置に保持されている。との
ため、当初は第6ポンプ乙の吐出油が回路67により矢
印A4方向に導かれ、回路37aからレギュレータ81
の小径側油室に流入すると共に、回路37bから前記サ
ーボ弁84の下位置を通り、pc制御弁86の上位置を
経てレギュレータ81の大径側油室に流入し、ピストン
82を押上げて第6ポンプ6の傾転角を太きくし、その
吐出流量Q5を増大する。
On the other hand, during this single swing operation, the boom remote control valve 7
Since the lever 71 is in the neutral position and no secondary pressure is introduced into the circuit 75, the PC control valve 86 is set at the maximum setting value P.
b maX and is held in the position originally shown. Therefore, initially, the oil discharged from the sixth pump O is guided in the direction of arrow A4 by the circuit 67, and from the circuit 37a to the regulator 81.
The oil flows into the small diameter oil chamber of the regulator 81 from the circuit 37b, passes through the lower position of the servo valve 84, passes through the upper position of the PC control valve 86, and flows into the large diameter oil chamber of the regulator 81, pushing up the piston 82. The tilt angle of the sixth pump 6 is increased to increase its discharge flow rate Q5.

しかし、この旋回起動時には、当初、旋回モータ64が
慣性負荷により停止しているため、前記第6ボンプ6の
吐出油が旋回モータ64の吸込側に流入すると、吸込側
の圧力が直ちに急上昇し、これに伴って第3ポンプ6の
吐出圧力P6がブレーキ弁35.’36の設定値Paに
対応する圧力1で急上昇し、前記PC制御弁86の最高
設定値Pbmaxより高圧となり、その吐出圧力P3 
(== pa )が回路370によシPC制御弁86の
パイロットボートに導かれ、PC制御弁86が直ちに図
面下位置に切換えられ、前記サーボ弁84からレギュレ
ータ81の大径側油室への圧油の流入が遮断されると共
に、前記大径側油室内の油がpc制御弁86の下位置を
経てタンクに流出する。
However, at the time of starting this swing, the swing motor 64 is initially stopped due to inertia load, so when the oil discharged from the sixth pump 6 flows into the suction side of the swing motor 64, the pressure on the suction side immediately rises. Along with this, the discharge pressure P6 of the third pump 6 increases to the brake valve 35. The pressure rises rapidly at 1 corresponding to the set value Pa of '36, becomes higher than the maximum set value Pbmax of the PC control valve 86, and the discharge pressure P3
(== pa) is guided to the pilot boat of the PC control valve 86 by the circuit 370, the PC control valve 86 is immediately switched to the lower position in the drawing, and the servo valve 84 is connected to the large diameter side oil chamber of the regulator 81. The inflow of pressure oil is blocked, and the oil in the large-diameter oil chamber flows out into the tank via the lower position of the PC control valve 86.

このため、前記回路37aにより小径側油室に流入して
いる第6ポンプ6の吐出油によってレギ □スレータ8
1のピストン82が押下げられ、第6ポンプ6の傾転角
が小さくなり、同ポン′プロの吐出流量Q3が減少され
る。なお、この場合、ピストン82が所定位置まで押下
げられるとストッパ86により停止され、第6ポンプ乙
の必要最小傾転角すなわち必要最低流量Q3minが補
償される。
Therefore, the oil discharged from the sixth pump 6 flowing into the small diameter side oil chamber by the circuit 37a causes the leg □Slater 8
The first piston 82 is pushed down, the tilt angle of the sixth pump 6 becomes smaller, and the discharge flow rate Q3 of the sixth pump 6 is reduced. In this case, when the piston 82 is pushed down to a predetermined position, it is stopped by the stopper 86, and the required minimum tilt angle of the sixth pump B, that is, the required minimum flow rate Q3min is compensated.

こうして、旋回単独の旋回起動時には、第6ポンプ乙の
吐出圧力P3がブレーキ弁35,36の設定値Paに対
応する最高圧力となり、吐出流量Q3がストッパ83に
より補償された必要最低流量Q316− m1nとなり、第6図のイ点より旋回起動される。
In this way, at the start of the swing alone, the discharge pressure P3 of the sixth pump B becomes the maximum pressure corresponding to the set value Pa of the brake valves 35 and 36, and the discharge flow rate Q3 becomes the required minimum flow rate Q316-m1n compensated by the stopper 83. The rotation is started from point A in Fig. 6.

次に、旋回モータ64が起動し始めると、同モータ64
の吸込側にその回転に見合った流量が流入し、吸込側の
圧力すなわち第6ポンプ乙の吐出圧力が低下する。そし
て、該吐出圧力P3が前記PC制御弁86の最高設定値
Pbmax以下になると、PC制御弁86がその圧力設
定弁87により図面下位置に復帰され、第6ポンプ6の
吐出油が回路57bからサーボ弁84の下位置、PC制
御弁84の上位置を経てレギュレータ81の大径側油室
に流入する。このとき、小径側油室にも第6ポンプ6の
吐出油が流入しているが、ピストン82の大径側油室の
受圧面積が太きいため、ピストン82が押上げられ、以
って、第6ポンプ6の傾転角が大きく、すなわち吐出流
量Q6が増大するように制御される。
Next, when the swing motor 64 starts to start, the motor 64
A flow rate commensurate with the rotation flows into the suction side of the pump B, and the pressure on the suction side, that is, the discharge pressure of the sixth pump B, decreases. When the discharge pressure P3 becomes equal to or lower than the maximum setting value Pbmax of the PC control valve 86, the PC control valve 86 is returned to the lower position in the drawing by its pressure setting valve 87, and the discharge oil of the sixth pump 6 is supplied from the circuit 57b. It flows into the large diameter side oil chamber of the regulator 81 via the lower position of the servo valve 84 and the upper position of the PC control valve 84 . At this time, the oil discharged from the sixth pump 6 is flowing into the small diameter side oil chamber, but since the pressure receiving area of the large diameter side oil chamber of the piston 82 is large, the piston 82 is pushed up. The tilting angle of the sixth pump 6 is controlled to be large, that is, the discharge flow rate Q6 is increased.

