JPH0416002Y2 - - Google Patents

Info

Publication number
JPH0416002Y2
JPH0416002Y2 JP1985015316U JP1531685U JPH0416002Y2 JP H0416002 Y2 JPH0416002 Y2 JP H0416002Y2 JP 1985015316 U JP1985015316 U JP 1985015316U JP 1531685 U JP1531685 U JP 1531685U JP H0416002 Y2 JPH0416002 Y2 JP H0416002Y2
Authority
JP
Japan
Prior art keywords
circuit
switching valve
pressure
hydraulic
merging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985015316U
Other languages
Japanese (ja)
Other versions
JPS61133102U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985015316U priority Critical patent/JPH0416002Y2/ja
Publication of JPS61133102U publication Critical patent/JPS61133102U/ja
Application granted granted Critical
Publication of JPH0416002Y2 publication Critical patent/JPH0416002Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、油圧シヨベル等のように、複数組の
油圧回路を設ける機械に於いて、一方の油圧回路
の流量を他方の油圧回路の流量に合流させる装置
に関する。
[Detailed description of the invention] (Field of industrial application) The present invention is a machine that has multiple sets of hydraulic circuits, such as a hydraulic excavator, in which the flow rate of one hydraulic circuit is changed to the flow rate of the other hydraulic circuit. This invention relates to a device for merging

(従来の技術) 従来の、油圧シヨベルに於いては、第1図示の
ように、油圧ポンプaの吐出回路bをロードセン
シングポートcを備えた切換弁dを介してアクチ
ユエータeに接続し、該ロードセンシングポート
cに得られる圧力をロードセンシング回路fを介
して該油圧ポンプaの吐出量制御装置gに導くよ
うにした油圧回路hを2組設けることが行なわれ
ている。図示のものは、各油圧回路hに複数個の
アクチユエータeと切換弁dを設けるようにした
ものを示し、アクチユエータe−1,e−2は油
圧シヨベル走行用の油圧モータ、アクチユエータ
e−4は旋回用油圧モータ、アクチユエータe−
5及びe−6は夫々バケツト駆動用及びブーム駆
動用の油圧シリンダである。アクチユエータe−
3及びe−6には、合流制御用切換弁i−1及び
i−2を介して合流回路j−1及びj−2が接続
され、合流制御用切換弁i−1と切換弁d−2が
切換操作されるとアクチユエータe−3が両油圧
回路h.hの合計流量で高速で作動し、合流制御用
切換弁i−2と切換弁d−1とが切換操作される
とアクチユエータe−6が高速で作動する。
(Prior Art) In a conventional hydraulic excavator, as shown in FIG. Two sets of hydraulic circuits h are provided to guide the pressure obtained at the load sensing port c to the discharge amount control device g of the hydraulic pump a via the load sensing circuit f. The illustrated one is such that each hydraulic circuit h is provided with a plurality of actuators e and switching valves d, where actuators e-1 and e-2 are hydraulic motors for running the hydraulic excavator, and actuator e-4 is a hydraulic motor for driving the hydraulic excavator. Hydraulic motor for swing, actuator e-
5 and e-6 are hydraulic cylinders for driving the bucket and boom, respectively. Actuator e-
3 and e-6 are connected to the merging circuits j-1 and j-2 via the merging control switching valves i-1 and i-2, and the merging control switching valve i-1 and the switching valve d-2 When is switched, actuator e-3 operates at high speed with the total flow rate of both hydraulic circuits hh, and when merge control switching valve i-2 and switching valve d-1 are switched, actuator e-6 operates. Operates at high speed.

各切換弁dが操作されたとき、そのアクチユエ
ータeの負荷圧は切換弁dのロードセンシングポ
ートから回路fを介して吐出量制御装置gに導か
れ、切換弁dの中に設けられた絞り部jの前後の
差圧が、負荷圧の大小にかかわらず常に一定とな
るよう吐出量制御装置gの流量制御弁によりポン
プaは制御され、余分な吐出をポンプaは行なわ
ず、動力を有効に利用することができる。
When each switching valve d is operated, the load pressure of the actuator e is guided from the load sensing port of the switching valve d to the discharge amount control device g via the circuit f, and the pressure is transferred to the discharge amount control device g, which is connected to a throttle section provided in the switching valve d. Pump a is controlled by the flow rate control valve of discharge amount control device g so that the differential pressure before and after j is always constant regardless of the magnitude of the load pressure, and pump a does not perform excess discharge and makes the power effective. can be used.

