JPH058424B2 - - Google Patents

Info

Publication number
JPH058424B2
JPH058424B2 JP58240066A JP24006683A JPH058424B2 JP H058424 B2 JPH058424 B2 JP H058424B2 JP 58240066 A JP58240066 A JP 58240066A JP 24006683 A JP24006683 A JP 24006683A JP H058424 B2 JPH058424 B2 JP H058424B2
Authority
JP
Japan
Prior art keywords
carrier
particles
developer
image
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58240066A
Other languages
Japanese (ja)
Other versions
JPS60131549A (en
Inventor
Satoru Haneda
Hisafumi Shoji
Seiichiro Hiratsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP58240066A priority Critical patent/JPS60131549A/en
Publication of JPS60131549A publication Critical patent/JPS60131549A/en
Publication of JPH058424B2 publication Critical patent/JPH058424B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/06Developing
    • G03G13/08Developing using a solid developer, e.g. powder developer
    • G03G13/09Developing using a solid developer, e.g. powder developer using magnetic brush

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Magnetic Brush Developing In Electrophotography (AREA)
  • Dry Development In Electrophotography (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子写真複写装置等における静電潜
像あるいは磁気潜像の像現像方法の改良に関し、
詳しくは、キヤリヤ粒子とトナー粒子とが混合し
た二成分現像剤を現像剤搬送担体面に供給して、
該現像剤搬送担体上に現像剤層を形成させ、その
現像剤層によつて像担持体面上の静電像あるいは
磁気像を現像する方法の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an improvement in a method for developing an electrostatic latent image or a magnetic latent image in an electrophotographic copying apparatus, etc.
Specifically, a two-component developer containing a mixture of carrier particles and toner particles is supplied to the surface of a developer transport carrier.
The present invention relates to an improvement in a method of forming a developer layer on the developer transporting carrier and developing an electrostatic image or a magnetic image on the surface of the image carrier using the developer layer.

〔従来技術〕[Prior art]

電子写真複写装置等における潜像の現像方法と
しては、現像剤搬送担体面に磁力によつて現像剤
を吸着せしめて形成した磁気ブラシを用いて像担
持体面にトナーを付着せしめるいわゆる磁気ブラ
シ法が広く実用されている。磁気ブラシを用いた
現像法はさらに磁性トナー粒子から成る一成分現
像剤を用いるものと、磁性キヤリヤ粒子とトナー
粒子の混合物から成る二成分現像剤を用いるもの
に分かれるが、二成分現像法はトナー粒子の摩擦
制御が比較的容易である、そしてトナー粒子の凝
集が起りにくい。又磁気ブラシの穂立ちがよい等
多くの長所を有している。
As a method for developing latent images in electrophotographic copying machines and the like, there is a so-called magnetic brush method in which toner is attached to the surface of an image carrier using a magnetic brush formed by adhering developer to the surface of a developer carrying carrier using magnetic force. It is widely used. Development methods using magnetic brushes are further divided into those using a single-component developer consisting of magnetic toner particles and those using a two-component developer consisting of a mixture of magnetic carrier particles and toner particles. Particle friction control is relatively easy, and toner particle aggregation is less likely to occur. It also has many advantages, such as a magnetic brush that stands up well.

磁気ブラシから像担持体面にトナーを付着せし
めるには磁気ブラシで直接像担持面を摺擦する接
触方式と、トナー層と像担持体面とを近接して対
置し、振動電界をかけて現像剤を振動させる等の
手段によりトナーを像担持体側に飛翔せしめるジ
ヤンピング法等と呼ばれる非接触方式がある。後
者は現像条件等に難しい面がある反面、現像され
た画像面に掃目がつかない同一画面を反復現像す
ることができ、多色画像の形成に適する等の利点
がある。
To make the toner adhere to the surface of the image carrier from a magnetic brush, there are two methods: a contact method in which the magnetic brush directly rubs the surface of the image carrier, and a method in which the toner layer and the surface of the image carrier are placed close to each other and a vibrating electric field is applied to apply the developer. There is a non-contact method called a jumping method in which the toner is caused to fly toward the image carrier by means of vibration or the like. Although the latter method has some difficulties in terms of development conditions, it has the advantage that it is possible to repeatedly develop the same screen without streaks on the developed image surface, and is suitable for forming multicolor images.