斯る場合、旋回用リモコン非ろの二次圧力はレバー61
の操作角度に応じて制御され、この二次圧力に応じて前
記方向制御弁66のスプール開口面積が制御され、旋回
モータ64に流入する流量14− が制御され、かつ、該二次圧力に応じてサーボ弁84の
スプール開口面積が制御され、前記レギュレータ810
大径側油室に流入する流量が制御され、以って、第3ポ
ンプ3の傾転角、吐出流量Q6が制御される。
In such a case, the secondary pressure of the rotary remote controller is controlled by the lever 61.
The spool opening area of the direction control valve 66 is controlled according to the secondary pressure, the flow rate 14- flowing into the swing motor 64 is controlled according to the secondary pressure, and the spool opening area of the direction control valve 66 is controlled according to the secondary pressure. The spool opening area of the servo valve 84 is controlled by the regulator 810.
The flow rate flowing into the large-diameter oil chamber is controlled, and thus the tilt angle and discharge flow rate Q6 of the third pump 3 are controlled.

すなわち、第6ポンプ6は、従来のように自己の吐出圧
力のみによって流量制御される定馬力制御ではなく、旋
回レバー61の操作角に応じて吐出流量Q3が制御され
るいわゆるポジコンタイブとなっており、旋回起動時に
は、ブレーキ弁65゜66の設定値Paに対応する最高
圧力と、レギュレータ81のストッパ81によ逆補償さ
れた必要最低流量Q、3 minで、第6図イ点から旋
回起動され、旋回起動し始めると、PC制御弁81の最
高設定時り P bma、Xに対応する高圧で、前記レバー61によ
って制御される流量で旋回加速され、最高で第6図実線
のロ点〜ハ点の範囲で、高圧、大流量での旋回が可能と
なり、第6図のイ点を基準とする定馬力制御曲線(細線
)より大出力が得られ、傾斜地でもスムーズに旋回加速
される。
In other words, the sixth pump 6 is not of a constant horsepower control in which the flow rate is controlled only by its own discharge pressure as in the past, but is of a so-called positive control type in which the discharge flow rate Q3 is controlled according to the operating angle of the swing lever 61. At the time of starting the swing, the maximum pressure corresponding to the set value Pa of the brake valves 65 and 66 and the required minimum flow rate Q, reversely compensated by the stopper 81 of the regulator 81, are set at 3 min, and the swing is started from point A in Fig. 6. , when the rotation starts, the rotation is accelerated at a high pressure corresponding to the maximum setting of the PC control valve 81, P bma, It is possible to turn with high pressure and large flow rate within the range of point A, and a large output can be obtained from the constant horsepower control curve (thin line) based on point A in Fig. 6, and smooth turning acceleration can be achieved even on slopes.

■、旋回とブームの複合作業時 マス、第1図において、ブーム用リモコン弁7のレバー
71を矢印B方向に倒すと、二次側回路72に二次圧力
が導出され、その二次圧力が矢印B1方向に導かれ、方
向制御弁26が図面上位置に切換えられ、第2ポンプ2
の吐出油が矢印B2方向に導かれてブームシリンダ26
の抑制油室に流入する。
■ Mass during combined operation of swing and boom In Fig. 1, when the lever 71 of the boom remote control valve 7 is tilted in the direction of arrow B, secondary pressure is led to the secondary side circuit 72; is guided in the direction of arrow B1, the direction control valve 26 is switched to the position shown in the drawing, and the second pump 2
The discharged oil is guided in the direction of arrow B2 to the boom cylinder 26.
into the suppression oil chamber.

而して、ブーム単独作業時には、第2ポンプ2の吐出圧
力P2がブーム負荷圧力に応じて上昇すると共に、その
圧力P2が矢印B3方向に導かれて第2図に示すレギュ
レータ91に流入し、ピストン92が移動制御され、第
2ポンプ2の傾転角つまり吐出流量Q2が制御され、以
って、第2ポンプ2は従来と同様にレギュレータ91に
より自己の吐出圧力P2に応じて第4図の実線に示す定
馬力制御曲線に沿って吐出流量Q2が制御され、最大出
力でブーム上げ作業が行われ、エンジン4の出力が最大
限に利用される。
Therefore, when the boom is working alone, the discharge pressure P2 of the second pump 2 increases in accordance with the boom load pressure, and the pressure P2 is guided in the direction of arrow B3 and flows into the regulator 91 shown in FIG. 2, The movement of the piston 92 is controlled, and the tilting angle of the second pump 2, that is, the discharge flow rate Q2, is controlled.Therefore, the second pump 2 is controlled by the regulator 91 according to its own discharge pressure P2, as in the conventional case, as shown in FIG. The discharge flow rate Q2 is controlled along the constant horsepower control curve shown by the solid line, the boom raising operation is performed at the maximum output, and the output of the engine 4 is utilized to the maximum.

