JPH04350875A - Developing device - Google Patents

Developing device

Info

Publication number
JPH04350875A
JPH04350875A JP3126065A JP12606591A JPH04350875A JP H04350875 A JPH04350875 A JP H04350875A JP 3126065 A JP3126065 A JP 3126065A JP 12606591 A JP12606591 A JP 12606591A JP H04350875 A JPH04350875 A JP H04350875A
Authority
JP
Japan
Prior art keywords
developer
developing sleeve
carrier
magnetic
developing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3126065A
Other languages
Japanese (ja)
Inventor
Satoru Haneda
羽根田 哲
Masakazu Fukuchi
真和 福地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP3126065A priority Critical patent/JPH04350875A/en
Publication of JPH04350875A publication Critical patent/JPH04350875A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Brush Developing In Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)

Abstract

PURPOSE:To develop an excellent toner image on the surface of a photosensitive body by forming a uniform thin layer of developer on the surface of a developing sleeve. CONSTITUTION:A notched groove 4a is provided on a part of a fixed magnetic roller 4 which is included in the developing sleeve 3, and the magnetic pole of N pole is formed on both sides which hold the notched groove 4a between them, then a repulsive magnetic pole is formed on the surface of the developing sleeve which rotates on the outside side of the roller 4. A cylindrical bar 5 is provided to be opposed to the notched groove 4a of the roller 4 and uniformly pressed in contact with the surface of the sleeve 3 through an elastic member 6. A napping peak formed of the developer D carried through the sleeve 3 with the repulsive magnetic pole is regulated by the curved surface with the specified curvature of the cylindrical bar 5 so as to form the uniform thin layer of the developer on the surface of the sleeve 3. Then, the excellent toner image is developed on the surface of the photosensitive body 16.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は電子写真式画像形成装置
の磁気ブラシ現像装置に設けられる現像スリーブによっ
て搬送される現像剤を規制する現像剤層形成手段の構成
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the structure of a developer layer forming means for regulating the developer conveyed by a developing sleeve provided in a magnetic brush developing device of an electrophotographic image forming apparatus.

【0002】0002

【従来の技術】一般に例えば2成分現像剤を用いる電子
写真式画像形成装置においては感光体面に良好なトナー
画像を得るために現像スリーブ上の現像剤の層厚を薄く
しかも均一にすることが必要となっている。
[Prior Art] Generally, in an electrophotographic image forming apparatus using a two-component developer, it is necessary to make the layer thickness of the developer on the developing sleeve thin and uniform in order to obtain a good toner image on the photoreceptor surface. It becomes.

【0003】従来古くから用いられている固定規制板に
より層厚の規制がなされていたが前記現像スリーブと前
記固定板との機械的取付精度にも限界があってこの方法
では均一でむらのない薄層を得ることが困難であった。
[0003] Conventionally, the layer thickness has been regulated by a fixing regulating plate that has been used for a long time, but there is also a limit to the mechanical attachment accuracy between the developing sleeve and the fixing plate, and this method does not allow uniform and even unevenness. It was difficult to obtain thin layers.

【0004】最近このような問題の対策として実公昭6
0−22363号公報による手段がよく知られている。 即ちこの手段は現像スリーブ内に凹状の永久磁石を設け
て反発磁界を形成し該現像スリーブ面上その回転方向に
2つのピークを有する磁界強度分布の磁場を作りこれに
より現像スリーブ面上に2つに別れる現像剤の穂立ちを
形成しこの穂立ちの中間に現像スリーブ面と所定の間隙
を有して規制板を設けることによって搬送される現像剤
を規制するようにしている。このようにして現像剤は安
定して搬送され良好な現像が行われるようになっている
[0004]Recently, as a countermeasure for such problems,
The means disclosed in Japanese Patent No. 0-22363 is well known. That is, this means provides a concave permanent magnet in the developing sleeve to form a repulsive magnetic field, and creates a magnetic field with a magnetic field strength distribution having two peaks on the surface of the developing sleeve in the direction of rotation thereof, thereby creating two peaks on the surface of the developing sleeve. The developer to be conveyed is regulated by forming spikes of developer that separate into spikes, and by providing a regulating plate with a predetermined gap between the spikes and the surface of the developing sleeve. In this way, the developer is stably transported and good development is performed.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、前述の
実公昭60−22363号公報による反発磁界の形成と
規制板とによる現像剤の規制手段では該規制板の前記現
像スリーブと対向する両側端がエッジ状となっているの
で該現像スリーブとの設置位置に極めて敏感で現像剤の
凝集状態が変化する。例えば該現像剤スリーブの僅かな
偏心や前記規制板の取付誤差或は変形等によって該現像
スリーブと該規制板との間に滞留する現像剤はスムーズ
に通過しなくなると共に均一な薄層を形成することがで
きない欠点をもっている。
[Problems to be Solved by the Invention] However, in the above-mentioned Utility Model Publication No. 60-22363, the developer regulating means using a regulating plate and forming a repulsive magnetic field has the problem that both ends of the regulating plate facing the developing sleeve are edges. Since the developing sleeve is shaped like this, it is extremely sensitive to the installation position with respect to the developing sleeve, and the state of aggregation of the developer changes. For example, due to slight eccentricity of the developer sleeve, installation error or deformation of the regulating plate, the developer that remains between the developing sleeve and the regulating plate does not pass smoothly and forms a uniform thin layer. It has the disadvantage that it cannot be done.

【0006】本発明はこのような問題点を解決して現像
スリーブによって搬送される現像剤が該現像スリーブ面
に均一な薄層を形成することのできる現像装置の提供を
課題目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a developing device in which the developer conveyed by the developing sleeve can form a uniform thin layer on the surface of the developing sleeve.

【0007】[0007]

【課題を解決するための手段】この目的は下記のa,b
,c,dのいずれかの手段によって達成される。
[Means for solving the problem] This purpose is as follows:
, c, or d.

【0008】(a)磁性キャリアとトナーとからなる2
成分現像剤を用いた画像形成装置の現像装置において、
前記現像剤を磁気的に保持して搬送する現像スリーブ内
に同極磁極を並置して反発磁界を形成すると共に該反発
磁界の形成された該現像スリーブ面と対向し先端部に曲
率を有して現像剤を規制する現像剤層形成手段を設けた
ことを特徴とする現像装置。
(a) 2 consisting of a magnetic carrier and a toner
In a developing device of an image forming apparatus using component developers,
A developing sleeve that magnetically holds and transports the developer has magnetic poles of the same polarity juxtaposed to form a repulsive magnetic field, and has a curvature at the tip facing the surface of the developing sleeve on which the repulsive magnetic field is formed. 1. A developing device comprising a developer layer forming means for regulating developer.

【0009】(b)(a)項において前記現像層形成手
段は前記現像スリーブ面に押接して設けたことを特徴と
する現像装置。
(b) The developing device according to item (a), wherein the developing layer forming means is provided in pressure contact with the surface of the developing sleeve.

【0010】(c)(a)項において前記現像層形成手
段は前記現像スリーブ面に対して0.05〜1.0mm
の間隔を有して設けたことを特徴とする現像装置。
(c) In (a), the developing layer forming means has a distance of 0.05 to 1.0 mm from the surface of the developing sleeve.
A developing device characterized in that the developing device is provided with an interval of .

【0011】(d)(a),(b),(c)項において
前記現像スリーブ面上での磁力のピーク間隔をdとした
とき前記現像剤層形成手段の先端部の直径φは0.5d
≦φ≦3dの範囲に設定したことを特徴とする現像装置
(d) In (a), (b), and (c), when the peak interval of the magnetic force on the surface of the developing sleeve is d, the diameter φ of the tip of the developer layer forming means is 0. 5d
A developing device characterized in that the developing device is set within a range of ≦φ≦3d.

【0012】0012

【実施例】本発明の構成及び、1実施例を図1の現像剤
層形成手段(円柱棒)が現像スリーブに押接して配置さ
れる状態を示す側面図と図2の現像剤層形成手段が現像
スリーブに間隙を有して配置される状態を示す側面図と
図3の磁界強度分布を示す図と図4の現像装置の構成を
示す側断面図とによって説明する。しかし、本発明は本
実施例に限定されるものではない。
[Example] The structure of the present invention and a side view showing a state in which the developer layer forming means (cylindrical rod) in FIG. The description will be given with reference to a side view showing a state in which the developing device is disposed with a gap in the developing sleeve, a diagram showing the magnetic field intensity distribution in FIG. 3, and a side sectional view showing the configuration of the developing device in FIG. 4. However, the present invention is not limited to this example.

【0013】本発明は磁性キャリア粒子とトナー粒子と
を主体とする二成分現像剤を現像剤搬送担持体面上に供
給して薄層の現像剤層を形成させ、該現像剤搬送担持体
面上の現像剤層を振動電界下に置き、もって像担持体面
の潜像を現像する装置において、特に効果を発揮する。
In the present invention, a two-component developer mainly consisting of magnetic carrier particles and toner particles is supplied onto the surface of a developer transport carrier to form a thin developer layer. This is particularly effective in an apparatus in which a developer layer is placed under an oscillating electric field to thereby develop a latent image on the surface of an image carrier.