二成分現像法には、従来一般に平均粒径が数十
〜数百μmの磁性キヤリヤ粒子と平均粒径が十数
μmの非磁性トナー粒子とからなる現像剤が用い
られており、そのような現像剤では、トナー粒子
やさらにはキヤリヤ粒子が粗いために、繊細な線
や点あるいは濃淡差等を再現する高画質画像が得
られにくいと云つた問題がある。そこで、この現
像方法において高画質画像を得るために、従来例
えば、キヤリヤ粒子の樹脂コーテイングとか、現
像剤搬送担体における磁石体の改良とか、現像剤
搬送担体へのバイアス電圧の検討とか、多くの努
力が払われてきたが、そこでも未だ安定して十分
に満足し得る画像が得られないのが実情である。
したがつて、高画質画像を得るためには、トナー
粒子及びキヤリヤ粒子をより微粒子にすることが
必要であると考えられる。しかし、トナー粒子を
平均粒径が20μm以下、特に、10μm以下の微粒
子にすると、 現像時のクーロン力に対してフアンデルワー
ルス力の影響が現われて、像背景の地部分にも
トナー粒子が付着する所謂かぶりが生ずるよう
になり、現像剤搬送担体への直流バイアス電圧
の印加によつてもかぶりを防ぐことが困難とな
る、 トナー粒子の摩擦帯電制御が難しくなつて、
凝集が起り易くなる。
In the two-component development method, a developer consisting of magnetic carrier particles with an average particle size of several tens to hundreds of μm and non-magnetic toner particles with an average particle size of more than ten μm has conventionally been used. Developers have a problem in that because toner particles and even carrier particles are coarse, it is difficult to obtain high-quality images that reproduce delicate lines, dots, differences in shading, and the like. Therefore, in order to obtain high-quality images using this developing method, many efforts have been made in the past, such as coating the carrier particles with resin, improving the magnets in the developer transport carrier, and examining the bias voltage for the developer transport carrier. However, the reality is that stable and fully satisfactory images still cannot be obtained.
Therefore, in order to obtain high quality images, it is considered necessary to make the toner particles and carrier particles even finer. However, when toner particles are made into fine particles with an average particle size of 20 μm or less, especially 10 μm or less, the influence of Van der Waals force appears on the Coulomb force during development, causing toner particles to adhere to the ground area of the image background. This causes so-called fog to occur, and it becomes difficult to prevent fog even by applying a DC bias voltage to the developer transport carrier, and it becomes difficult to control triboelectric charging of toner particles.
Aggregation becomes more likely.

また、キヤリヤ粒子を微粒子化していくと、 キヤリヤ粒子も像担持体の静電像部分に付着
するようになる。この原因としては、磁気バイ
アスの力が低下して、キヤリヤ粒子がトナー粒
子と共に像担持体側に付着したためと考えられ
る。なお、バイアス電圧が大きくなると、像背
景の地部分にもキヤリヤ粒子が付着するように
なる。
Further, as the carrier particles are made finer, the carrier particles also come to adhere to the electrostatic image area of the image carrier. The reason for this is thought to be that the magnetic bias force was reduced and the carrier particles adhered to the image carrier side together with the toner particles. Note that as the bias voltage increases, carrier particles will also adhere to the ground portion of the image background.

微粒子化には、上述のような副作用の方が目立
つて、鮮明な画像が得られないと云う問題がある
ので、そのためにトナー粒子及びキヤリヤ粒子を
微粒子化することは実際に用いるのが困難であつ
た。
The problem with micronization is that the side effects mentioned above are more noticeable and clear images cannot be obtained, so it is difficult to actually use micronization of toner particles and carrier particles. It was hot.

〔発明の目的〕[Purpose of the invention]

本発明の目的は微粒子化したトナー粒子及びキ
ヤリヤ粒子から成る現像剤を用い且つ前記によ
るトラブルに基く画質劣化のない鮮明且つ再現忠
実度の高い画像を得ることのできる現像方法を提
供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a developing method that uses a developer made of finely divided toner particles and carrier particles and that can produce clear images with high reproduction fidelity without deterioration of image quality due to the troubles described above. .