また、2流量合流回路として、特開昭59−
194105号公報に見られるように、負荷圧に応じて
ポンプ吐出量を制御する形式のものや、特開昭57
−243号公報に見られるようなポンプ吐出回路に
パイロツト切換弁を設けて合流制御を行なう形式
のものが知られている。
In addition, as a two-flow merging circuit, JP-A-59-
As seen in Publication No. 194105, there are those of the type that control the pump discharge amount according to the load pressure, and those of the type that control the pump discharge amount according to the load pressure, and
A type of pump is known, as seen in Japanese Patent No. 243, in which a pilot switching valve is provided in the pump discharge circuit to perform merging control.

(考案が解決しようとする問題点) 第1図示のものでは、合流用に特に切換弁iを
設けねばならないが、通常マルチプル弁に構成さ
れる各切換弁dにさらに該切換弁iを連設するこ
とは、取付けスペースの関係で困難であることが
多い。
(Problem to be solved by the invention) In the one shown in Figure 1, a switching valve i must be provided especially for merging, but the switching valve i is also connected to each switching valve d, which is normally configured as a multiple valve. This is often difficult due to installation space.

また、各合流用切換弁iと切換弁d−1又はd
−2は同時に操作されるようにリンクにより連結
されるが、該リンクは外部に露出するので破損し
易く、切換弁の操作も重くなり、比較的複雑な構
成となつて製作が容易でない。
In addition, each merging switching valve i and switching valve d-1 or d
-2 are connected by a link so that they can be operated at the same time, but since the link is exposed to the outside, it is easily damaged, the operation of the switching valve is also difficult, and the structure is relatively complicated, making it difficult to manufacture.

また、前記特開昭59−194105号公報に記載のも
のは、合流を遮断する構成を備えておらず、合流
される流量を制御する機能もない。更に、前記特
開昭57−243号公報に記載のものは、ロードセン
シング機能がなくしかも吐出回路に合流用にパイ
ロツト切換弁を連設するを要して上記した如き取
付けスペース上の困難を伴ない、旋回の圧力によ
つてのみしか合流の遮断が行なえない。
Further, the device described in Japanese Patent Application Laid-Open No. 59-194105 does not have a configuration for blocking the merging, and does not have a function to control the merging flow rate. Furthermore, the device described in Japanese Patent Application Laid-open No. 57-243 does not have a load sensing function and requires a pilot switching valve to be installed in the discharge circuit for merging, resulting in the above-mentioned difficulty in terms of installation space. No, the merging can only be interrupted by the pressure of the swirl.

本考案は、ポンプ動力を有効に利用できるロー
ドセンシング回路を備えた油圧回路の特性を損な
わず、しかもリンクを用いることなく自動的に2
油圧回路の流量の合流と遮断の合流制御を行な
え、合流用の機器の設置位置が制限されない合流
用油圧回路装置を提供することを目的とするもの
である。
The present invention does not impair the characteristics of a hydraulic circuit equipped with a load sensing circuit that can effectively utilize pump power, and moreover, it automatically
It is an object of the present invention to provide a merging hydraulic circuit device that can perform merging control of merging and blocking flow rates in hydraulic circuits and does not limit the installation position of merging equipment.

(問題点を解決するための手段) 本考案では、油圧ポンプの吐出回路をロードセ
ンシングポートを備えた切換弁を介してアクチユ
エータに接続し、該ロードセンシングポートに得
られる圧力をロードセンシング回路を介して該油
圧ポンプの吐出量制御装置に導くようにした油圧
回路を組設けるようにしたものに於いて、一方の
油圧回路のアクチユエータに絞りを備えたハイド
ロ切換弁を介して他方の油圧回路の吐出回路から
分岐した合流回路を接続し、該一方の油圧回路の
切換弁にそのストロークで作動するパイロツト切
換弁を連設し、該ハイドロ切換弁に、該パイロツ
ト切換弁の作動により合流回路の圧力を導くパイ
ロツト回路と、該他方のロードセンシング回路の
圧力を導く第1フイードバツク回路とを接続し、
該ハイドロ切換弁に於いて該合流回路の圧力とロ
ードセンシング回路の圧力を対向させて該合流回
路の圧力の優勢で該ハイドロ切換弁に該合流回路
を開成すべく作動させ、該ハイドロ切換弁の後方
の合流回路の圧力を導出すべく設けた第2フイー
ドバツク回路を、第1フイードバツク回路との間
に設けたシヤトル弁を介してロードセンシング回
路に接続することにより、上記の目的を達成する
ようにした。
(Means for solving the problem) In the present invention, the discharge circuit of the hydraulic pump is connected to the actuator via a switching valve equipped with a load sensing port, and the pressure obtained at the load sensing port is transferred via the load sensing circuit. In this system, the hydraulic circuit is connected to the discharge amount control device of the hydraulic pump, and the actuator of one hydraulic circuit is connected to a hydraulic switching valve having a throttle to control the discharge of the other hydraulic circuit. A merging circuit branched from the circuit is connected, and a pilot switching valve that operates according to the stroke of the switching valve of one of the hydraulic circuits is connected, and the pressure of the merging circuit is applied to the hydraulic switching valve by the operation of the pilot switching valve. connecting a pilot circuit that guides the load sensing circuit and a first feedback circuit that guides the pressure of the other load sensing circuit;
In the hydro switching valve, the pressure of the merging circuit and the pressure of the load sensing circuit are opposed to each other, and the pressure of the merging circuit is predominant to operate the hydro switching valve to open the merging circuit. The above objective is achieved by connecting a second feedback circuit provided to derive the pressure of the rear merging circuit to the load sensing circuit via a shuttle valve provided between the first feedback circuit and the first feedback circuit. did.