【0014】即ち本発明は、二成分現像剤の磁性キャリ
ア粒子を用い振動電界下で現像を行うようにしたことに
よってトラブルなく微粒子化した磁性キャリア粒子やト
ナー粒子の使用を可能にしたものである。
That is, the present invention makes it possible to use micronized magnetic carrier particles and toner particles without trouble by performing development under an oscillating electric field using magnetic carrier particles of a two-component developer. .

【0015】一般に磁性キャリア粒子の平均粒径が大き
いと、■現像剤搬送担持体上に形成される磁気ブラシの
穂の状態が荒いために、電界により振動を与えながら静
電像を現像しても、トナー像にムラが現われ易く、■穂
におけるトナー濃度が低くなるので高濃度の現像が行わ
れない、等の問題が起る。この■の問題を解消するには
、キャリア粒子の平均粒径を小さくすればよく、実験の
結果、平均粒径70μm以下特に60μm以下でその結
果が現われ始め、特に30μm以下になると、実質的に
■の問題が生じなくなることが判明した。また■の問題
も、■の問題に対する磁性キャリアの微粒子化によって
、穂のトナー濃度が高くなり、高濃度の現像が行われる
ようになって解消する。しかし、キャリア粒子が細か過
ぎると、■トナー粒子と共に像担持体面に付着するよう
になったり、■飛散し易くなったりする。これらの現象
は、キャリア粒子の作用する磁界の強さ、それによりキ
ャリア粒子の磁化の強さにも関係するが、一般的には、
キャリア粒子の平均粒径が15μm以下になると現れる
ようになる。そして、像担持体面に付着したキャリア粒
子は、一部はトナーと共に記録紙上に移行し、残部はブ
レードやファーブラシ等によるクリーニング装置によっ
て残留トナーと共に潜像担持体面から除かれることにな
る。
In general, when the average particle size of the magnetic carrier particles is large, (1) the condition of the ears of the magnetic brush formed on the developer transport carrier is rough, so that an electrostatic image is developed while being vibrated by an electric field; Also, unevenness tends to appear in the toner image, and the toner concentration in the ears becomes low, resulting in problems such as inability to perform high-density development. In order to solve this problem (2), the average particle size of the carrier particles can be reduced, and as a result of experiments, the effect starts to appear when the average particle size is 70 μm or less, especially 60 μm or less, and when the average particle size becomes 30 μm or less, it becomes substantially It was found that the problem (■) no longer occurs. In addition, the problem (2) can be solved by making the magnetic carrier finer particles, which increases the toner concentration in the ears and enables high-density development. However, if the carrier particles are too fine, (1) they will adhere to the surface of the image carrier together with toner particles, or (2) they will easily scatter. These phenomena are related to the strength of the magnetic field on which the carrier particles act, and therefore the strength of the magnetization of the carrier particles, but in general,
It appears when the average particle size of carrier particles becomes 15 μm or less. A portion of the carrier particles adhering to the surface of the image carrier is transferred onto the recording paper along with the toner, and the remaining portion is removed from the surface of the latent image carrier along with the residual toner by a cleaning device such as a blade or a fur brush.

【0016】しかしながら基本的には像担持体面に対す
るキャリアの付着をできるだけ少なくすることが最も重
要である。本発明者等の種々検討の結果キャリアの磁化
が現像スリーブ上の磁界において10乃至60emu/
gであるとき実用上好ましい結果が得られ、15乃至5
0emu/gであるとき特に良い結果が得られることが
明らかとなった。
However, basically, it is most important to minimize the amount of carrier adhesion to the surface of the image carrier. As a result of various studies by the inventors, the magnetization of the carrier is 10 to 60 emu/in the magnetic field on the developing sleeve.
Practically preferable results are obtained when g is 15 to 5
It has become clear that particularly good results are obtained when the concentration is 0 emu/g.

【0017】キャリア粒子の磁化が10emu/g以下
ではキャリアの現像剤搬送担持体に対する吸着力が不足
して現像剤の搬送が不充分となり、又反発磁界の効果が
不充分であり、薄層の形成力が低下する。またキャリア
が現像剤搬送担持体面から離れて像担持体面に移行して
付着し易くなって好ましくない。一方磁化が60emu
/gを越えると、形成された磁気ブラシの穂が荒らくな
って画像が荒れ、また穂が高いので、その穂を通してブ
レークダウンし易くなり、高いバイアス電圧を避けるこ
どが困難となる、キャリアの現像剤搬送担持体面に対す
る吸着力が過大となりトナー粒子がキャリア粒子間で強
く圧迫されて現像剤が劣化する、マグネットが回転する
型の現像剤搬送装置ではキャリアが飛散し易くなる等の
問題が生じて実用上好ましくない。又反発磁界の効果が
強すぎ、現像剤の通過量が低下し過ぎる。
If the magnetization of the carrier particles is less than 10 emu/g, the adsorption force of the carrier to the developer transport carrier is insufficient, resulting in insufficient developer transport, and the effect of the repulsive magnetic field is insufficient, resulting in a thin layer Forming power decreases. Further, the carrier leaves the surface of the developer transporting carrier and tends to migrate and adhere to the surface of the image carrier, which is undesirable. On the other hand, magnetization is 60 emu
If it exceeds /g, the formed magnetic brush ears will become rough and the image will be rough, and since the ears are high, breakdown will easily occur through the ears, making it difficult to avoid high bias voltage. Problems include problems such as the adsorption force on the surface of the developer transport carrier being excessive and toner particles being strongly compressed between carrier particles, resulting in deterioration of the developer, and developer transport devices that use rotating magnets causing the carrier to easily scatter. This is not desirable in practice. Furthermore, the effect of the repulsive magnetic field is too strong, and the amount of developer passing through is too low.

【0018】本発明は上記のような小粒径キャリア、小
磁化キャリアに対して好適に用いられる。
The present invention is suitably used for small particle size carriers and small magnetization carriers as described above.

【0019】また前記磁性キャリアの粒径は平均粒径が
60μm以下、15μm以上のものが好ましい。
The average particle size of the magnetic carrier is preferably 60 μm or less and 15 μm or more.

【0020】このような磁性キャリア粒子は、磁性体と
して従来の磁性キャリア粒子におけると同様の、鉄、ク
ロム、ニッケル、コバルト等の金属、あるいはそれらの
化合物や合金、例えば、四三酸化鉄、r−酸化第二鉄、
二酸化クロム、酸化マンガン、フェライト、マンガン−
銅系合金、と言った強磁性体の粒子、又はそれらの磁性
体粒子の表面をスチレン系樹脂、ビニル系樹脂、エチレ
ン系樹脂、ロジン変性樹脂、アクリル系樹脂、ポリアミ
ド樹脂、エポキシ樹脂、ポリエステル樹脂等の樹脂やバ
ルミチン酸、ステアリン酸等の脂肪酸ワックスで被覆す
るか、あるいは、磁性体微粒子を分散して含有した樹脂
や脂肪酸ワックスの粒子を作るかして得られた粒子を従
来公知の平均粒径別手段で粒径選別することによって得
られる。また前記のキャリア粒子は公知の方法によって
球形化することも可能である。球形化されたキャリアは
磁化の方向性がなく現像剤層が均一に形成される。キャ
リア粒子にエッヂ部が無くなりエッヂ部への電界の集中
が起らないため現像剤搬送担持体に高いバイアス電圧を
印加しても放電による像の乱れ、バイアス電圧のブレー
クダウンが発生し難い、現像剤の流動性の向上等の利点
を有する。この高いバイアス電圧を印加できること言う
ことは、本発明における振動電界下での現像が振動する
バイアス電圧の印加によって行われるものである場合に
、それにより後述する効果を十分に発揮させることがで
きると言うことである。
[0020] Such magnetic carrier particles contain metals such as iron, chromium, nickel, cobalt, etc., or compounds or alloys thereof, such as triiron tetroxide, r. -ferric oxide,
Chromium dioxide, manganese oxide, ferrite, manganese
Particles of ferromagnetic substances such as copper alloys, or the surface of these magnetic particles are coated with styrene resin, vinyl resin, ethylene resin, rosin modified resin, acrylic resin, polyamide resin, epoxy resin, polyester resin. Particles obtained by coating them with resins such as balmitic acid, fatty acid waxes such as valmitic acid, stearic acid, etc., or by making particles of resins or fatty acid waxes containing dispersed magnetic particles are used as conventional average particle particles. It is obtained by sorting the particle size using a diameter-based means. Further, the carrier particles described above can also be made spherical by a known method. The spherical carrier has no directionality of magnetization, and a developer layer is formed uniformly. Carrier particles have no edges, and the electric field does not concentrate on the edges, so even if a high bias voltage is applied to the developer transport carrier, image distortion due to discharge and breakdown of the bias voltage are unlikely to occur, and development is possible. It has advantages such as improved fluidity of the agent. The fact that this high bias voltage can be applied means that when development under an oscillating electric field in the present invention is performed by applying an oscillating bias voltage, the effects described below can be fully exhibited. That's what I say.