次に、旋回用リモコン弁6のレバー61を矢印A方向に
倒すと、前記Iの作業時と同様に該リモコン弁6の二次
圧力によって方向制御弁33が切換えられ、第6ポンプ
6の吐出油が旋回モータ34に流入し、旋回作業が行わ
れる。ただし、このブームと旋回の複合作業時には、前
記ブーム用リモコン弁7の二次回路72に導出された二
次圧力がシャトル弁74を経て矢印B4方向に導かれ、
圧力設定弁87に流入し、PC制御弁86の設定値Pb
が低くなるように制御され、以って、第3ポンプ6の出
力(吐出圧力P3)が旋回単独作業時より小さくなるよ
うに制御される。
Next, when the lever 61 of the remote control valve for rotation 6 is tilted in the direction of arrow A, the direction control valve 33 is switched by the secondary pressure of the remote control valve 6, as in the operation I above, and the discharge of the sixth pump 6 is Oil flows into the swing motor 34 and a swing operation is performed. However, during this combined work of boom and swing, the secondary pressure led out to the secondary circuit 72 of the boom remote control valve 7 is led in the direction of arrow B4 via the shuttle valve 74,
Flows into the pressure setting valve 87 and sets the set value Pb of the PC control valve 86
Therefore, the output of the third pump 6 (discharge pressure P3) is controlled to be smaller than when the rotation is performed alone.

而して、第6ポンプ乙の吐出圧力2口が、前記ブーム用
リモコン弁7の二次圧力によって制御されたpc制御弁
86の設定値Pbよシ高くなると、PC制御弁86が図
面下位置に切換えられ、以下、前記Iの作業時と同様に
レギュレータ81のピストン82が押下げられ、第3ポ
ンプ6の吐出流量Q3がストッパ83によって補償され
た最低流量Q3minとなり、以って、前記ブレーキ弁
35,36の設定値Paないしは前記PC制御弁86の
設定値−17= P′bK対応する圧力と、前記ストッパ83によって補
償された最低流量Jminで旋回起動される。然る後、
旋回起動し始めて第6ポンプ乙の吐出圧力P6が前記p
c制御弁86の設定値pIJ下になると、PC制御弁8
6が図示の上位置に復帰し、以下、前記lの作業時と同
様の作用により、旋回用リモコン弁6のレバー61の操
作角度に応じてポジコン式にサーボ弁84が制御される
と共に、レギュレータ81が制御され、第6ポンプ乙の
吐出流量Q6が制御され、以って、第6ポンプ6が第6
図破線に示す制御曲線に沿って制御され、前記ブーム用
リモコン弁7によって制御されるp、 c制御弁86の
設定値Pbに対応する圧力と、前記旋回用リモコン弁6
によってポジコン式に制御される流量によって旋回加速
される。
When the discharge pressure of the sixth pump B becomes higher than the set value Pb of the PC control valve 86 controlled by the secondary pressure of the boom remote control valve 7, the PC control valve 86 moves to the lower position in the drawing. Thereafter, the piston 82 of the regulator 81 is pushed down in the same way as in the operation I above, and the discharge flow rate Q3 of the third pump 6 becomes the minimum flow rate Q3min compensated by the stopper 83, so that the brake The rotation is started at a pressure corresponding to the set value Pa of the valves 35, 36 or the set value of the PC control valve 86-17=P'bK and the minimum flow rate Jmin compensated by the stopper 83. After that,
When the rotation starts, the discharge pressure P6 of the sixth pump B becomes the above p.
When the set value pIJ of the c control valve 86 falls below, the PC control valve 8
6 returns to the upper position shown in the figure, and the servo valve 84 is controlled in a positive control manner according to the operating angle of the lever 61 of the remote control valve 6 by the same action as in the operation of step 1 above, and the regulator is 81 is controlled, and the discharge flow rate Q6 of the sixth pump B is controlled, so that the sixth pump 6
The pressure corresponding to the set value Pb of the p, c control valve 86 controlled by the boom remote control valve 7 and the swing remote control valve 6 is controlled along the control curve shown by the broken line in the figure.
The rotation is accelerated by the flow rate controlled in a positive control manner.

一方、この複合作業時において、前記レギュレータ81
による第6ポンプ3の傾転角(吐出流量Q5)の制御に
連動して可変減圧弁88が制御され、その二次側回路8
8aに導出される二次圧力が制御され、該二次圧力が矢
印B5方向に導かれ、パイ18− ロット切換弁89を経てパイロットピストン96に流入
し、同ピストン96を押下げ、この押下げ力と、第2ポ
ンプ2の吐出圧力P2とによってレギュレータ91が制
御され、第2ポンプ2の吐出流量Q2が制御され、第2
ポンプ2の出力が第4図破線で示す制御曲線に沿って制
御され、この制御曲線に沿った圧力P2と流量Q2によ
ってブーム上げ作業が行われる。
On the other hand, during this complex work, the regulator 81
The variable pressure reducing valve 88 is controlled in conjunction with the control of the tilting angle (discharge flow rate Q5) of the sixth pump 3, and the secondary side circuit 8
8a is controlled, the secondary pressure is guided in the direction of arrow B5, flows into the pilot piston 96 through the piston 18-rot switching valve 89, presses down the piston 96, and presses down the piston 96. The regulator 91 is controlled by the force and the discharge pressure P2 of the second pump 2, and the discharge flow rate Q2 of the second pump 2 is controlled.
The output of the pump 2 is controlled along the control curve shown by the broken line in FIG. 4, and the boom raising operation is performed using the pressure P2 and flow rate Q2 along this control curve.