(作用) 一方の油圧回路の切換弁が大きくストロークさ
れると、パイロツト切換弁が作動してパイロツト
回路を開き、合流回路の圧力がハイドロ切換弁に
作用する。該パイロツト切換弁を介して作用する
合流回路の圧力が、第1フイードバツク回路を介
してハイドロ切換弁に作用するロードセンシング
回路の圧力よりも高いと、該ハイドロ切換弁は合
流回路を開くように作動し、他方の油圧回路の吐
出回路の流体は一方の油圧回路のアクチユエータ
に流入する。その結果、該アクチユエータは、、
一方の油圧回路の流量と合流回路からの他方の油
圧回路の流量との合計流量で高速に作動される。
該アクチユエータの負荷圧は、第2フイードバツ
ク回路及びシヤトル弁を介して他方の油圧回路の
ロードセンシング回路に導かれるので、該他方の
油圧回路の油圧ポンプは、ハイドロ切換弁の絞り
に応じた流量を吐出すべくその吐出量制御装置に
より制御され、ポンプ動力に無駄が生じない。
(Function) When the switching valve of one hydraulic circuit is stroked greatly, the pilot switching valve operates to open the pilot circuit, and the pressure of the merging circuit acts on the hydro switching valve. When the pressure in the merging circuit acting through the pilot switching valve is higher than the pressure in the load sensing circuit acting on the hydro switching valve via the first feedback circuit, the hydro switching valve operates to open the merging circuit. However, the fluid in the discharge circuit of the other hydraulic circuit flows into the actuator of one hydraulic circuit. As a result, the actuator:
It is operated at high speed with the total flow rate of the flow rate of one hydraulic circuit and the flow rate of the other hydraulic circuit from the merging circuit.
The load pressure of the actuator is guided to the load sensing circuit of the other hydraulic circuit via the second feedback circuit and the shuttle valve, so the hydraulic pump of the other hydraulic circuit adjusts the flow rate according to the throttle of the hydro switching valve. The discharge is controlled by the discharge amount control device, so there is no waste in pump power.

合流中に、一方の油圧回路の切換弁を他方の油
圧回路の切換弁と同時に切換操作し、両油圧回路
の両アクチユエータを作動させたい場合、該一方
の油圧回路のアクチユエータの負荷圧が該他方の
油圧回路のアクチユエータの負荷圧よりも低い
と、該他方の油圧回路のアクチユエータにはその
吐出回路から流量が流れず作動できなくなるの
で、強制的にハイドロ切換弁を切換えて合流回路
を遮断する必要があるが、こうした場合、該他方
の油圧回路のアクチユエータによる負荷圧がロー
ドセンシング回路及び第1フイードバツク回路を
介してハイドロ切換弁に作用し、その負荷圧は合
流回路に発生する該一方の油圧回路のアクチユエ
ータの負荷圧よりも高いので、ハイドロ切換弁は
合流回路を遮断するように作動する。その結果、
両油圧回路の両アクチユエータは、各ポンプの
夫々の吐出量で作動することが出来る。
During merging, if you want to switch the switching valve of one hydraulic circuit at the same time as the switching valve of the other hydraulic circuit and operate both actuators of both hydraulic circuits, the load pressure of the actuator of the one hydraulic circuit will be the same as that of the other hydraulic circuit. If the load pressure is lower than the load pressure of the actuator of the other hydraulic circuit, flow will not flow from the discharge circuit to the actuator of the other hydraulic circuit and it will not be able to operate, so it is necessary to forcibly switch the hydro switching valve to shut off the merging circuit. However, in such a case, the load pressure from the actuator of the other hydraulic circuit acts on the hydro switching valve via the load sensing circuit and the first feedback circuit, and the load pressure is applied to the hydraulic switching valve of the one hydraulic circuit generated in the merging circuit. is higher than the load pressure of the actuator, so the hydro-switching valve operates to cut off the merging circuit. the result,
Both actuators of both hydraulic circuits can be operated with the respective displacement of each pump.