【0021】前記のような効果を奏するキャリア粒子に
は前述のようにワックスも用いられるが、しかし、キャ
リアの耐久性等からすると、前述のような樹脂を用いた
ものが好ましい。さらに、キャリア粒子の抵抗が108
Ωcm以上、特に1013Ωcm以上であるように絶縁
性の磁性粒子を形成したものが好ましい。この抵抗率は
、粒子を0.50cm2の断面積を有する容器に入れて
タッピングした後、詰められた粒子上に1kg/cm2
の荷重を掛け、荷重と底面電極との間に1000V/c
mの電界が生ずる電圧を印加したときの電流値を読み取
ることで得られる値であり、この抵抗率が低いと、現像
剤搬送担持体にバイアス電圧を印加した場合に、キャリ
ア粒子に電荷が注入されて、像担持体面にキャリア粒子
が付着し易くなったり、あるいはバイアス電圧のブレー
クダウンが起り易くなったりする。
[0021] Wax can also be used as carrier particles that produce the above-mentioned effects, but from the viewpoint of the durability of the carrier, it is preferable to use resins as described above. Furthermore, the resistance of the carrier particles is 108
It is preferable to form insulating magnetic particles so that the resistance is Ωcm or more, particularly 10 13 Ωcm or more. This resistivity is determined by placing the particles in a container with a cross-sectional area of 0.50 cm2 and tapping, then applying 1 kg/cm2 onto the packed particles.
Apply a load of 1000V/c between the load and the bottom electrode.
This value is obtained by reading the current value when applying a voltage that generates an electric field of As a result, carrier particles tend to adhere to the surface of the image carrier, or breakdown of the bias voltage tends to occur.

【0022】以上を総合すると、本発明の方法に用いら
れる磁性キャリア粒子は、長軸と短軸の比が3倍以下で
あるように球形化されており、針状部やエッヂ部等の突
起が無く、抵抗率が108Ωcm以上であることが好ま
しく、1013Ωcm以上であることが特に好ましい。 このような磁性キャリア粒子は、できるだけ球形に近い
粒子からなる磁性体粉を選んで樹脂の被覆処理を行なう
が、或いは微細な磁性体粉を樹脂中に分散させて固化し
、粉砕球形化するか又はスプレードライ法を用いること
によって製造することができる。
[0022] To summarize the above, the magnetic carrier particles used in the method of the present invention are spherical so that the ratio of the long axis to the short axis is 3 times or less, and there are no protrusions such as needle-shaped parts or edge parts. The resistivity is preferably 10 8 Ωcm or more, particularly preferably 10 13 Ωcm or more. For such magnetic carrier particles, magnetic powder consisting of particles as close to spherical as possible is selected and coated with resin, or fine magnetic powder is dispersed in resin, solidified, and pulverized into a spherical shape. Alternatively, it can be manufactured by using a spray drying method.

【0023】次にトナーについて述べると、一般にトナ
ー粒子の平均粒径が小さくなると、定性的に粒径の二乗
に比例して帯電量が減少し、相対的にファンデルワール
ス力のような付着力が大きくなって、トナー粒子がキャ
リア粒子から離れにくくなったり、またトナー粒子が一
旦像担持体面の非画像部に付着すると、それが従来の磁
気ブラシによる摺擦では容易に除去されずにかぶりを生
ぜしめるようになる。従来の磁気ブラシ現像方法では、
トナー粒子の平均粒径が10μm以下になると、このよ
うな問題が顕著になった。この点を本発明の現像方法は
、現像剤層、所謂磁気ブラシによる現像を振動電界下で
行うようにしたことで解消するようにしている。即ち、
現像剤層に付着しているトナー粒子は、電気的に与えら
れる振動によって現像剤層から離れて像担持体面の画像
部及び非画像部に移行し易く、かつ、離れ易くなる。そ
して、現像剤層で像担持体面を摺擦するようにした場合
は、像担持体の非画像部に付着したトナー粒子は容易に
除去乃至画像部に移動させられるようになるし、現像剤
層厚を像担持体面と現像剤搬送担持体面の間隙よりも薄
く形成した場合は、帯電量の低いトナー粒子が画像部や
非画像部に移行することが殆どなくなり、また、像担持
体面と擦られることがないために摩擦帯電により像担持
体に付着することもなくなって、数μm程度のトナー粒
径のものまで用いられるようになる。したがって、静電
潜像を忠実に現像した再現性のよい鮮明なトナー像を得
ることができる。さらに、振動電界はトナー粒子とキャ
リア粒子の結合を弱めるもので、トナー粒子に伴うキャ
リア粒子の像担持体面への付着も減少する。特に、現像
剤層の厚さを現像担持体面と現像剤搬送担持体面の間隙
よりも薄くした場合は、画像部及び非画像部領域におい
て、大きな帯電量を持つトナー粒子が振動電界下で振動
し、電界の強さによってはキャリア粒子も振動すること
により、トナー粒子が選択的に像担持体面の画像部に移
行するよすうになるから、キャリア粒子の像担持体への
付着は大幅に軽減される。電界により非画像部領域のト
ナー粒子は非画像部に到達する場合も、到達しない場合
もある。キャリアについても同様である。
Next, regarding toner, as the average particle size of toner particles becomes smaller, the amount of charge qualitatively decreases in proportion to the square of the particle size, and the adhesion force such as van der Waals force decreases. As the toner particles become larger, it becomes difficult for the toner particles to separate from the carrier particles, and once the toner particles adhere to the non-image area of the image bearing surface, they cannot be easily removed by rubbing with a conventional magnetic brush and can cause fogging. It begins to give birth. In the conventional magnetic brush development method,
When the average particle size of toner particles was 10 μm or less, such problems became noticeable. The developing method of the present invention solves this problem by performing development using a developer layer, a so-called magnetic brush, under an oscillating electric field. That is,
The toner particles adhering to the developer layer are easily moved away from the developer layer and transferred to the image area and non-image area on the image carrier surface by the electrically applied vibrations, and are also easily separated from the developer layer. When the surface of the image carrier is rubbed with the developer layer, toner particles attached to the non-image area of the image carrier can be easily removed or moved to the image area, and the developer layer When the thickness is made thinner than the gap between the image carrier surface and the developer transport carrier surface, toner particles with a low charge amount hardly migrate to the image area or non-image area, and are also rubbed against the image carrier surface. Because of this, toner particles do not adhere to the image carrier due to frictional charging, and toner particles having a particle size of several μm can now be used. Therefore, it is possible to obtain a clear toner image with good reproducibility in which the electrostatic latent image is faithfully developed. Further, the oscillating electric field weakens the bond between toner particles and carrier particles, and the adhesion of carrier particles accompanying toner particles to the image bearing surface is also reduced. In particular, when the thickness of the developer layer is made thinner than the gap between the developer carrier surface and the developer transport carrier surface, toner particles with a large amount of charge vibrate under the oscillating electric field in the image area and non-image area. Depending on the strength of the electric field, the carrier particles also vibrate, allowing the toner particles to selectively migrate to the image area on the image carrier surface, which greatly reduces the adhesion of the carrier particles to the image carrier. Ru. Due to the electric field, toner particles in the non-image area may or may not reach the non-image area. The same applies to careers.

【0024】一方、トナーの平均粒径が大きくなると、
先の述べたように画像の乱れが目立つようになる。通常
、10本/mm程度のピッチで並んだ細線の解像力ある
現像には、平均粒径20μm程度のトナーでも実用上は
問題ないが、しかし、平均粒径10μm以下の微粒子化
したトナーを用いると、解像力は格段に向上して、濃淡
差等も忠実に再現した鮮明な高画質画像を与えるように
なる。 以上の理由からトナーの粒径は平均粒径が20μm以下
、好ましくは10μm以下が適正条件である。また、ト
ナー粒径が電界に追随するために、トナー粒子の帯電量
が1〜3μC/gより大きいこと(好ましくは3〜30
0μC/g)が望ましい。特に粒径の小さい場合は高い
帯電量が必要である。
On the other hand, as the average particle size of the toner increases,
As mentioned earlier, image distortion becomes noticeable. Normally, toner with an average particle size of about 20 μm is not a problem in practice for developing fine lines arranged at a pitch of about 10 lines/mm with high resolution, but if fine particles with an average particle size of 10 μm or less are used, The resolution has been significantly improved, and it is now possible to produce clear, high-quality images that faithfully reproduce the differences in shading. For the above reasons, the appropriate condition for the particle size of the toner is that the average particle size is 20 μm or less, preferably 10 μm or less. In addition, in order for the toner particle size to follow the electric field, the charge amount of the toner particles should be greater than 1 to 3 μC/g (preferably 3 to 30 μC/g).
0 μC/g) is desirable. Particularly when the particle size is small, a high amount of charge is required.

【0025】そして、このようなトナーは、従来のトナ
ーと同様の方法で得られる。即ち、従来のトナーにおけ
る球形や不定形の非磁性または磁性のトナー粒子を平均
粒径選別手段によって選別したようなトナーを用いるこ
とができる。中でも、トナー粒子が磁性体粒子を含有し
た磁性粒子であることは好ましく、特に磁性体微粒子の
量が60wt%を超えないものが好ましい。トナー粒子
が磁性粒子を含有したものである場合は、トナー粒子が
現像剤搬送担持体に含まれる磁石の磁力の影響を受ける
ようになるから、磁気ブラシの均一形成性が一層向上し
て、しかも、かぶりの発生が防止され、さらにトナー粒
子の飛散も起りにくくなる。しかし、含有する磁性体の
量を多くし過ぎると、キャリア粒子との間の磁気力が大
きくなり過ぎて、十分な現像濃度を得ることができなく
なるし、また、磁性体微粒子がトナー粒子の表面に現わ
れるようにもなって、摩擦帯電制御が難しくなったり、
トナー粒子が破損し易くなったり、キャリア粒子との間
で凝集し易くなったりする。特にカラートナーを用いる
場合、磁性体量は30wt%以下にしないと鮮明な色が
得られない。
[0025] Such toner can be obtained in the same manner as conventional toners. That is, it is possible to use a toner in which spherical or amorphous nonmagnetic or magnetic toner particles in conventional toners are sorted by an average particle size sorting means. Among these, it is preferable that the toner particles are magnetic particles containing magnetic particles, and it is particularly preferable that the amount of magnetic fine particles does not exceed 60 wt %. When the toner particles contain magnetic particles, the toner particles are influenced by the magnetic force of the magnet included in the developer transport carrier, which further improves the uniform formation of the magnetic brush. , fogging is prevented from occurring, and toner particle scattering is also less likely to occur. However, if the amount of magnetic material contained is too large, the magnetic force between the carrier particles and the carrier particles becomes too large, making it impossible to obtain a sufficient developing density. frictional electrification becomes difficult to control.
Toner particles may be easily damaged or agglomerated with carrier particles. Particularly when using color toners, clear colors cannot be obtained unless the amount of magnetic material is 30 wt% or less.