〔発明の構成〕[Structure of the invention]

上記の目的はキヤリヤ粒子とトナー粒子とから
成る二成分現像剤を現像剤搬送担体面上に供給し
て現像剤層を形成させ、該現像剤搬送担体面上の
現像剤層を振動電界下に置き、もつて像担持体面
の潜像を非接触方式で現像する方法において、前
記キヤリヤ粒子が球状粒子で形成され、且つ
104V/cmの電界下で抵抗率が下記の測定条件で
1013Ω・cm以上の絶縁性を保持することを特徴と
する現像方法。
The above purpose is to form a developer layer by supplying a two-component developer consisting of carrier particles and toner particles onto the surface of a developer transport carrier, and to subject the developer layer on the developer transport carrier surface to an oscillating electric field. In the method of developing a latent image on the surface of an image carrier in a non-contact manner, the carrier particles are formed of spherical particles, and
The resistivity under the electric field of 10 4 V/cm is measured under the following measurement conditions.
A developing method characterized by maintaining insulation of 10 13 Ω・cm or more.

測定条件 キヤリヤ粒子を0.50cm2の断面積を有する容器に
入れタツピングした後、詰められた粒子上に1
Kg/cm2の荷重を掛け、荷重と低面電極との間に
102〜5V/cmの電界が生じる電圧を印加した時の
電流値を読み取ることで得る。
Measurement conditions After putting the carrier particles in a container with a cross-sectional area of 0.50 cm 2 and tapping, one
Apply a load of Kg/cm 2 and connect the load to the lower electrode.
Obtained by reading the current value when applying a voltage that generates an electric field of 10 2 to 5 V/cm.

以上のような現像方法によつて達成された。 This was achieved by the development method described above.

即ち、本発明の現像方法は、二成分現像剤のキ
ヤリヤ粒子に高電界下で絶縁性を保持する粒子を
用い、振動電界下で現像を行うようにしたことに
よつて、トラブルなく微粒子化したキヤリヤ粒子
やトナー粒子の使用を可能にしたものである。
That is, the developing method of the present invention uses particles that maintain insulating properties under a high electric field as the carrier particles of the two-component developer, and by performing development under an oscillating electric field, the particles can be reduced to fine particles without any trouble. This allows the use of carrier particles and toner particles.

キヤリヤとして磁性粒子を用いた場合、一般に
磁性キヤリヤ粒子の平均粒径が大きいと、(イ)現像
剤搬送担体上に形成される磁気ブラシの穂の状態
が荒いために、電界により振動を与えながら静電
像を現像を現像しても、トナー像にムラが現われ
易い。(ロ)穂におけるトナー濃度が低くなるので高
濃度の現像が行われない、等の問題が起る。前記
(イ)の問題を解消するには、キヤリヤ粒子の平均粒
径を小さくすればよく、実験の結果、平均粒径
50μm以下でその効果が現われ初め、特に30μm
以下になると、実質的に(イ)の問題が生じなくなる
ことが判明した。また、(ロ)の問題も、(イ)の問題に
対する磁性キヤリヤの微粒子化によつて、穂のト
ナー濃度が高くなり、高濃度の現像が行われるよ
うになつて解消する。しかし、キヤリヤ粒子が細
か過ぎると、(ハ)トナー粒子と共に像担持体面に付
着するようになつたり、(ニ)キヤリヤ粒子が飛散し
易くなつたりする。これらの現像は、キヤリヤ粒
子に作用する磁界の強さ、それによるキヤリヤ粒
子の磁化の強さにも関係するが、一般的には、キ
ヤリヤ粒子の平均粒径が15μm以下になると次第
に傾向が出初め、5μm以下で顕著に現われるよ
うになる。そして、像担持体面に付着したキヤリ
ヤ粒子は、一部はトナーと共に記録紙上に移行
し、残部はブレードやフアーブラシ等によるクリ
ーニング装置によつて残留トナーと共に像担持体
から除かれることになるが、従来の磁性体のみか
ら成るキヤリヤ粒子では、(ホ)記録紙上に移行した
キヤリヤ粒子が、それ自体では記録紙に定着され
ないので、脱落し易いと云う問題があり、また(ヘ)
像担持体面に残つたキヤリヤ粒子がクリーニング
装置によつて除かれる際に、感光体から成る像担
持体面を傷付け易いと云う問題がある。
When using magnetic particles as a carrier, if the average particle size of the magnetic carrier particles is generally large, (a) the ears of the magnetic brush formed on the developer transport carrier are rough, so that the magnetic brush is Even when an electrostatic image is developed, unevenness tends to appear in the toner image. (b) Since the toner concentration in the panicle is low, problems such as high-density development cannot be performed occur. Said
In order to solve problem (a), it is sufficient to reduce the average particle size of the carrier particles, and as a result of experiments, the average particle size
The effect begins to appear below 50μm, especially at 30μm.
It has been found that the problem (a) practically does not occur under the following conditions. In addition, the problem (b) can also be solved by making the magnetic carrier finer particles in response to the problem (a), since the toner concentration in the spike increases and high-density development can be performed. However, if the carrier particles are too fine, (c) they will adhere to the surface of the image carrier together with the toner particles, or (d) the carrier particles will tend to scatter. These developments are also related to the strength of the magnetic field acting on the carrier particles and the resulting magnetization of the carrier particles, but in general, a tendency gradually begins to appear when the average particle size of the carrier particles becomes 15 μm or less. , becomes noticeable below 5 μm. Some of the carrier particles adhering to the surface of the image carrier are transferred onto the recording paper along with the toner, and the remaining part is removed from the image carrier along with the residual toner by a cleaning device such as a blade or fur brush. With the carrier particles made only of magnetic material, there is a problem that (e) the carrier particles transferred onto the recording paper are not fixed to the recording paper by themselves and are likely to fall off, and (f)
There is a problem in that when the carrier particles remaining on the surface of the image carrier are removed by a cleaning device, they tend to damage the surface of the image carrier made of a photoreceptor.