さらに、この場合、ブームの仕事量が小さく、ブーム用
リモコン弁7のレバー71の操作角を小さくしてブーム
用方向制御弁26を切換えるためのリモコン弁7の二次
圧力を小さくしているときは、回路75に導かれる二次
圧力も小さくなるため、PC制御弁86の設定値P幼;
高くなり、第6ポンプ6の出力が大きくなシ、かつ、パ
イロット切換弁89が図示の位置にあって前記可変減圧
弁88の二次圧力がパイロットピストン96の大径側に
導かれ、レギュレータ910制御量が犬きくなシ、第2
ポンプ2の吐出流量Q2が大巾に減少される。また、ブ
ームの仕事量が大きく、前記レバー71の操作角を大き
くして前記ブーム用リモコン弁7の二次圧力を大きくし
ているときは、回路75に導かれる二次圧力も大きくな
ってPC制御弁86の設定値Pbが低くなり、第6ポン
プ6の出力が小さくなり、かつ、パイロット切換弁89
が図面右位置に切換えられて、前記可変減圧弁88の二
次圧力がパイロットピストン96の小径側に導かれ、レ
ギュレータ91の制御量が小さくなり、第2ポンプ2の
吐出流量Q2の減少量が小さくなる。
Furthermore, in this case, when the amount of work of the boom is small and the operation angle of the lever 71 of the boom remote control valve 7 is reduced to reduce the secondary pressure of the remote control valve 7 for switching the boom directional control valve 26. Since the secondary pressure guided to the circuit 75 also decreases, the set value P of the PC control valve 86 decreases;
When the output of the sixth pump 6 is high and the pilot switching valve 89 is in the position shown, the secondary pressure of the variable pressure reducing valve 88 is guided to the large diameter side of the pilot piston 96, and the output of the sixth pump 6 is large. The control amount is too small, the second
The discharge flow rate Q2 of the pump 2 is significantly reduced. In addition, when the work load of the boom is large and the operating angle of the lever 71 is increased to increase the secondary pressure of the boom remote control valve 7, the secondary pressure led to the circuit 75 also increases and the PC The set value Pb of the control valve 86 becomes low, the output of the sixth pump 6 becomes small, and the pilot switching valve 89
is switched to the right position in the figure, the secondary pressure of the variable pressure reducing valve 88 is guided to the small diameter side of the pilot piston 96, the control amount of the regulator 91 becomes small, and the amount of decrease in the discharge flow rate Q2 of the second pump 2 is reduced. becomes smaller.

このように、複合作業時には、ブーム用リモコン弁7に
よってpc制御弁86の設定値Pbを制御して第6ポン
プ乙の吐出圧力2口を制御すると共に、旋回用リモコン
弁6によって第6ポンプ6の吐出流量Qsk制御し、か
つ、第6ポンプ6の吐出流量Q5に応じて第2ポンプ2
の吐出流量Q2を制御し、第6ポンプ6と第2ポンプ2
の出力を相互に制御することによりエンジン4が過負荷
になることなく、かつ、エンジン4の出力を有効に利用
して旋回とブーム上げの複合作業が互いに効率よく行わ
れる。
In this way, during complex work, the boom remote control valve 7 controls the setting value Pb of the PC control valve 86 to control the two discharge pressure ports of the sixth pump B, and the swing remote control valve 6 controls the sixth pump 6. The discharge flow rate Qsk of the second pump 2 is controlled according to the discharge flow rate Qsk of the sixth pump 6.
control the discharge flow rate Q2 of the sixth pump 6 and the second pump 2.
By mutually controlling the outputs of the two, the engine 4 will not be overloaded, and the output of the engine 4 will be effectively utilized to efficiently perform the combined work of turning and raising the boom.

第5図は、第1図および第2図に示した第6ボンプ3の
制御回路8の別の実施例を示すもので、この実施例では
、第3ポンプ6のレギュレータ81のピストン82を大
径側に付勢し、パイロット用ポンプ5からの圧油をサー
ボ弁84を介してレギュレータ81の大径側油室に導き
、旋回用リモコン弁6から回路65に導出された二次圧
力をPC制御弁86を介してサーボ弁84のパイロット
ポートに導き、PC制御弁86のパイロットポートには
回路57Cにより第6ポンプ乙の吐出油を導き、圧力設
定弁87にはブーム用リモコン弁7からの二次圧力を導
入させ、かつ、前記サーボ弁84からレギュレータ81
の大径側油室に圧油を導く回路84aから同回路84a
 中の圧油の圧力を取出し、回路84bからパイロット
切換弁89を介して回路89aまたは回路89b に導
き、パイロットピストン96を制御して第1.第2ポン
プ1,2のレギュレータ91を制御するように構成して
いる。
FIG. 5 shows another embodiment of the control circuit 8 of the sixth pump 3 shown in FIGS. 1 and 2. In this embodiment, the piston 82 of the regulator 81 of the third pump 6 is The pressure oil from the pilot pump 5 is guided to the large diameter side oil chamber of the regulator 81 via the servo valve 84, and the secondary pressure led out from the swing remote control valve 6 to the circuit 65 is transferred to the PC. The oil is led to the pilot port of the servo valve 84 via the control valve 86, the discharge oil of the sixth pump B is led to the pilot port of the PC control valve 86 by the circuit 57C, and the oil from the boom remote control valve 7 is led to the pressure setting valve 87. A secondary pressure is introduced into the regulator 81 from the servo valve 84.
From the circuit 84a that leads pressure oil to the large diameter side oil chamber of the same circuit 84a
The pressure of the pressure oil inside is taken out and guided from the circuit 84b to the circuit 89a or circuit 89b via the pilot switching valve 89, and the pilot piston 96 is controlled. The regulator 91 of the second pumps 1 and 2 is configured to be controlled.