【0026】以上を纏めると、本発明の現像方法におい
て好ましいトナーは、キャリアについて述べたような樹
脂及びさらに磁性体の微粒子を用い、それにカーボン等
の着色成分や必要に応じて帯電制御剤等を加えて、従来
公知のトナー微粒子製造方法と同様の方法によって作る
ことができる平均粒径が20μm以下、特に好ましくは
10μm以下の粒子から成るものである。さらにトナー
の球形化は、流動性の向上、現像剤の撹拌、搬送帯電に
好ましい結果をもたらす。
To summarize the above, a preferable toner in the developing method of the present invention uses a resin as described above for the carrier and fine particles of a magnetic material, and also contains a coloring component such as carbon and, if necessary, a charge control agent. In addition, the particles have an average particle diameter of 20 μm or less, particularly preferably 10 μm or less, which can be produced by a method similar to a conventionally known method for producing toner fine particles. Furthermore, spherical toner brings about favorable results in improved fluidity, developer stirring, and transport charging.

【0027】本発明の現像方法においては、以上述べた
ような球状のキャリア粒子とトナー粒子とが従来の二成
分現像剤におけると同様の割合で混合した現像剤が好ま
しく用いられるが、これにはまた、必要に応じて粒子の
流動滑りをよくするための流動化剤や像担持体面の清浄
化に役立つクリーニング剤等が混合される。流動化剤と
しては、コロイダルシリカ、シリコンワニス、金属石鹸
あるいは非イオン表面活性剤等を用いることができ、ク
リーニング剤としては、脂肪酸金属塩、有機基置換シリ
コンあるいは弗素等表面活性剤等を用いることができる
In the developing method of the present invention, a developer in which the above-mentioned spherical carrier particles and toner particles are mixed in the same ratio as in a conventional two-component developer is preferably used. Further, if necessary, a fluidizing agent for improving the fluidity and sliding of the particles, a cleaning agent for cleaning the surface of the image carrier, and the like are mixed. As the fluidizing agent, colloidal silica, silicone varnish, metal soap, or nonionic surfactant can be used, and as the cleaning agent, fatty acid metal salt, organic group-substituted silicone, fluorine, etc. can be used as a surfactant. Can be done.

【0028】以上が現像剤についての条件であり、次に
、このような現像剤で現像剤層を形成して像担持体上の
静電像を現像する現像剤搬送担持体に関する条件につい
て述べる。
The above are the conditions for the developer, and next, the conditions for the developer transport carrier which forms a developer layer with such developer and develops the electrostatic image on the image carrier will be described.

【0029】現像剤搬送担持体上に形成する現像剤層の
厚さは、付着した現像剤が厚さの規制ブレードによって
十分に掻き落されて均一な層となる厚さであることが好
ましく、そして、現像剤搬送担持体と像担持体との間隙
は数10〜1000μmが好ましい。現像剤搬送担持体
と像担持体の表面間隙が数10μmよりも狭くなり過ぎ
ると、それに対して均一に現像作用する磁気ブラシの穂
を形成するのが困難となり、また、十分なトナー粒子を
現像部に供給することもできなくなって、安定した現像
が行われなくなるし、間隙が1000μmを大きく超す
ようになると、対向電極効果が低下して十分な現像濃度
が得られないようになる。このように、現像剤搬送担持
体と像担持体の間隙が極端になると、それに対して現像
剤搬送担持体上の現像剤層の厚さを適当にすることがで
きなくなるが、間隙が10μm〜1000μmの範囲で
は、それに対して現像剤層を厚さを適当に形成すること
ができる。そこで、間隙と現像剤層の厚さを振動電界を
与えていない状態の下で磁気ブラシの穂が像担持体の表
面に接触せず、しかもできるだけ近接するような条件に
設定することが特に好ましい。それは、潜像のトナー現
像に磁気ブラシの摺擦による掃き目が生じたり、またか
ぶりが生じたりすることが防止されるからである。
The thickness of the developer layer formed on the developer transport carrier is preferably such that the adhered developer is sufficiently scraped off by the thickness regulating blade to form a uniform layer. The gap between the developer transport carrier and the image carrier is preferably several tens to 1000 μm. If the surface gap between the developer transport carrier and the image carrier becomes narrower than several tens of micrometers, it will be difficult to form magnetic brush ears that will uniformly develop the gap, and it will also be difficult to develop enough toner particles. If the gap greatly exceeds 1000 .mu.m, the opposing electrode effect decreases, making it impossible to obtain a sufficient developed density. In this way, when the gap between the developer transport carrier and the image carrier becomes extreme, it becomes impossible to make the thickness of the developer layer on the developer transport carrier appropriate. In the range of 1000 μm, the developer layer can be formed with an appropriate thickness. Therefore, it is particularly preferable to set the gap and the thickness of the developer layer so that the ears of the magnetic brush do not come into contact with the surface of the image carrier and are as close as possible to the surface of the image carrier when no oscillating electric field is applied. . This is because the toner development of the latent image is prevented from having scratches or fog caused by the rubbing of the magnetic brush.

【0030】さらに、振動電界下での現像は、現像剤搬
送担持体のスリーブに振動するバイアス電圧を印加する
ことによるのが好ましい。また、バイアス電圧には非画
像部分へのトナー粒子の付着を防止する直流電圧とトナ
ー粒子をキャリア粒子から離れ易くするための交流電圧
との重畳した電圧を用いることが好ましい。しかし本発
明は、スリーブへの振動電圧の印加による方法や直流と
交流の重畳電圧印加による方法に限られるのではない。
Further, development under an oscillating electric field is preferably carried out by applying an oscillating bias voltage to the sleeve of the developer carrying member. Further, it is preferable to use a bias voltage that is a combination of a direct current voltage that prevents toner particles from adhering to non-image areas and an alternating current voltage that makes it easier for toner particles to separate from carrier particles. However, the present invention is not limited to the method of applying an oscillating voltage to the sleeve or the method of applying a superimposed DC and AC voltage.

【0031】以上述べたような本発明の現像方法は、図
1乃至図4に例示したような装置によって実施される。
The developing method of the present invention as described above is carried out using the apparatus illustrated in FIGS. 1 to 4.

【0032】図4は現像装置1の要部断面を示すもので
あって、16は感光体、2はハウジング、3は現像スリ
ーブ、4はマグネットローラ、5は現像剤の量を規制す
る剛性を備えた現像剤層形成手段である円柱棒、15は
円柱棒5を保持するホルダ、6は円柱棒5と現像スリー
ブ3との押圧から、現像剤を搬送可能にするためのバネ
材であり、円柱棒5は現像スリーブ3に対し現像剤が介
在しない状態で一定荷重で押圧される。7および8は第
1および第2撹拌部材、9は供給ローラ、10はスクレ
ーパ、11は撹拌仕切板、12は保護抵抗13を介して
現像スリーブ3にバイアス電圧を印加するバイアス電源
である。
FIG. 4 shows a cross section of the main parts of the developing device 1, in which 16 is a photoreceptor, 2 is a housing, 3 is a developing sleeve, 4 is a magnet roller, and 5 is a rigid body that regulates the amount of developer. A cylindrical rod 15 is a holder for holding the cylindrical rod 5, and 6 is a spring member for enabling the developer to be conveyed by the pressure between the cylindrical rod 5 and the developing sleeve 3. The cylindrical rod 5 is pressed against the developing sleeve 3 with a constant load without the presence of developer. 7 and 8 are first and second stirring members, 9 is a supply roller, 10 is a scraper, 11 is a stirring partition plate, and 12 is a bias power supply that applies a bias voltage to the developing sleeve 3 via a protective resistor 13.

【0033】前記現像装置1内に補給されたトナーは矢
示方向に回転する前記第1撹拌部材7と、これと反対方
向に互に重複するように回転する前記第2撹拌部材8と
によりキャリアと充分撹拌混合された上現像剤Dとして
前記供給ローラ9を介して前記現像スリーブ3に送られ
る。
The toner replenished into the developing device 1 is transferred to the carrier by the first stirring member 7 rotating in the direction of the arrow and the second stirring member 8 rotating in the opposite direction so as to overlap with each other. The upper developer D is sufficiently stirred and mixed with the upper developer D and is sent to the developing sleeve 3 via the supply roller 9.