更に、この場合、該一方の油圧回路のアクチユ
エータの負荷圧よりも他方の油圧回路のアクチユ
エータの負荷圧が低いならば、ハイドロ切換弁は
合流回路を開通したままの状態になるが、該他方
の油圧回路の吐出回路の流量は、負荷圧の低い方
のアクチユエータへと流れることになるので、両
油圧回路の両アクチユエータは、各ポンプの夫々
の吐出量で作動できる。
Furthermore, in this case, if the load pressure of the actuator of the other hydraulic circuit is lower than the load pressure of the actuator of the other hydraulic circuit, the hydro switching valve will remain open in the merging circuit; Since the flow rate of the discharge circuit of the hydraulic circuit flows to the actuator with the lower load pressure, both actuators of both hydraulic circuits can operate with the respective discharge amount of each pump.

該パイロツト切換弁は、わずかの流量しか流れ
ないので小形に構成出来、一方の切換弁に付属さ
せて設置し得、またハイドロ切換弁は合流回路の
任意の箇所に設置出来るので、大きな設置スペー
スが不要になる。
Since the pilot switching valve allows only a small amount of flow to flow, it can be constructed compactly and can be installed attached to one switching valve, and the hydro switching valve can be installed at any location in the merging circuit, so it does not require a large installation space. becomes unnecessary.

(実施例) 本考案の実施例を3台のアクチユエータを設備
した油圧回路を2組設けた第2図示の油圧シヨベ
ルの場合につき説明する。
(Example) An example of the present invention will be described with reference to the case of a hydraulic excavator shown in the second figure, which is provided with two sets of hydraulic circuits equipped with three actuators.

第2図に於いて、1,2は油圧回路、3,4は
可変容量形の油圧ポンプ、5,6は各ポンプ3,
4の吐出回路、7,8,9及び10,11,12
がロードセンシングポートを備えた切換弁を示
し、切換弁7,8,9と切換弁10,11,12
は3本ずつマルチプル弁に構成される。13,1
4,15及び16,17,18は、各油圧回路
1,2のアクチユエータで、第1図示のアクチユ
エータと同様のものである。19,20は、制御
シリンダ21と流量制御弁22とで構成され、各
油圧ポンプ3,4の容量即ち吐出量を制御する吐
出量制御装置で、各流量制御弁22には各油圧回
路1,2のロードセンシング回路23,24の圧
力と吐出回路5,6の圧力とが作用するようにし
た。
In Fig. 2, 1 and 2 are hydraulic circuits, 3 and 4 are variable displacement hydraulic pumps, and 5 and 6 are each pump 3,
4 discharge circuits, 7, 8, 9 and 10, 11, 12
indicates a switching valve equipped with a load sensing port, switching valves 7, 8, 9 and switching valves 10, 11, 12.
are configured as multiple valves with three valves each. 13,1
4, 15 and 16, 17, 18 are actuators for each hydraulic circuit 1, 2, which are similar to the actuator shown in the first diagram. Reference numerals 19 and 20 denote a discharge amount control device that is composed of a control cylinder 21 and a flow rate control valve 22 and controls the capacity, that is, the discharge amount, of each hydraulic pump 3 and 4. Each flow rate control valve 22 is connected to each hydraulic circuit 1, The pressure of the load sensing circuits 23 and 24 of No. 2 and the pressure of the discharge circuits 5 and 6 were made to act.

これに於いて、油圧回路1,2の各切換弁を操
作しないとき、すなわち中立のときは、回路2
3,24がタンク圧(ほぼ0Kgf/cm2)であり、
吐出回路5,6の圧力は、各吐出量制御装置1
9,20の流量制御弁22を各々切換位置に作動
させ、その結果ポンプ3,4は最小吐出量とな
る。次に各油圧回路1,2の切換弁を操作したと
きは、各切換弁の絞り38に応じた流量を負荷の
大小にかかわらずポンプ3,4に吐出させる。
In this case, when the switching valves of hydraulic circuits 1 and 2 are not operated, that is, when they are neutral, circuit 2
3, 24 is the tank pressure (approximately 0 Kgf/cm 2 ),
The pressure in the discharge circuits 5 and 6 is controlled by each discharge amount control device 1.
The flow control valves 22 of 9 and 20 are each operated to the switching position, so that the pumps 3 and 4 are at their minimum displacement. Next, when the switching valves of each hydraulic circuit 1, 2 are operated, the pumps 3, 4 are caused to discharge a flow rate corresponding to the throttle 38 of each switching valve, regardless of the magnitude of the load.