第5図の制御回路によれば、旋回単独作業時に21− は、PC制御弁86の設定値を最高値に保持させ、旋回
用リモコン弁6から回路65.PC制御弁86を経てサ
ーボ弁84に導く二次圧力を大きくしてサーボ弁85の
切換量を大きクシ、ポンプ5からサーボ弁85を経てレ
ギュレータ81の大径側油室に導く圧油を多クシ、ピス
トン82の移動量を大きくし、第6ボンプ3の傾転角、
吐出流量Q3を増大させ、かつ、前記旋回用リモコン弁
6のt/バー61の操作によってサーボ弁84の切換量
、レギュレータ81のピストン82の移動i 、第3ポ
ンプ6の吐出流量Q3をポジコン式で制御し、前記PC
制御弁86の最高設定値に対応する高圧力と、大流量で
の旋回が可能となる。
According to the control circuit shown in FIG. 5, during the single swing operation, the PC control valve 86 is maintained at its highest setting value, and the control circuit 65 is connected to the swing remote control valve 6. The secondary pressure led to the servo valve 84 through the PC control valve 86 is increased to increase the switching amount of the servo valve 85, and the pressure oil led from the pump 5 to the large diameter side oil chamber of the regulator 81 through the servo valve 85 is increased. The amount of movement of the comb and piston 82 is increased, and the tilt angle of the sixth pump 3 is increased.
The discharge flow rate Q3 is increased, and the switching amount of the servo valve 84, the movement i of the piston 82 of the regulator 81, and the discharge flow rate Q3 of the third pump 6 are controlled in a positive control manner by operating the t/bar 61 of the remote control valve for rotation 6. and the PC
It is possible to rotate at a high pressure corresponding to the maximum setting value of the control valve 86 and a large flow rate.

また、旋回とブーム上げの複合作業時には、ブーム用リ
モコン弁7の二次圧力によってpc制御弁86の設定値
を制御し、旋回用リモコン弁6がらサーボ弁84に導か
れる二次圧力を制御し、サーボ弁84の切換量、ポンプ
5からレギュレータ81の大径側油室への圧油の流入量
、ピストン82の移動量、第6ボンプ3の傾転角を順次
制御=22− して第6ボンプ6の最高吐出圧力ならびに流量を制御す
ると共に、前記回路84a中の圧力をパイロット切換弁
89を介してパイロットピストン96に導き、レギュレ
ータ91を制御して第2ポンプ2の吐出流量を制御し、
以って、第1図および第2図に示した制御回路による場
合と同様にエンジン4の過負荷を防止しながらエンジン
出力を有効に利用して旋回とブーム上げの複合作業が効
率よく行われる。
In addition, during combined work of swinging and boom raising, the set value of the PC control valve 86 is controlled by the secondary pressure of the boom remote control valve 7, and the secondary pressure guided from the swing remote control valve 6 to the servo valve 84 is controlled. , the switching amount of the servo valve 84, the amount of pressure oil flowing from the pump 5 into the large diameter side oil chamber of the regulator 81, the amount of movement of the piston 82, and the tilting angle of the sixth pump 3 are sequentially controlled = 22-. In addition to controlling the maximum discharge pressure and flow rate of the second pump 6, the pressure in the circuit 84a is guided to the pilot piston 96 via the pilot switching valve 89, and the regulator 91 is controlled to control the discharge flow rate of the second pump 2. ,
Therefore, as with the control circuits shown in FIGS. 1 and 2, the combined work of turning and raising the boom can be efficiently performed by effectively utilizing the engine output while preventing overload of the engine 4. .

々お、第5図の制御回路においてPC制御弁86の代り
に第6図に示す構造のpc制御弁86′を用いてもよい
。このpc制御弁86′は、回路75に導かれたブーム
用リモコン弁7からの二次圧力によってパイロット弁8
7′を切換えることにより、回路37Cに導かれた第6
ポンプ3の吐出圧力をパイロットピストン86〃の大径
側または小径側に導き、このピストン86#によりpc
制御弁86′を切換え、回路65に導かれたブーム用リ
モコン弁6からの二次圧力を制御してサーボ弁84のパ
イロットポートに導くものであり、この第6図に示す弁
を用いても第5図のPC制御弁86と同様の作用効果を
発揮できる。
Alternatively, a PC control valve 86' having the structure shown in FIG. 6 may be used in place of the PC control valve 86 in the control circuit shown in FIG. This PC control valve 86' is controlled by the pilot valve 8 by the secondary pressure from the boom remote control valve 7 led to the circuit 75.
7' leads to the sixth circuit 37C.
The discharge pressure of the pump 3 is guided to the large diameter side or the small diameter side of the pilot piston 86〃, and this piston 86#
By switching the control valve 86', the secondary pressure from the boom remote control valve 6 led to the circuit 65 is controlled and guided to the pilot port of the servo valve 84. The same effects as the PC control valve 86 shown in FIG. 5 can be achieved.

また、上記各実施・例では、第1.第2ポンプ1゜2の
吐出流量を制御するために共通のレギュレータ91を用
いたが、第7図に示すように、各ポンプ1,2に個々に
レギュレータ91a・ 911)を付設し、第2図に示
した回路88aまたは第5図の回路84bから導入した
流量指令圧力を、ブーム用リモコン弁7から導かれた二
次圧力によって切換えられるパイロット切換弁89を介
して前記両レギュレータ91a、91bに導き、該指令
圧力と各ポンプ1,2の吐出圧力とによって各ポンプ1
,2の吐出流量を制御するようにしてもよい。
In addition, in each of the above embodiments/examples, the first. Although a common regulator 91 was used to control the discharge flow rate of the second pumps 1 and 2, as shown in FIG. The flow rate command pressure introduced from the circuit 88a shown in the figure or the circuit 84b shown in FIG. Each pump 1 is guided by the command pressure and the discharge pressure of each pump 1, 2.
, 2 may be controlled.