【0034】前記第1撹拌部材7と前記第2撹拌部材8
は互に相反する矢示方向に回転する左巻きの螺旋角をも
ったスクリュー状の部材であって前記第2撹拌部材8の
推力によって奥側に搬送されたトナーとキャリアは、図
面の奥側方向に上縁が低く傾斜する前記撹拌仕切板11
を順次乗り越えて前記第1撹拌部材7側に移りその推力
によって図面の手前側に搬送され、その間におけるトナ
ーとキャリアとの混合作用によって摩擦帯電がなされた
均質な前記現像剤Dとされ、スポンジ状で矢示方向に回
転する前記供給ローラ9によって前記現像スリーブ3周
面上に層状に付着する。
[0034] The first stirring member 7 and the second stirring member 8
is a screw-like member with a left-handed helical angle that rotates in opposite arrow directions, and the toner and carrier transported to the back side by the thrust of the second stirring member 8 are transported in the back direction in the drawing. The stirring partition plate 11 has an upper edge that is sloped low.
The developer D is transferred to the first agitation member 7 side by its thrust and transported to the front side of the drawing by its thrust, and the homogeneous developer D is triboelectrically charged by the mixing action of the toner and carrier during this time, and is spongy. The supply roller 9 rotates in the direction of the arrow, and the developer is deposited in a layer on the circumferential surface of the developing sleeve 3.

【0035】また、前記マグネットローラ4のN,S磁
極は通常500〜1500ガウスの磁束密度に磁化され
ており、その磁力によって現像スリーブ3の表面に先に
述べたような前記現像剤Dの層即ち、磁気ブラシを形成
する。
Further, the N and S magnetic poles of the magnet roller 4 are normally magnetized to a magnetic flux density of 500 to 1500 Gauss, and the layer of the developer D as described above is formed on the surface of the developing sleeve 3 by the magnetic force. That is, a magnetic brush is formed.

【0036】以上のような装置において、前記現像スリ
ーブ3の前記感光体16に対して表面間隙が数10〜1
000μmの範囲にあるように設定して、該感光体16
の静電像の現像を行うと、該現像スリーブ3の表面に形
成された磁気ブラシは、該現像スリーブ3あるいは前記
マグネットローラ4の回転に伴ってその表面の磁束密度
が変化するから、振動しながら該現像スリーブ3上を移
動するようになり、それによって該感光体16との間隙
を安定して円滑に通過し、その際該感光体16の表面に
対し、均一な現像効果を与えることになって、安定して
高いトナー濃度の現像を可能にする。それには、かぶり
の発生を防ぐため及び現像効果を向上させるために、前
記現像スリーブ3に前記バイアス電源12によって振動
する交流成分を有したバイアス電圧が接地した前記感光
体16の基体16aとの間に印加されている。このバイ
アス電圧には、先にも述べたように、好ましい直流電圧
と交流電圧の重畳電圧が用いられ、直流成分かぶりの発
生を防止し、交流成分が磁気ブラシに振動を与えて現像
効果を向上する。なお、通常直流電圧成分には非画部電
位と略等しいか、それよりも高い50〜600Vの電圧
が用いられ、交流電圧成分には100Hz〜10KHz
、好ましくは1〜7KHzの周波数が用いられる。また
交流電圧成分の波形は正弦波に限らず短形波や三角波で
あってもよい。なお、直流電圧成分は、トナー粒子が磁
性体を含有している場合は、非画部電位よりも低くてよ
い。交流電圧成分の周波数が低過ぎると、振動を与える
効果が得られなくなり、高過ぎても電界の振動に現像剤
が追従できなくなって、現像濃度が低下し、鮮明な高画
質画像が得られなくなると言う傾向が現れる。また、交
流電圧成分の電圧値は、周波数も関係するが、高い程磁
気ブラシを振動させるようになりそれだけ効果を増すこ
とになるが、その反面高い程かぶりを生じ易くし、落雷
現象のような絶縁破壊も起り易くする。しかし、現像剤
Dのキャリア粒子が樹脂等によって絶縁化及び球形化さ
れていることが絶縁破壊を防止するし、かぶりの発生も
直流電圧成分で防止し得る。なお、交流電圧を印加する
現像スリーブ3を表面を樹脂や酸化被膜によって結像乃
至は半絶縁被覆するようにしてもよい。
In the above-described apparatus, the surface gap between the developing sleeve 3 and the photoreceptor 16 is several tens to one.
The photoreceptor 16 is set to be within the range of 000 μm.
When an electrostatic image is developed, the magnetic brush formed on the surface of the developing sleeve 3 vibrates because the magnetic flux density on the surface changes as the developing sleeve 3 or the magnetic roller 4 rotates. While moving over the developing sleeve 3, it stably and smoothly passes through the gap between the photoreceptor 16 and a uniform developing effect on the surface of the photoreceptor 16. This enables stable development with high toner density. In order to prevent the occurrence of fogging and to improve the developing effect, a bias voltage having an alternating current component vibrating by the bias power source 12 is applied to the developing sleeve 3 between the base body 16a of the photoreceptor 16 and the grounded substrate 16a. is applied to. As mentioned earlier, this bias voltage uses a preferable superimposed voltage of DC voltage and AC voltage, which prevents the DC component from causing fog, and the AC component gives vibration to the magnetic brush to improve the developing effect. do. Note that a voltage of 50 to 600 V that is approximately equal to or higher than the non-image area potential is normally used for the DC voltage component, and a voltage of 100 Hz to 10 KHz is used for the AC voltage component.
, preferably a frequency of 1 to 7 KHz is used. Further, the waveform of the AC voltage component is not limited to a sine wave, but may be a rectangular wave or a triangular wave. Note that when the toner particles contain a magnetic material, the DC voltage component may be lower than the non-image area potential. If the frequency of the AC voltage component is too low, the effect of imparting vibration will not be achieved, and if it is too high, the developer will not be able to follow the vibrations of the electric field, resulting in a decrease in developer density and the inability to obtain clear, high-quality images. There is a tendency to say. In addition, the voltage value of the AC voltage component is also related to the frequency, but the higher the voltage value, the more the magnetic brush will vibrate and the more effective it will be. It also makes it easier for dielectric breakdown to occur. However, the fact that the carrier particles of the developer D are insulated and made spherical by a resin or the like prevents dielectric breakdown, and the occurrence of fog can also be prevented by the DC voltage component. Incidentally, the surface of the developing sleeve 3 to which the alternating current voltage is applied may be coated with a resin or an oxide film for forming an image or semi-insulating.

【0037】以上、図1乃至図4は現像スリーブに振動
するバイアス電圧を印加する例を示しているが、本発明
の現像方法はそれに限らず、例えば前記現像スリーブ3
前記感光体16の現像領域周辺に電極ワイヤを数本張設
して、それに振動する電圧を印加するようにしても磁気
ブラシに振動を与えて現像効果を向上させることはでき
る。その場合も、前記現像スリーブ3には直流バイアス
電圧を印加し、あるいは、異なった振動数の振動電圧を
印加するようにしてもよい。また、本発明の方法は反転
現像などにも同様に適用できる。その場合、直流電圧成
分は前記感光体16の非画像背景部における受容電位と
略等しい電圧に設定される。さらに、本発明の方法は記
録層を有する前記感光体16の現像や磁気潜像の現像に
も同様に適用するとができる。また、前記感光体16を
繰返し現像し複数のトナーを重ね合せるカラー像形成す
る、本件出願人が先に特願昭58−184381号、同
58−183152号、同58−187000号、同5
8−187001号に記載したような方式にも適用する
ことができる。
As described above, although FIGS. 1 to 4 show an example in which an oscillating bias voltage is applied to the developing sleeve, the developing method of the present invention is not limited thereto.
The developing effect can also be improved by extending several electrode wires around the developing area of the photoreceptor 16 and applying a vibrating voltage to them. In that case as well, a DC bias voltage may be applied to the developing sleeve 3, or oscillating voltages of different frequencies may be applied. Furthermore, the method of the present invention can be similarly applied to reversal development and the like. In that case, the DC voltage component is set to a voltage approximately equal to the potential received by the non-image background portion of the photoreceptor 16. Furthermore, the method of the present invention can be similarly applied to the development of the photoreceptor 16 having a recording layer and the development of a magnetic latent image. In addition, the present applicant previously developed the photoreceptor 16 repeatedly to form a color image by overlapping a plurality of toners.
It is also possible to apply the method described in No. 8-187001.

【0038】本発明は前述した問題点を取除いて現像ス
リーブ3面上に均一な現像剤Dの薄層を形成するために
現像剤層形成手段である円柱棒5を次のように配設した
In the present invention, in order to eliminate the above-mentioned problems and form a uniform thin layer of developer D on the surface of the developing sleeve 3, the cylindrical rod 5, which is a developer layer forming means, is arranged as follows. did.