上記のようなキヤリヤの像担持体面への付着に
伴う問題は現像時における振動電界の電界強度を
高めキヤリヤの像担持体面への移行を抑えること
によつて防止し得るが、この際の像担持体と現像
剤搬送担体間の電界強度は極めて高いものとな
る。すなわち現像部には像担持体の表面電圧数百
ボルトに更に数百乃至数キロボルトの振動電圧が
重畳印加されることとなり、像担持体と現像剤搬
送担体との間〓は1乃至2mmであるため(その間
には)104乃至105V/cmの強い電界が生ずること
となる。この様な条件下で現像を行なうためには
高電界内においてもキヤリヤ粒子に電荷注入が行
なわれる事が必要であり、従つて通常の磁気ブラ
シ現像では必要とされなかつた高電界下において
も極めて高い電気抵抗値をもつキヤリヤ粒子が必
要である。
The above problems associated with the adhesion of the carrier to the image bearing surface can be prevented by increasing the electric field strength of the oscillating electric field during development and suppressing the transfer of the carrier to the image bearing surface. The electric field strength between the body and the developer transport carrier becomes extremely high. That is, an oscillating voltage of several hundred to several kilovolts is superimposed on the surface voltage of several hundred volts of the image carrier and is applied to the developing section, and the distance between the image carrier and the developer transport carrier is 1 to 2 mm. Therefore, a strong electric field of 10 4 to 10 5 V/cm is generated. In order to perform development under such conditions, it is necessary to inject charge into the carrier particles even in a high electric field, and therefore, it is necessary to inject charge into the carrier particles even in a high electric field, which is not necessary in ordinary magnetic brush development. Carrier particles with high electrical resistance are required.

本発明者等の検討の結果によれば、振動電界を
充分に与えるためにはキヤリヤ粒子が104V/cm
の電界下において1013Ωcm以上の高抵抗を有する
ことが望ましい。この抵抗率は、粒子を0.50cm2
断面積を有する容器に入れてタツピングした後、
詰められた粒子上に1Kg/cm2の荷重を掛け、荷重
と底面電極との間に102〜5V/cmの電界が生ずる
電圧を印加したときの電流値を読み取ることで得
られる値であり、このときのキヤリヤ粒子の厚さ
は1mm程度である。この抵抗率が低いと、現像剤
搬送担体にバイアス電圧を印加した場合に、キヤ
リヤ粒子に電荷が注入されて、像担持体面にキヤ
リヤ粒子が付着し易くなつたり、あるいはバイア
ス電圧のブレークダウンが起り易くなつたりす
る。
According to the results of studies conducted by the present inventors, in order to provide a sufficient oscillating electric field, the carrier particles must be 10 4 V/cm
It is desirable to have a high resistance of 10 13 Ωcm or more under an electric field of . This resistivity is calculated after the particles are placed in a container with a cross-sectional area of 0.50 cm 2 and tapped.
This value is obtained by applying a load of 1Kg/cm 2 on the packed particles and reading the current value when applying a voltage that generates an electric field of 10 2 to 5 V/cm between the load and the bottom electrode. The thickness of the carrier particles at this time is about 1 mm. If this resistivity is low, when a bias voltage is applied to the developer transport carrier, charge will be injected into the carrier particles, making it easier for the carrier particles to adhere to the surface of the image carrier, or a breakdown of the bias voltage will occur. It gets easier.