上記各実施例では、旋回とブーム上げの複合作業時につ
いて説明したが、旋回とアーム、パケット等のアクチュ
エータとの複合作業時にも本発明の回路を適用できるこ
とはいうまでもない。
In each of the above-mentioned embodiments, description has been given of the combined operation of turning and raising the boom, but it goes without saying that the circuit of the present invention can also be applied to the combined operation of turning and actuators such as arms and packets.

以上説明したように、本発明によれば、旋回専用として
可変ポンプを用いながら、該ポンプを定馬力制御せずに
PC制御することにより、従来のようなリリーフによる
出力損失を防止し、かつ、旋回用リモコン弁によって制
御されるサーボ弁と前記PC制御弁とを用いることによ
って、旋回専用可変ポンプの出力i、PC制御弁の設定
値に対応する高圧力として、その吐出流量をポジコン式
に制御でき、可変ポンプでおりながら固定ポンプと同様
に高圧、大流量の出力を発揮して傾斜地でもスムーズに
旋回できる。しかも、旋回専用可変ポンプの馬力制御と
して、従来の旋回用ポンプのように「圧カメ一定流量」
または「一定馬力」の制御を行うのではなく、「一定圧
力大流量」として制御するので、旋回に最適な圧力−流
量特性を得ることができ、かつ、油圧システム全体とし
てもエンジン馬力を有効に利用できる。
As explained above, according to the present invention, while using a variable pump exclusively for turning, the pump is controlled by PC instead of constant horsepower control, thereby preventing output loss due to relief as in the conventional case, and By using the servo valve controlled by the swing remote control valve and the PC control valve, the discharge flow rate is controlled in a positive control manner as a high pressure corresponding to the output i of the swing-only variable pump and the set value of the PC control valve. Although it is a variable pump, it produces the same high pressure and large flow rate as a fixed pump, and can turn smoothly even on slopes. Moreover, the horsepower control of the swing-only variable pump uses a "pressure camera constant flow rate" like the conventional swing pump.
Alternatively, instead of "constant horsepower" control, it is controlled as "constant pressure and large flow rate", so it is possible to obtain the optimal pressure-flow characteristics for turning, and the engine horsepower is effectively used for the entire hydraulic system. Available.

また、第2の発明によれば、レギュレータに設けたスト
ッパーによって、旋回専用可変ポンプの前記PC制御弁
によって制御された高圧時の最低吐出流量を補償でき、
旋回起動を確実に行うことができる。
Further, according to the second invention, the minimum discharge flow rate at high pressure controlled by the PC control valve of the swing-only variable pump can be compensated by a stopper provided on the regulator,
Rotation start can be performed reliably.

さらに、第3の発明によれば、旋回単独作業時25− には、前記PC制御弁の設定値を最高値にして高圧、大
流量での旋回ができ、旋回と他のアクチュエータとの複
合作業時には、前記PC制御弁の設定値を下げて旋回用
可変ポンプの出力を下げると共に、他のアクチュエータ
用可変ポンプの出力(吐出流量)を下げ、各ポンプの出
力馬力の和が所定値以下となるように相互に制御するこ
とによって、エンジンの出力を有効に利用しながら、旋
回と他のアクチュエータとを互いに効率よく作動させ、
複合作業時の作業性を向上できるのである。
Furthermore, according to the third aspect of the present invention, during the single swing work, the setting value of the PC control valve is set to the maximum value to allow the swing to be performed at high pressure and large flow rate. Sometimes, the set value of the PC control valve is lowered to lower the output of the variable swing pump, and the output (discharge flow rate) of the variable pump for other actuators is lowered, so that the sum of the output horsepower of each pump becomes less than a predetermined value. By mutually controlling each other, the engine's output can be used effectively, and the swing and other actuators can be operated efficiently together.
This makes it possible to improve work efficiency during complex tasks.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す全体油圧回路図、第2図
はその各ポンプの制御回路の具体例を示す要部の油圧回
路図、第5図は旋回専用としての第6ポンプの出力制御
特性図、第4図は他のアクチュエータ用としての第2ポ
ンプの出力制御特性図、第5図は各ポンプの制御回路の
別の実施例を示す第2図相当図、第6図はpc制御弁の
別の実施例を示す油圧回路図、第7図は第1.第2ポン
プのレギュレータの別の実施例を示す油圧回路図であ2
6一 る。 1・・・第1ポンプ、2・・・第2ポンプ、6・・・第
6ポンプ(旋回専用)、4・・・エンジン、5・・・パ
イロット用ポンプ、6・・・旋回用リモコン弁、7・・
・ブーム用リモコン弁、8,9・・・制御回路、131
14・・・方向制御弁、15・・・アームシリンダ、1
6・・・左走行モータ、23.24.25・・・方向制
御弁、26・・・ブームシリンダ、27・・・パケット
シリンダ、28・右走行モータ、66・・・方向制御弁
、34・・・旋回モータ、35.36・・・ブレーキ弁
、81・・・レギュレータ、86・・・最低流量補償用
ストッパ、84・・サーボ弁、86・・・プレッシャカ
ットオフ制御弁、87・・・圧力設定弁、88・・・流
量指令用可変減圧弁、89・・・パイロット切換弁、9
1・・・レギュレータ、93・・・パイロットピストン
。 特許出願人  株式会社神戸製鋼所 代理人 弁理士  小 谷 悦  司 27− 第  2  図 37       F 竪         1 − =−1 1。 1 ?/     1 、   etλ      1 直 1 1             ; 一″″“−□ i34 1 1  y    11 8f+ ・ p、、11tr ・ 1「− 一→ 5  顎 A=シβ 14開nU39−8504G (10)第  3  図 “″叩f猪 ■ :ノー  −+   l +−111 、−4。74   1七i”杓 2f        +、        l第  4
  図
Fig. 1 is an overall hydraulic circuit diagram showing an embodiment of the present invention, Fig. 2 is a hydraulic circuit diagram of main parts showing a specific example of the control circuit of each pump, and Fig. 5 is a hydraulic circuit diagram of the sixth pump dedicated to swinging. Figure 4 is an output control characteristic diagram of the second pump for use with other actuators, Figure 5 is a diagram equivalent to Figure 2 showing another example of the control circuit for each pump, and Figure 6 is A hydraulic circuit diagram showing another embodiment of the PC control valve, FIG. 2 is a hydraulic circuit diagram showing another embodiment of the regulator of the second pump.
6. 1... 1st pump, 2... 2nd pump, 6... 6th pump (swing only), 4... engine, 5... pilot pump, 6... remote control valve for swing ,7...
・Remote control valve for boom, 8, 9...control circuit, 131
14... Directional control valve, 15... Arm cylinder, 1
6...Left travel motor, 23.24.25...Direction control valve, 26...Boom cylinder, 27...Packet cylinder, 28.Right travel motor, 66...Direction control valve, 34. ...Swivel motor, 35.36...Brake valve, 81...Regulator, 86...Minimum flow rate compensation stopper, 84...Servo valve, 86...Pressure cut-off control valve, 87... Pressure setting valve, 88... Variable pressure reducing valve for flow rate command, 89... Pilot switching valve, 9
1...Regulator, 93...Pilot piston. Patent Applicant: Kobe Steel, Ltd. Agent Patent Attorney: Etsushi Kotani 27- 2nd Figure 37 F Vertical 1- =-1 1. 1? / 1, etλ 1 straight 1 1; 1"""-□ i34 1 1 y 11 8f+ ・ p,, 11tr ・ 1 "- 1 → 5 Jaw A=shiβ 14 open nU39-8504G (10) Figure 3" ``Slap f boar ■: No -+ l +-111, -4.74 17i'' ladle 2f +, l 4th
figure