ロードセンシング回路23,24には、シヤト
ル弁26を介して各アクチユエータの負荷圧のう
ち最も高い圧力が抽出される。
The highest pressure among the load pressures of each actuator is extracted to the load sensing circuits 23 and 24 via the shuttle valve 26.

以上の構成は、従来のものと特に変わりがない
が、本考案のものでは、一方の油圧回路1のアク
チユエータ14へポンプ3,4の合計吐出量を導
くために、該アクチユエータ14にハイドロ切換
弁27を介して他方の油圧回路2の吐出回路6か
ら分岐した合流回路28を接続し、該アクチユエ
ータ14の切換弁14にそのストロークで作動す
るパイロツト切換弁29を設けるようにした。さ
らに該ハイドロ切換弁27に、合流回路28の圧
力をパイロツト切換弁29を設けたパイロツト回
路32を介して作用させると共に第1フイードバ
ツク回路30を介して他方の油圧回路2のロード
センシング回路24の圧力を作用させ、該ハイド
ロ切換弁27の後方の合流回路28の圧力を第2
フイードバツク回路31及びシヤトル弁26を介
してロードセンシング回路24に導くようにし
た。
The above configuration is not particularly different from the conventional one, but in the one of the present invention, in order to guide the total discharge amount of the pumps 3 and 4 to the actuator 14 of one hydraulic circuit 1, the hydraulic switching valve is installed in the actuator 14. A merging circuit 28 branched from the discharge circuit 6 of the other hydraulic circuit 2 is connected via a line 27, and the switching valve 14 of the actuator 14 is provided with a pilot switching valve 29 that operates with the stroke thereof. Further, the pressure of the merging circuit 28 is applied to the hydraulic switching valve 27 via a pilot circuit 32 provided with a pilot switching valve 29, and the pressure of the load sensing circuit 24 of the other hydraulic circuit 2 is applied via the first feedback circuit 30. is applied to reduce the pressure in the merging circuit 28 behind the hydro switching valve 27 to a second level.
It is led to the load sensing circuit 24 via the feedback circuit 31 and the shuttle valve 26.

該ハイドロ切換弁27及びパイロツト切換弁2
9は戻しばねを有する一般的なスプール形弁の構
成を備え、該ハイドロ切換弁27のスプールは、
その一端にパイロツト回路32を介して作用する
合流回路28の圧力と、該圧力に対向するように
該スプールの他端に第1フイードバツク回路30
を介して作用するロードセンシング回路24の圧
力で作動し、該合流回路28の圧力が第1フイー
ドバツク回路30の圧力よりも優勢になると、合
流回路28を開通し、パイロツト切換弁29のス
プールは切換弁8がlだけストロークすると押さ
れて動き、パイロツト回路32を開通する。
The hydro switching valve 27 and the pilot switching valve 2
9 has a general spool-type valve configuration with a return spring, and the spool of the hydro switching valve 27 is
The pressure of the merging circuit 28 acts on one end of the spool via the pilot circuit 32, and the first feedback circuit 30 acts on the other end of the spool to oppose the pressure.
When the pressure of the merging circuit 28 becomes superior to the pressure of the first feedback circuit 30, the merging circuit 28 is opened and the spool of the pilot switching valve 29 is switched. When the valve 8 is stroked by l, it is pushed and moves, opening the pilot circuit 32.

33はハイドロ切換弁27の後方の合流回路2
8に設けた吐出回路6への逆流を防止するチエツ
ク弁、34はパイロツトリリーフ弁35を備え吐
出回路5,6の圧力を制御するブリードオフ形コ
ンペンセータである。
33 is the merging circuit 2 behind the hydro switching valve 27
A check valve 8 is provided to prevent backflow to the discharge circuit 6, and 34 is a bleed-off type compensator equipped with a pilot relief valve 35 to control the pressure in the discharge circuits 5 and 6.