【0039】即ち図4に示すように前記マグネットロー
ラ4はN及びSを交互に等間隔に配置した等磁極の12
極の磁石から構成されるものであるが1極を欠落させて
11極とし欠落部分に対して前記マグネットローラ4の
幅方向に亘って切欠き溝4aを設け該切欠き溝4aをは
さんでその両側はN極の磁極を設けて前記現像スリーブ
3内に固定した状態で内包され該現像スリーブ3面上に
反発磁極が形成されるようになっている。そして、前記
現像スリーブ3面には前記切欠き溝4aをはさんで両側
に形成される反発磁界に対応して図3の矢印で示す現像
剤Dの移動方向に2つのピークP1,P2を有する前記
現像スリーブ3面に垂直方向の磁界強度分布の磁場が形
成される。
That is, as shown in FIG. 4, the magnet roller 4 has 12 equal magnetic poles in which N and S are alternately arranged at equal intervals.
Although it is composed of a magnet with one pole, one pole is missing to make 11 poles, and a notch groove 4a is provided across the width direction of the magnet roller 4 in the missing part, and the notch groove 4a is sandwiched. N-pole magnetic poles are provided on both sides of the developing sleeve 3, and the developing sleeve 3 is fixedly contained therein so that repulsion magnetic poles are formed on the surface of the developing sleeve 3. The surface of the developing sleeve 3 has two peaks P1 and P2 in the moving direction of the developer D shown by the arrow in FIG. 3, corresponding to the repulsive magnetic field formed on both sides of the notched groove 4a. A magnetic field with a vertical magnetic field strength distribution is formed on the surface of the developing sleeve 3.

【0040】一方、図4に示すように前記円柱棒5は剛
性を有する棒状の部材で前記現像スリーブ3の下方に位
置して上下に移動可能に前記ホルダ15に軸支されてい
る。そして、前記円柱棒5は固定した前記マグネットロ
ーラ4の図に示す位置に設定された前記切欠き溝4aと
対向する位置に設けられている。前記ホルダ15に軸支
される前記円柱棒5の周面と対向する該ホルダ15の下
面には例えばスポンジ或はばね部材等の弾性部材6が軸
方向に亘って適宜設けられ前記円柱棒5は該弾性部材6
の弾性力によって前記現像スリーブ3面に向けて所定の
押圧力で均一に密着するように押接されている。なお前
記円柱棒5の材質は磁性或は非磁性の何れであってもよ
い。
On the other hand, as shown in FIG. 4, the cylindrical rod 5 is a rigid rod-shaped member located below the developing sleeve 3 and pivotally supported by the holder 15 so as to be movable up and down. The cylindrical rod 5 is provided at a position facing the notched groove 4a of the fixed magnet roller 4, which is set at the position shown in the figure. An elastic member 6, such as a sponge or a spring member, is appropriately provided in the axial direction on the lower surface of the holder 15, which faces the circumferential surface of the cylindrical rod 5, which is pivotally supported by the holder 15. The elastic member 6
The developing sleeve 3 is pressed against the surface of the developing sleeve 3 with a predetermined pressing force so as to be in uniform contact with the surface of the developing sleeve 3. The material of the cylindrical rod 5 may be either magnetic or non-magnetic.

【0041】そして、図3に示す前記現像スリーブ3面
に形成される磁力のピークP1,P2間の距離をdとし
たとき前記円柱棒5の直径φ(mm)は0.5d≦φ≦
3dの範囲内で選択的にその数値が設定されている。
When the distance between the peaks P1 and P2 of the magnetic force formed on the surface of the developing sleeve 3 shown in FIG. 3 is d, the diameter φ (mm) of the cylindrical rod 5 is 0.5d≦φ≦
The numerical value is selectively set within the range of 3d.

【0042】前記円柱棒5の直径φが0.5dより小さ
いときは前記現像剤Dの薄層が均一にできずまた、その
真直度が不完全であると均一な薄層が形成できない。一
方、直径φが3dより大きいときは前記現像剤Dの流入
する規制位置が磁界強度分布P1,P2のピーク間より
大きくなり、反発磁界の規制効果が不充分となる。
If the diameter φ of the cylindrical rod 5 is smaller than 0.5d, a thin layer of the developer D cannot be formed uniformly, and if its straightness is imperfect, a uniform thin layer cannot be formed. On the other hand, when the diameter φ is larger than 3d, the regulating position where the developer D flows becomes larger than the peak interval of the magnetic field strength distributions P1 and P2, and the regulating effect of the repulsive magnetic field becomes insufficient.

【0043】なお、前記現像スリーブ3の直径は10〜
30mmとし前記円柱棒5の直径φは3〜10mmが好
ましい。磁界ピークP1及びP2の磁束密度は300〜
800ガウス、P1,P2間の谷の磁束密度は200〜
500ガウスが好ましい。
[0043] The diameter of the developing sleeve 3 is 10~
The diameter φ of the cylindrical rod 5 is preferably 30 mm and 3 to 10 mm. The magnetic flux density of magnetic field peaks P1 and P2 is 300~
800 Gauss, magnetic flux density in the valley between P1 and P2 is 200 ~
500 Gauss is preferred.

【0044】また、前記円柱棒5は前記現像スリーブ3
の周面に押接するタイプとは別に図2に示すように前記
円柱棒5の周面と前記現像スリーブ3の周面とに間隙C
を設けて配置されてもよい。
Further, the cylindrical rod 5 is connected to the developing sleeve 3.
As shown in FIG. 2, there is a gap C between the circumferential surface of the cylindrical rod 5 and the circumferential surface of the developing sleeve 3, as shown in FIG.
may also be arranged.

【0045】又、円柱棒5は非磁性体に限らず磁性材料
で構成することもできる。この場合、規制ギャップを拡
げることが可能となる。
Further, the cylindrical rod 5 is not limited to a non-magnetic material, but may also be made of a magnetic material. In this case, it is possible to widen the regulatory gap.

【0046】その間隙Cの距離は0.05〜1.0mm
の範囲内で選択的にその数値が設定されている。
[0046] The distance of the gap C is 0.05 to 1.0 mm.
The value is selectively set within the range.

【0047】前記円柱棒5は丸棒部材であるため板状部
材に較べて極めて真直度がよく均一に前記現像スリーブ
3面に密着させることができまた間隙を有する場合でも
全域に亘って均一な間隙が得られるようになっている。
Since the cylindrical rod 5 is a round bar member, it has extremely straightness compared to a plate-like member and can be brought into even and close contact with the surface of the developing sleeve 3, and even if there is a gap, the cylindrical rod 5 can be brought into close contact with the surface of the developing sleeve 3 uniformly over the entire area. This allows for a gap to be obtained.

【0048】このように構成される前記現像スリーブ3
面に形成される反発磁界と前記円柱棒5とによって次の
ようにして該現像スリーブ3面に前記現像剤Dの薄層が
形成される。
The developing sleeve 3 configured as described above
A thin layer of the developer D is formed on the surface of the developing sleeve 3 in the following manner by the repulsive magnetic field formed on the surface and the cylindrical rod 5.

【0049】即ち、前記現像装置1内に補給されたトナ
ーは矢印方向に回転する前記第1撹拌部材7とこれと反
対方向で互に重複するように回転する前記第2撹拌部材
8とによりキャリアと充分撹拌混合された上前記現像剤
Dとして前記供給ローラ9を介して現像スリーブ3に送
られる。
That is, the toner replenished into the developing device 1 is transferred to the carrier by the first stirring member 7 rotating in the direction of the arrow and the second stirring member 8 rotating in the opposite direction so as to overlap with each other. After sufficient stirring and mixing, the developer D is sent to the developing sleeve 3 via the supply roller 9.

【0050】前述したように磁力のピークP1の位置に
対向する部分では前記現像剤Dの穂立ちが密となり前記
切欠き溝4aに対向する部分では該現像剤Dの穂立ちが
疎となる。そして前記円柱棒5が前記切欠き溝4aと対
向する位置に設けられているので前記現像剤Dの穂立ち
が疎の状態のもとで現像剤量の制御が行われる。従って
、前記現像スリーブ3が矢印方向に回転すると図1で示
したように前記円柱棒5の右側に滞留する前記現像剤D
は該円柱棒5の所定の曲率による曲面に沿って左方に搬
送され前記弾性部材6に抗して前記現像スリーブ3と前
記円柱棒5との間を通過することによって現像剤量が制
御されて該現像スリーブ3面に前記現像剤Dの薄層が形
成される。
As described above, the spikes of the developer D are dense in the portion facing the position of the peak P1 of the magnetic force, and the spikes of the developer D are sparse in the portion facing the notch groove 4a. Since the cylindrical rod 5 is provided at a position facing the notch groove 4a, the amount of the developer is controlled in a state where the spikes of the developer D are sparse. Therefore, when the developing sleeve 3 rotates in the direction of the arrow, the developer D stays on the right side of the cylindrical rod 5 as shown in FIG.
The amount of developer is controlled by being conveyed to the left along the curved surface of the cylindrical rod 5 with a predetermined curvature and passing between the developing sleeve 3 and the cylindrical rod 5 against the elastic member 6. A thin layer of the developer D is formed on the surface of the developing sleeve 3.

【0051】また、前記円柱棒5の有する曲面によって
キャリアのコーティング被膜を損うことなくかつスムー
ズに前記現像剤Dが前記円柱棒5を通過して搬送される
Further, due to the curved surface of the cylindrical rod 5, the developer D is smoothly conveyed through the cylindrical rod 5 without damaging the coating film of the carrier.

【0052】このようにして前記感光体16に形成され
た静電潜像は良好なトナー画像が現像される。
The electrostatic latent image thus formed on the photoreceptor 16 is developed into a good toner image.