Claims (1)

【特許請求の範囲】 1、 旋回専用可変ポンプと、他のアクチュエータ用可
変ポンプとを有し、旋回専用可変ポンプに、旋回用方向
制御弁を切換える旋回用リモコン弁からの二次圧力によ
って作動されるサーボ弁と、旋回専用可変ポンプの吐出
圧力によって作動されるプレウシNカットオフ制御弁と
、前記サーボ弁とプレッシャカットオフ制御弁によって
制御された圧油を導入して旋回専用可変ポンプの吐出流
量を制御するレギュレータとを接続してなることを特徴
とする油圧ショベルの油圧回路。 2、旋回専用可変ポンプと、他のアクチュエータ用可変
ポンプとを有し、旋回専用可変ポンプに、旋回用方向制
御弁を切換える旋回用リモコン弁からの二次圧力によっ
て作動されるサーボ弁と、旋回専用可変ポンプの吐出圧
力によって作動されるプレッシャカットオフ制御弁と、
前記サーボ弁と 1− プレッシャカットオフ制御弁によって制御された圧油を
導入して旋回専用可変ポンプの吐出流量を制御するレギ
ュレータとを接続し、かつ、該レギュレータに旋回専用
可変ポンプの最低吐出流量補償用ストッパを設けたごと
を特徴とする油圧ショベルの油圧回路。 6、旋回専用可変ポンプと、他のアクチュエータ用可変
ポンプとを有し、旋回専用可変ポンプへ旋回用方向制御
弁を切換える旋回用リモコン弁からの二次圧力によって
作動されるサーボ弁と、旋回専用可変ポンプの吐出圧力
によって作動されるプレッシャカットオフ制御弁と、前
記サーボ弁とプレッシャカットオフ制御弁によって制御
された。 圧油を導入して旋回専用可変ポンプの吐出流量を制御す
るレギュレータとを接続し、前記プレッシャカットオフ
制御弁に、他のアクチュエータ回路から圧力信号を導入
してプレッシャカットオフ制御弁の設定値を下げる如く
制御する圧力設定弁を付設すると共に、他のアクチュエ
ータ用可変ポンプに、前記レギュレータに対する吐出流
量制御信号に応じて他のアクチュエータ用可変ポンプの
吐出流量を制御して前記各ポンプの出力馬力の和が所定
値以下となるように制御する制御回路を設けたことを特
徴とする油圧ショベルの油圧回路。
[Claims] 1. It has a swing-only variable pump and another actuator variable pump, and the swing-only variable pump is operated by secondary pressure from a swing remote control valve that switches the swing direction control valve. A servo valve operated by the discharge pressure of the swing-only variable pump, and a pressure oil controlled by the servo valve and the pressure cut-off control valve are introduced to control the discharge flow rate of the swing-only variable pump. A hydraulic circuit for a hydraulic excavator, characterized in that it is connected to a regulator that controls the hydraulic excavator. 2. It has a swing-only variable pump and a variable pump for other actuators, and the swing-only variable pump has a servo valve operated by the secondary pressure from the swing remote control valve that switches the swing direction control valve, and a swing a pressure cut-off control valve operated by the discharge pressure of a dedicated variable pump;
The servo valve is connected to a regulator that controls the discharge flow rate of the swing-only variable pump by introducing pressure oil controlled by a pressure cut-off control valve, and the minimum discharge flow rate of the swing-only variable pump is connected to the regulator. A hydraulic circuit for a hydraulic excavator characterized by a compensation stopper. 6. A servo valve that has a swing-only variable pump and a variable pump for other actuators, and is operated by secondary pressure from a swing-use remote control valve that switches the swing-direction control valve to the swing-only variable pump, and a swing-only variable pump. It was controlled by a pressure cutoff control valve operated by the discharge pressure of the variable pump, the servo valve, and the pressure cutoff control valve. A regulator that controls the discharge flow rate of the swing-only variable pump is connected by introducing pressure oil, and a pressure signal is introduced from another actuator circuit to the pressure cut-off control valve to set the set value of the pressure cut-off control valve. At the same time, the output horsepower of each of the pumps is controlled by controlling the discharge flow rate of the variable pump for the other actuator according to the discharge flow rate control signal sent to the regulator in the variable pump for the other actuator. A hydraulic circuit for a hydraulic excavator, comprising a control circuit that controls the sum to be equal to or less than a predetermined value.
JP57194888A 1982-11-05 1982-11-05 Oil-pressure circuit of oil-pressure shovel Granted JPS5985046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57194888A JPS5985046A (en) 1982-11-05 1982-11-05 Oil-pressure circuit of oil-pressure shovel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57194888A JPS5985046A (en) 1982-11-05 1982-11-05 Oil-pressure circuit of oil-pressure shovel