一方の油圧回路1の切換弁8をl以上ストロー
クしてアクチユエータ14を駆動した場合、パイ
ロツト切換弁29はパイロツト回路32を開くよ
うに作動され、ハイドロ切換弁27に合流回路2
8の圧力即ち吐出回路6の圧力が作用する。この
場合、他方の油圧回路2の各切換弁10,11,
12が切換操作されていなければ、吐出回路6の
圧力はリリーフ弁34で制御された圧力であり、
ロードセンシング回路24の圧力即ち第1フイー
ドバツク回路30の圧力は低いので、ハイドロ切
換弁27は合流回路28を開通するように作動
し、該アクチユエータ14にポンプ3,4の流量
が流入する。これによつて、該合流回路28の圧
力はアクチユエータ14の負荷圧となり、その圧
力は第2フイードバツク回路31、シヤトル弁2
6及びロードセンシング回路24を介して吐出量
制御装置20に作用するので、該装置20はポン
プ4の吐出量を負荷に関係なくハイドロ切換弁2
7の絞り36に応じた量に制御し、かくて該アク
チユエータ14は負荷圧に関係なく絞り38と3
6に応じた流量を吐出する2台のポンプ3,4の
合計流量で高速に作動される。
When the actuator 14 is driven by stroking the switching valve 8 of one hydraulic circuit 1 for more than l, the pilot switching valve 29 is operated to open the pilot circuit 32, and the hydraulic switching valve 27 is connected to the merging circuit 2.
8 pressure, ie, the pressure of the discharge circuit 6, acts. In this case, each switching valve 10, 11,
12 is not switched, the pressure in the discharge circuit 6 is the pressure controlled by the relief valve 34,
Since the pressure in the load sensing circuit 24, that is, the pressure in the first feedback circuit 30, is low, the hydro switching valve 27 operates to open the merging circuit 28, and the flow rates of the pumps 3 and 4 flow into the actuator 14. As a result, the pressure in the merging circuit 28 becomes the load pressure of the actuator 14, and that pressure is transferred to the second feedback circuit 31 and the shuttle valve 2.
6 and the load sensing circuit 24, the device 20 controls the discharge amount of the pump 4 to the hydraulic switching valve 2 regardless of the load.
The actuator 14 controls the amount according to the throttle 36 of 7, and thus the actuator 14 has the throttle 38 and 3
The pump is operated at high speed with the total flow rate of the two pumps 3 and 4, which discharge a flow rate corresponding to 6.

また他方の油圧回路2の切換弁10,11,1
2のいずれかが操作され、アクチユエータ16,
17,18のいずれかが作動中であれば、切換弁
8が操作されてもアクチユエータ14にポンプ4
の流量は合流しない。アクチユエータ16,1
7,18のいずれかが作動すると、ロードセンシ
ング回路24に負荷圧が発生し、合流回路28の
圧力もほぼこの負荷圧と同圧となるので、ハイド
ロ切換弁27は合流回路28を閉じた位置から動
かない。
Also, the switching valves 10, 11, 1 of the other hydraulic circuit 2
2 is operated, the actuator 16,
If either 17 or 18 is in operation, the actuator 14 will not operate the pump 4 even if the switching valve 8 is operated.
Flow rates do not merge. Actuator 16,1
When either 7 or 18 is activated, load pressure is generated in the load sensing circuit 24, and the pressure in the merging circuit 28 is also approximately the same as this load pressure, so the hydro switching valve 27 is placed in the position where the merging circuit 28 is closed. It doesn't move.

該アクチユエータ14をポンプ3,4の合流量
で作動中に、他方の油圧回路2の例えばアクチユ
エータ16を駆動すべく切換弁10を操作した場
合、ロードセンシング回路24に発生する該アク
チユエータ16の負荷圧が、ハイドロ切換弁27
に作用する。該負荷圧が合流作動中でアクチユエ
ータ14の負荷圧よりも高ければ、該ハイドロ切
換弁27は第1フイードバツク回路30からのロ
ードセンシング回路24の圧力で合流回路28を
遮断すべく作動し、該負荷圧の方がアクチユエー
タ14の負荷圧よりも低ければ、ハイドロ切換弁
27は合流回路28を開通する位置から動かない
が、ポンプ4の吐出量は負荷圧の低いアクチユエ
ータ16の方へと吐出回路6を介して流れ、自動
的にアクチユエータ14への合流作動は中止され
る。従つて、合流作動中でも一方の油圧回路1の
切換弁8を操作することなしに他方の油圧回路2
のアクチユエータを随時作動させることが出来、
操作が簡単になる。
When the switching valve 10 is operated to drive the actuator 16 in the other hydraulic circuit 2 while the actuator 14 is operating at the combined flow rate of the pumps 3 and 4, the load pressure of the actuator 16 generated in the load sensing circuit 24 However, the hydro switching valve 27
It acts on If the load pressure is higher than the load pressure of the actuator 14 during the merging operation, the hydro switching valve 27 operates to cut off the merging circuit 28 by the pressure of the load sensing circuit 24 from the first feedback circuit 30, and the load If the pressure is lower than the load pressure of the actuator 14, the hydro switching valve 27 does not move from the position where the merging circuit 28 is opened, but the discharge amount of the pump 4 is shifted toward the actuator 16 with the lower load pressure. , and the merging operation to the actuator 14 is automatically stopped. Therefore, even during merging operation, the switching valve 8 of one hydraulic circuit 1 can be operated without operating the other hydraulic circuit 2.
actuator can be operated at any time,
Easy to operate.