【0053】なお、本発明の現像剤層形成手段は前述し
た前記円柱棒5に限らず剛性を有する板状部材で前記現
像スリーブ3面と対向する面が所定の曲率を有する曲面
をもつものであれば前記円柱棒5と同様に均一な前記現
像剤Dの薄層が前記現像スリーブ3面上に形成される。
The developer layer forming means of the present invention is not limited to the aforementioned cylindrical rod 5, but may also be a rigid plate-like member whose surface facing the developing sleeve 3 has a curved surface having a predetermined curvature. If so, a uniform thin layer of the developer D is formed on the surface of the developing sleeve 3, similar to the cylindrical rod 5.

【0054】なお、前記現像剤Dは2成分現像剤につい
て述べた。1成分現像剤も適用可能であるが規制効果は
2成分現像剤の方が効果がある。それは2成分現像剤の
方が磁性キャリアの磁力が高く反発磁界の効果が有効に
働くためである。この効果は先に記したキャリアの粒径
と磁化の条件が最も好ましい。
[0054] The developer D described above is a two-component developer. Although a one-component developer is also applicable, a two-component developer has a more effective regulatory effect. This is because the magnetic force of the magnetic carrier is higher in the two-component developer, and the effect of the repulsive magnetic field works more effectively. This effect is most preferably achieved under the carrier particle size and magnetization conditions described above.

【0055】以上説明した構成に基いて前記現像スリー
ブ3と前記円柱棒5との配置条件に対し前記円柱棒5の
直径φと磁界強度分布P1,P2の距離と具体的な数値
を設定して実施した実施例1,2,3について以下に説
明する。
Based on the configuration explained above, the diameter φ of the cylindrical rod 5 and the distances and specific values of the magnetic field strength distributions P1 and P2 are set for the arrangement conditions of the developing sleeve 3 and the cylindrical rod 5. Examples 1, 2, and 3 that were carried out will be described below.

【0056】実施例1 実施例1に用いた前記マグネットローラ4は固定で前記
円柱棒5と前記現像スリーブ3とは接触タイプとし前記
円柱棒5の直径は7mmの非磁性ステンレス材、磁界強
度分布P1,P2間の距離は5mmに設定する。
Example 1 The magnet roller 4 used in Example 1 was fixed, and the cylindrical rod 5 and the developing sleeve 3 were of a contact type, and the cylindrical rod 5 had a diameter of 7 mm, was made of nonmagnetic stainless steel, and had magnetic field strength distribution The distance between P1 and P2 is set to 5 mm.

【0057】キャリアとしては球形フェライト粒子をス
プレーコーティング法によりコーティング処理して平均
粒径約30μmのコーティングキャリア試料Iを得た。
As a carrier, spherical ferrite particles were coated by a spray coating method to obtain coated carrier sample I having an average particle diameter of about 30 μm.

【0058】この試料Iを1000ガウス下で測定した
ところ、試料Iは20emu/g、また各試料の抵抗率
は1014Ωcm以上であった。
When this sample I was measured under 1000 Gauss, it was found to be 20 emu/g, and the resistivity of each sample was 1014 Ωcm or more.

【0059】トナーにスチレン−アクリル樹脂(三洋化
成製ハイマーup 110)100重量部、カーボンブ
ラック(三菱化成製MA−100)10重量部、ニグロ
シン5重量部からなる平均粒径が10μmの粉砕造粒法
によって得られた非磁性粒子からなるものを用い、前記
キャリア試料と混合して現像剤とし、図4に示した現像
装置を備えた複写機に装填して多数枚の連続コピー実験
を行った。
The toner was pulverized and granulated with an average particle diameter of 10 μm, consisting of 100 parts by weight of a styrene-acrylic resin (HIMER UP 110, manufactured by Sanyo Chemical Co., Ltd.), 10 parts by weight of carbon black (MA-100, manufactured by Mitsubishi Chemical Industry Co., Ltd.), and 5 parts by weight of nigrosine. Using non-magnetic particles obtained by the method, the developer was mixed with the carrier sample and loaded into a copying machine equipped with the developing device shown in FIG. 4, and a large number of continuous copying experiments were conducted. .

【0060】この場合、前記感光体16は無定形シリコ
ン感光体、その周速は180mm/sec、該感光体1
6に形成された静電像の最高電位−500V、最低電位
−100V、前記現像スリーブ3の外径20mm、その
回転数200rpm、主磁極は900ガウス、前記マグ
ネットローラ4の他のN,S磁極の磁束密度は500ガ
ウス、P1,P2は700ガウス、P1,P2間は50
0ガウス現像域Aでの現像剤層の厚さ約0.2mm、前
記現像スリーブ3と前記感光体16との間隙0.3mm
即ち300μm、前記現像スリーブ3に印加するバイア
ス電圧は直流電圧成分−250V、交流電圧成分5KH
z、500Vとした。すなわち、この場合は、現像剤層
は感光体16の表面と非接触になっている。
In this case, the photoreceptor 16 is an amorphous silicone photoreceptor whose circumferential speed is 180 mm/sec.
The highest potential of the electrostatic image formed on the magnetic roller 6 is -500V, the lowest potential is -100V, the outer diameter of the developing sleeve 3 is 20 mm, its rotation speed is 200 rpm, the main magnetic pole is 900 Gauss, and the other N and S magnetic poles of the magnetic roller 4. The magnetic flux density is 500 Gauss, P1 and P2 is 700 Gauss, and between P1 and P2 is 50 Gauss.
The thickness of the developer layer in the 0 Gauss development area A is approximately 0.2 mm, and the gap between the developing sleeve 3 and the photoreceptor 16 is 0.3 mm.
That is, the bias voltage applied to the developing sleeve 3 has a DC voltage component of -250V and an AC voltage component of 5KH.
z and 500V. That is, in this case, the developer layer is not in contact with the surface of the photoreceptor 16.

【0061】現像剤溜りにおける現像剤Dのトナー粒子
比率がキャリアに対して10wt%になる条件で現像を
行った。トナーの平均帯電量は15μC/gであった。
Development was carried out under conditions such that the toner particle ratio of developer D in the developer reservoir was 10 wt % relative to the carrier. The average charge amount of the toner was 15 μC/g.

【0062】テストチャートを被写体として複写を行な
い上記の条件で現像を行って、それを普通紙にコロナ放
電転写器を用いて転写し、表面温度140℃の熱ローラ
定着装置に通して定着して複写物を得、その画質を目視
評価した。
A test chart was copied as a subject, developed under the above conditions, transferred to plain paper using a corona discharge transfer device, and fixed by passing through a heat roller fixing device with a surface temperature of 140°C. Copies were obtained and their image quality was visually evaluated.

【0063】引続いて5万枚の記録紙を得たが最初から
最後まで安定して変らない画像が得られた。
Subsequently, 50,000 sheets of recording paper were obtained, and a stable and unchanged image was obtained from beginning to end.

【0064】実施例2 実施例2に用いた前記マグネットローラ4は固定で前記
円柱棒5と前記現像スリーブ3とは0.3mmのギャッ
プを有した非接触タイプとし、前記円柱棒5の直径φは
10mmの非磁性ステンレス材、磁界強度分布P1,P
2間の距離は10mmに設定する。
Example 2 The magnet roller 4 used in Example 2 was fixed and was of a non-contact type with a gap of 0.3 mm between the cylindrical rod 5 and the developing sleeve 3, and the diameter of the cylindrical rod 5 was φ. is a 10 mm non-magnetic stainless steel material, magnetic field strength distribution P1, P
The distance between the two is set to 10 mm.

【0065】微粉状フェライト100重量部、スチレン
−アクリル樹脂50重量を取りボールミル中で予備混合
した後エクストルーダを用い充分溶融混練した。混練物
を冷却しジェット粉砕機で粉砕し、更にスプレードライ
ヤにより約300℃の熱空気中で処理して球形化し、風
力分級機で分級して平均粒径30μmの分散形キャリア
試料IIを得た。試料の磁化を1000ガウス下で測定
したところ試料2は15emu、であった。また抵抗率
は両試料とも1014Ωcm以上であった。トナーとし
て実施例1に用いたものとほぼ同一の組成を有する平均
粒径約5μmのものを用い、前記キャリア試料IIと混
合して現像剤を調整し第4図に示した現像装置を備え、
その他の点では実施例1に用いたものと同一の構成を有
する複写機に装填して多数枚の連続コピー試験を行った
100 parts by weight of fine powder ferrite and 50 parts by weight of styrene-acrylic resin were premixed in a ball mill and thoroughly melted and kneaded using an extruder. The kneaded material was cooled and pulverized with a jet pulverizer, further treated in hot air at about 300°C with a spray dryer to make it spherical, and classified with an air classifier to obtain a dispersed carrier sample II with an average particle size of 30 μm. . When the magnetization of the sample was measured under 1000 Gauss, Sample 2 was found to be 15 emu. Further, the resistivity of both samples was 1014 Ωcm or more. A toner having almost the same composition as that used in Example 1 and having an average particle diameter of about 5 μm was used, mixed with the carrier sample II to prepare a developer, and equipped with a developing device shown in FIG. 4.
In other respects, a copying machine having the same configuration as that used in Example 1 was loaded, and a continuous copying test was conducted on a large number of sheets.