Publications (2)

Publication Number Publication Date
JPS5985046A true JPS5985046A (en) 1984-05-16
JPS6338506B2 JPS6338506B2 (en) 1988-08-01

Family

ID=16331989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57194888A Granted JPS5985046A (en) 1982-11-05 1982-11-05 Oil-pressure circuit of oil-pressure shovel

Country Status (1)

Country Link
JP (1) JPS5985046A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105828A (en) * 1987-09-11 1989-04-24 Deere & Co Selfpropelling working vehicle
WO2002066841A1 (en) * 2001-02-19 2002-08-29 Hitachi Construction Machinery Co., Ltd. Hydraulic circuit of construction machinery
WO2008090890A1 (en) * 2007-01-22 2008-07-31 Hitachi Construction Machinery Co., Ltd. Pump control device for construction machine
WO2009123134A1 (en) * 2008-03-31 2009-10-08 株式会社小松製作所 Rotation drive controlling system for construction machine
JP2016145604A (en) * 2015-02-06 2016-08-12 日立建機株式会社 Hydraulic drive unit of construction machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0298349A (en) * 1988-10-04 1990-04-10 Nidek Co Ltd Semiconductor laser treatment device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105828A (en) * 1987-09-11 1989-04-24 Deere & Co Selfpropelling working vehicle
WO2002066841A1 (en) * 2001-02-19 2002-08-29 Hitachi Construction Machinery Co., Ltd. Hydraulic circuit of construction machinery
EP1286057A1 (en) * 2001-02-19 2003-02-26 Hitachi Construction Machinery Co., Ltd. Hydraulic circuit of construction machinery
US7076947B2 (en) 2001-02-19 2006-07-18 Hitachi Construction Machinery Co., Ltd. Hydraulic circuit of construction machinery
US7272928B2 (en) 2001-02-19 2007-09-25 Hitachi Construction Machinery Co., Ltd. Hydraulic circuit of construction machinery
EP1286057A4 (en) * 2001-02-19 2009-08-19 Hitachi Construction Machinery Hydraulic circuit of construction machinery
JP2008175368A (en) * 2007-01-22 2008-07-31 Hitachi Constr Mach Co Ltd Pump control device of construction machine
WO2008090890A1 (en) * 2007-01-22 2008-07-31 Hitachi Construction Machinery Co., Ltd. Pump control device for construction machine
US8006491B2 (en) 2007-01-22 2011-08-30 Hitachi Construction Machinery Co., Ltd. Pump control apparatus for construction machine
WO2009123134A1 (en) * 2008-03-31 2009-10-08 株式会社小松製作所 Rotation drive controlling system for construction machine
JP5130353B2 (en) * 2008-03-31 2013-01-30 株式会社小松製作所 Swivel drive control system for construction machinery
US9022749B2 (en) 2008-03-31 2015-05-05 Komatsu Ltd. Swing drive controlling system for construction machine
JP2016145604A (en) * 2015-02-06 2016-08-12 日立建機株式会社 Hydraulic drive unit of construction machine

Also Published As

Publication number Publication date
JPS6338506B2 (en) 1988-08-01

Similar Documents

Publication Publication Date Title
US7048515B2 (en) Hydraulic drive system and method using a fuel injection control unit
JPS6261742B2 (en)
CN114270054B (en) Hydraulic system for construction machine
WO2021039286A1 (en) Hydraulic system for construction machinery
JPS5985046A (en) Oil-pressure circuit of oil-pressure shovel
JPH04194405A (en) Separation/confluence selecting device for plural pump in load sensing system
JP2002115274A (en) Attachment controller for hydraulic backhoe
US11859367B2 (en) Construction machine
AU2002313244B2 (en) Hydraulic driving unit for working machine, and method of hydraulic drive
JPS6255337A (en) Oil-pressure device for oil-pressure shovel
JP2002174202A (en) Hydraulic circuit and construction equipment provided with the hydraulic circuit
JPH0444683Y2 (en)
JP3205910B2 (en) Operation control device of multiple actuators by single variable displacement pump
JP2021021199A (en) Shovel
JPH0517961B2 (en)
JPH0442368Y2 (en)
JPH10331209A (en) Arm operating circuit of power shovel
JPH0336336A (en) Running and working machine control device for hydraulically-operated excavator
JP2002317471A (en) Oil pressure control circuit for hydraulic shovel
JPH05126104A (en) Hydraulic circuit for construction machine
JPS58153829A (en) Oil-pressure circuit for oil-pressure shovel
JPH0723588Y2 (en) Variable pump flow control valve device
JPH02213524A (en) Oil hydraulic circuit of work equipment
JPH086837Y2 (en) Travel speed limit circuit
JPS6330452B2 (en)