尚、パイロツト切換弁29は切換弁8と機械的
に接続して作動されるようにしてもよいが、切換
弁8のスプールのストロークを電気的で検出し、
その電気信号で作動する電磁弁で構成することも
可能である。
The pilot switching valve 29 may be operated by being mechanically connected to the switching valve 8, but it is also possible to electrically detect the stroke of the spool of the switching valve 8,
It is also possible to configure it with a solenoid valve operated by the electric signal.

(考案の効果) このように本考案に於いては、合流回路に絞り
を備えたハイドロ切換弁を設けると共に合流する
べきアクチユエータの切換弁にパイロツト切換弁
を設け、該ハイドロ切換弁にロードセンシング回
路の圧力と該パイロツト切換弁を介して合流回路
の圧力を作用させるようにしたので、該ハイドロ
切換弁の絞りに応じた流量を合流流量を提供する
側のポンプから吐出させて合流回路に供給でき、
ポンプ動力に無駄がなくなり、アクチユエータの
負荷圧に応じてポンプ吐出量を制御できるロード
センシング回路の有効性を損なわずに自動的に合
流と合流中止とを行なえ、該ハイドロ切換弁は合
流回路の任意の箇所に設け得、またパイロツト切
換弁は小形で切換弁に付設出来るので設置場所の
制約を余り受けない等の効果がある。
(Effect of the invention) In this way, in the present invention, a hydro switching valve equipped with a throttle is provided in the merging circuit, a pilot switching valve is provided in the switching valve of the actuator to be merged, and a load sensing circuit is installed in the hydro switching valve. Since the pressure of the merging circuit is applied through the pilot switching valve and the pressure of the merging circuit, the flow rate corresponding to the restriction of the hydro switching valve can be discharged from the pump on the side that provides the merging flow rate and supplied to the merging circuit. ,
There is no waste in pump power, and automatic merging and merging can be stopped without sacrificing the effectiveness of the load sensing circuit, which can control the pump discharge amount according to the load pressure of the actuator. Moreover, since the pilot switching valve is small and can be attached to the switching valve, there are advantages such as less restrictions on the installation location.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来例の線図、第2図は本考案の実施
例の線図である。 1,2……油圧回路、3,4……油圧ポンプ、
5,6……吐出回路、7,8,9,10,11,
12……切換弁、13,14,15,16,1
7,18……アクチユエータ、19,20……吐
出量制御装置、23,24……ロードセンシング
回路、27……ハイドロ切換弁、28……合流回
路、29……パイロツト切換弁、30……第1フ
イードバツク回路、31……第2フイードバツク
回路、32……パイロツト回路、36……絞り。
FIG. 1 is a diagram of a conventional example, and FIG. 2 is a diagram of an embodiment of the present invention. 1, 2...Hydraulic circuit, 3, 4...Hydraulic pump,
5, 6...discharge circuit, 7, 8, 9, 10, 11,
12...Switching valve, 13, 14, 15, 16, 1
7, 18...actuator, 19,20...discharge rate control device, 23, 24...load sensing circuit, 27...hydro switching valve, 28...merging circuit, 29...pilot switching valve, 30...th 1 feedback circuit, 31...second feedback circuit, 32...pilot circuit, 36...aperture.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 油圧ポンプの吐出回路をロードセンシングポー
トを備えた切換弁を介してアクチユエータに接続
し、該ロードセンシングポートに得られる圧力を
ロードセンシング回路を介して該油圧ポンプの吐
出量制御装置に導くようにした油圧回路を組設け
るようにしたものに於いて、一方の油圧回路のア
クチユエータに絞りを備えたハイドロ切換弁を介
して他方の油圧回路の吐出回路から分岐した合流
回路を接続し、該一方の油圧回路の切換弁にその
ストロークで作動するパイロツト切換弁を連設
し、該ハイドロ切換弁に、該パイロツト切換弁の
作動により合流回路の圧力を導くパイロツト回路
と、該他方のロードセンシング回路の圧力を導く
第1フイードバツク回路とを接続し、該ハイドロ
切換弁に於いて該合流回路の圧力とロードセンシ
ング回路の圧力を対向させて該合流回路の圧力の
優勢で該ハイドロ切換弁に該合流回路を開成すべ
く作動させ、該ハイドロ切換弁の後方の合流回路
の圧力を導出すべく設けた第2フイードバツク回
路を、第1フイードバツク回路との間に設けたシ
ヤトル弁を介してロードセンシング回路に接続し
て成る合流用油圧回路装置。
The discharge circuit of the hydraulic pump is connected to the actuator via a switching valve equipped with a load sensing port, and the pressure obtained at the load sensing port is guided to the discharge amount control device of the hydraulic pump via the load sensing circuit. In a system in which a combination of hydraulic circuits is provided, a merging circuit branched from the discharge circuit of the other hydraulic circuit is connected to the actuator of one hydraulic circuit through a hydro switching valve equipped with a throttle, and the hydraulic circuit of the one hydraulic circuit is A pilot switching valve that operates according to its stroke is connected to the switching valve of the circuit, and a pilot circuit that guides the pressure of the merging circuit by the operation of the pilot switching valve and a pressure of the other load sensing circuit are connected to the hydro switching valve. The pressure of the merging circuit and the pressure of the load sensing circuit are opposed to each other in the hydro switching valve, and the merging circuit is opened to the hydro switching valve with the pressure of the merging circuit being dominant. A second feedback circuit provided for deriving the pressure of the merging circuit behind the hydro switching valve is connected to the load sensing circuit via a shuttle valve provided between the second feedback circuit and the first feedback circuit. A hydraulic circuit device for merging.
JP1985015316U 1985-02-07 1985-02-07 Expired JPH0416002Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985015316U JPH0416002Y2 (en) 1985-02-07 1985-02-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985015316U JPH0416002Y2 (en) 1985-02-07 1985-02-07