【0066】この場合感光体16の条件は実施例1と同
一であり、前記現像スリーブ3の外径も20mm、但し
その回転数は150rpm、マグネットローラ4の現像
域Aに対向した磁極の磁束密度は1200ガウス、他の
磁石体のN,S磁極の磁束密度は500ガウス、P1,
P2は600ガウス、P1,P2間は300ガウス、現
像剤層の厚さ0.4mm、前記現像スリーブ3と前記感
光体16との間隙0.6mm即ち600μm、現像スリ
ーブ3に印加するバイアス電圧は直流電圧成分−200
V、交流電圧成分2KHz、1000Vとした。この実
施例では前記現像スリーブ3上の現像剤層は前記感光体
16の表面に接触してない。現像溜りにおける前記現像
剤Dのトナー粒子比率がキャリア粒子に対して20wt
%になる条件で現像を行った。トナーの平均帯電量は2
0μC/gであった。
In this case, the conditions of the photoreceptor 16 are the same as in Example 1, the outer diameter of the developing sleeve 3 is also 20 mm, however, its rotation speed is 150 rpm, and the magnetic flux density of the magnetic pole facing the developing area A of the magnetic roller 4 is is 1200 Gauss, the magnetic flux density of the N and S magnetic poles of the other magnets is 500 Gauss, P1,
P2 is 600 Gauss, the distance between P1 and P2 is 300 Gauss, the thickness of the developer layer is 0.4 mm, the gap between the developing sleeve 3 and the photoreceptor 16 is 0.6 mm, that is, 600 μm, and the bias voltage applied to the developing sleeve 3 is DC voltage component -200
V, AC voltage component 2KHz, and 1000V. In this embodiment, the developer layer on the developing sleeve 3 is not in contact with the surface of the photoreceptor 16. The toner particle ratio of the developer D in the developer reservoir is 20wt to carrier particles.
%. The average charge amount of toner is 2
It was 0 μC/g.

【0067】そして、濃度が高い極めて鮮明なものであ
り、引続いて5万枚の記録紙を得たが最初から最後まで
安定して変らない画像を得ることができた。
[0067] The image was very clear and had a high density, and although 50,000 sheets of recording paper were subsequently obtained, it was possible to obtain an image that remained stable and unchanged from beginning to end.

【0068】実施例3 実施例3に用いた前記マグネットローラ4は固定で前記
円柱棒5と前記現像スリーブ3とは0.5mmのギャッ
プを有した非接触タイプとし、前記円柱棒5の直径φは
5mmの磁性ステンレス材、とした以外は実施例2と同
じく設定した。すなわち層形成条件を変えた以外は実施
例2で使用したキャリア試料II及びトナーを用いて調
整した現像剤を実施例2で使用した複写機に装填して複
写試験を行った。得られた記録紙の画像はエッジ効果や
かぶりのない、そして濃度が高いきわめて鮮明なもので
あり実施例2での画像より、解像力が高い点、濃度が高
い点で優れていた。引続いて5万枚の記録紙を得たが最
初から最後まで安定して変らない画像が得られた。
Example 3 The magnetic roller 4 used in Example 3 was a non-contact type in which the cylindrical rod 5 and the developing sleeve 3 were fixed and had a gap of 0.5 mm, and the diameter of the cylindrical rod 5 was φ. The settings were the same as in Example 2 except that the material was a 5 mm magnetic stainless steel material. That is, a developer prepared using the carrier sample II and toner used in Example 2, except that the layer forming conditions were changed, was loaded into the copying machine used in Example 2, and a copying test was conducted. The resulting image on the recording paper was extremely clear with no edge effect or fog, and had a high density, and was superior to the image in Example 2 in terms of higher resolution and higher density. Subsequently, 50,000 sheets of recording paper were obtained, and images remained stable and unchanged from beginning to end.

【0069】[0069]

【発明の効果】本発明の現像スリーブ面上に形成される
反発磁極と曲率を有する現像剤層形成手段(円柱棒)と
によって現像スリーブ面上には均一な現像剤の薄層が形
成され感光体面に良好なトナー画像が現像される。また
、キャリアのコーティング被膜を損うことなくスムーズ
に現像剤が搬送される。
Effects of the Invention: A uniform thin layer of developer is formed on the surface of the developing sleeve by the repelling magnetic pole formed on the surface of the developing sleeve and the developer layer forming means (cylindrical rod) having curvature. A good toner image is developed on the body surface. Further, the developer is transported smoothly without damaging the coating film of the carrier.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明の1実施例による現像剤層形成手段(円柱
棒)と現像スリーブに押接して配置される状態を示す側
面図。図2は本発明の1実施例により現像剤層形成手段
(円柱棒)が現像スリーブに間隙を有して配置される状
態を示す側面図。図3は現像スリーブ面の磁界強度分布
を示す図。図4は本発明の1実施例による現像装置の構
成を示す側断面図。
FIG. 1 is a side view showing a developer layer forming means (cylindrical rod) according to one embodiment of the present invention and a state in which it is placed in pressed contact with a developing sleeve. FIG. 2 is a side view showing a state in which a developer layer forming means (cylindrical rod) is arranged with a gap in a developing sleeve according to an embodiment of the present invention. FIG. 3 is a diagram showing the magnetic field strength distribution on the surface of the developing sleeve. FIG. 4 is a side sectional view showing the configuration of a developing device according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…現像装置                   
     3…現像スリーブ 4…マグネットローラ               
 4a…切欠き溝5…円柱棒(現像剤層形成手段)  
    6…弾性部材15…ホルダ         
                 16…感光体D…
現像剤
1...Developing device
3...Developing sleeve 4...Magnetic roller
4a...Notch groove 5...Cylindrical rod (developer layer forming means)
6...Elastic member 15...Holder
16...Photoreceptor D...
developer

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】磁性キャリアとトナーとからなる2成分現
像剤を用いた画像形成装置の現像装置において、前記現
像剤を磁気的に保持して搬送する現像スリーブ内に同極
磁極を並置して反発磁界を形成すると共に該反発磁界の
形成された該現像スリーブ面と対向し先端部に曲率を有
して現像剤を規制する現像剤層形成手段を設けたことを
特徴とする現像装置。
1. A developing device for an image forming apparatus using a two-component developer consisting of a magnetic carrier and a toner, wherein like magnetic poles are juxtaposed in a developing sleeve that magnetically holds and conveys the developer. A developing device comprising a developer layer forming means that forms a repulsive magnetic field and has a curvature at its tip facing the surface of the developing sleeve on which the repulsive magnetic field is formed to regulate the developer.
【請求項2】請求項1において前記現像層形成手段は前
記現像スリーブ面に押接して設けたことを特徴とする現
像装置。
2. The developing device according to claim 1, wherein the developing layer forming means is provided in pressure contact with the surface of the developing sleeve.
【請求項3】請求項1において前記現像層形成手段は前
記現像スリーブ面に対して0.05〜1.0mmの間隔
を有して設けたことを特徴とする現像装置。
3. The developing device according to claim 1, wherein the developing layer forming means is provided with a distance of 0.05 to 1.0 mm from the surface of the developing sleeve.
【請求項4】請求項1,2,3において前記現像スリー
ブ面上での磁力のピーク間隔をdとしたとき前記現像剤
層形成手段の先端部の直径φは0.5d≦φ≦3dの範
囲に設定したことを特徴とする現像装置。
4. In claims 1, 2, and 3, the diameter φ of the tip of the developer layer forming means satisfies 0.5d≦φ≦3d, where d is the peak interval of the magnetic force on the surface of the developing sleeve. A developing device characterized by being set within a range.
JP3126065A 1991-05-29 1991-05-29 Developing device Pending JPH04350875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3126065A JPH04350875A (en) 1991-05-29 1991-05-29 Developing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3126065A JPH04350875A (en) 1991-05-29 1991-05-29 Developing device

Publications (1)

Publication Number Publication Date
JPH04350875A true JPH04350875A (en) 1992-12-04

Family

ID=14925758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3126065A Pending JPH04350875A (en) 1991-05-29 1991-05-29 Developing device

Country Status (1)

Country Link
JP (1) JPH04350875A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191680A (en) * 2010-03-16 2011-09-29 Fuji Xerox Co Ltd Developing device, image forming apparatus
WO2018079860A1 (en) * 2016-10-28 2018-05-03 キヤノン株式会社 Developing device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011191680A (en) * 2010-03-16 2011-09-29 Fuji Xerox Co Ltd Developing device, image forming apparatus
WO2018079860A1 (en) * 2016-10-28 2018-05-03 キヤノン株式会社 Developing device
US10705452B2 (en) 2016-10-28 2020-07-07 Canon Kabushiki Kaisha Developing device having magnetic flux density distribution

Similar Documents

Publication Publication Date Title
US4841332A (en) Toner control for a developer device
JPH0690543B2 (en) Development method
JPH06100848B2 (en) Development method
JPH0414793B2 (en)
JPH058424B2 (en)
US5554479A (en) Image formation method
JPH047505B2 (en)
JPS59222847A (en) Developing method
JPS60131545A (en) Developing method
JPS58184157A (en) Developing method of electrostatic image
JPH0256670B2 (en)
JPH04350875A (en) Developing device
JPS59222853A (en) Developing method
JPH07140730A (en) High-speed developing method for electrostatic charge image
JPS60131547A (en) Developing method
JPS60123859A (en) Developing method
JPS60131550A (en) Developing method
JP2614817B2 (en) Development method
JPS61166571A (en) Developing device
JP2607405B2 (en) Development method
JPS59222852A (en) Developing method
JPH0685095B2 (en) Development method
JP3103998B2 (en) Developing device
JPH0616185B2 (en) Development method
JPH03233480A (en) Method and device for forming image