Publications (2)

Publication Number Publication Date
JPS61133102U JPS61133102U (en) 1986-08-20
JPH0416002Y2 true JPH0416002Y2 (en) 1992-04-10

Family

ID=30501050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985015316U Expired JPH0416002Y2 (en) 1985-02-07 1985-02-07

Country Status (1)

Country Link
JP (1) JPH0416002Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2708823B2 (en) * 1988-11-28 1998-02-04 日立建機株式会社 Hydraulic drive for civil and construction machinery
JPH1037907A (en) * 1996-07-26 1998-02-13 Komatsu Ltd Pressure oil supply device
JP6194259B2 (en) * 2014-01-31 2017-09-06 Kyb株式会社 Work machine control system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57243A (en) * 1980-05-29 1982-01-05 Yutani Juko Kk Independent circuit for slewing of oil-pressure shovel
JPS59194105A (en) * 1983-04-20 1984-11-02 Daikin Ind Ltd Two-flow conflux circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57243A (en) * 1980-05-29 1982-01-05 Yutani Juko Kk Independent circuit for slewing of oil-pressure shovel
JPS59194105A (en) * 1983-04-20 1984-11-02 Daikin Ind Ltd Two-flow conflux circuit

Also Published As

Publication number Publication date
JPS61133102U (en) 1986-08-20

Similar Documents

Publication Publication Date Title
US5673558A (en) Hydraulic circuit system for hydraulic excavator
US7513109B2 (en) Hydraulic controller for working machine
JPH09268604A (en) Flow combining device for full equipment
JPS6225882B2 (en)
JPH09317704A (en) Heavily equipment regenerator
US5493950A (en) Variable priority device for swing motor in heavy construction equipment
JPH0416002Y2 (en)
KR19980038855A (en) Hydraulics for cylinders for work tools of construction machinery
JPH0751796B2 (en) Backhoe hydraulic circuit
JP3448087B2 (en) Valve device for regeneration circuit
EP0704630B1 (en) Variable priority device for heavy construction equipment
EP1172565B1 (en) Hydraulic circuit for construction machine
KR20030052723A (en) hydraulic apparatus for construction heavy equipment
JP3481674B2 (en) Hydraulic circuit of construction machinery
JP3483345B2 (en) Hydraulic control device for hydraulic drive circuit
JP3481675B2 (en) Hydraulic circuit of construction machinery
JPH044304A (en) Hydraulic control circuit
KR100240265B1 (en) Hydraulic pressure device consider to cavitation and temperature of driving oil for heavy construction equipment
JPH0255568B2 (en)
JP3864595B2 (en) Relief pressure control device for relief valve
JP3163308B2 (en) Valve device for regeneration circuit
JPH10299706A (en) Drive system of hydraulic motor
JP2594686Y2 (en) Traveling hydraulic circuit
JPH0337642B2 (en)
JPH0526204A (en) Hydraulic driving device