また前記のごとき組成のキヤリヤ粒子を用いた
場合においても若干の小粒径キヤリヤ粒子が現像
に際して像担持体面に付着することは免がれない
がこの問題は、磁性キヤリヤ粒子を樹脂等記録紙
に定着し得る物質と共に形成することによつて解
消し得る。即ち、磁性キヤリヤ粒子が記録紙に定
着し得る物質によつて磁性体粒子を被覆すること
により、あるいは磁性粉を分散含有した記録紙に
定着し得る物質によつて形成されていることで、
記録紙に付着したキヤリヤ粒子も熱や圧力で定着
されるようになり、また、クリーニング装置によ
つて像担持体面からキヤリヤ粒子が除かれる際に
も像担持体面を傷付けたりすることが無くなる。
このような磁性キヤリヤ粒子では、キヤリヤ粒子
を平均5〜15μm以下の粒径にして、たとえ、キ
ヤリヤ粒子が像担持体面や記録紙に移行するよう
なことがあつても前記(ハ)の問題は実際上殆んどト
ラブルを生ぜしめない。なお、前記(ハ)のようなキ
ヤリヤ付着が起る場合は、リサイクル機構を設け
ることが有効である。
Furthermore, even when using carrier particles having the above-mentioned composition, it is inevitable that some small-sized carrier particles will adhere to the surface of the image carrier during development. This can be solved by forming it with a fixable substance. That is, the magnetic carrier particles are formed by coating magnetic particles with a substance that can be fixed on recording paper, or by being formed of a substance that can be fixed on recording paper containing dispersed magnetic powder.
The carrier particles attached to the recording paper are also fixed by heat and pressure, and even when the carrier particles are removed from the image carrier surface by the cleaning device, the surface of the image carrier is not damaged.
In such magnetic carrier particles, the average particle size of the carrier particles is 5 to 15 μm or less, and even if the carrier particles migrate to the image bearing surface or the recording paper, the above problem (c) can be avoided. In practice, it hardly causes any trouble. In addition, if carrier adhesion as described in (c) above occurs, it is effective to provide a recycling mechanism.

以上から、磁性キヤリヤの粒径は、平均粒径が
50μm以下、特に好ましくは30μm以下5μm以上
が適正条件であり、また、磁性キヤリヤ粒子が記
録紙に定着し得る物質も含むものであることが好
ましい。尚、平均粒径は重量平均粒径でオムニコ
ンアルフア(ボシユロム社製)、コールターカウ
ンター(コールタ社製)で測定した。
From the above, the average particle size of the magnetic carrier is
A suitable condition is 50 μm or less, particularly preferably 30 μm or less and 5 μm or more, and it is also preferable that the magnetic carrier particles contain a substance that can be fixed on the recording paper. Incidentally, the average particle diameter is a weight average particle diameter and was measured using Omnicon Alpha (manufactured by Boshilom) and Coulter Counter (manufactured by Coulter).

このような磁性キヤリヤ粒子は、磁性体として
従来の磁性キヤリヤ粒子におけると同様の、鉄、
クロム、ニツケル、コバルト等の金属、あるいは
それらの化合物や合金、例えば、四三酸化鉄、γ
−酸化第二鉄、二酸化クロム、酸化マンガン、フ
エライト、マンガン−銅系合金と云つた強磁性体
乃至は常磁性体の粒子、又はそれら磁性体粒子の
表面をスチレン系樹脂、ビニル系樹脂、エチル系
樹脂、ロジン変性樹脂、アクリル系樹脂、ポリア
ミド樹脂、エポキシ樹脂、ポリエステル樹脂等の
樹脂やパルミチン酸、ステアリン酸等の脂肪酸ワ
ツクスで被覆するか、あるいは、磁性体微粒子を
分散して含有した樹脂や脂肪酸ワツクスを作るか
して得られた粒子を従来公知の平均粒径別手段で
粒径選別することによつて得られる。
Such magnetic carrier particles may contain iron, iron, similar to conventional magnetic carrier particles as magnetic materials.
Metals such as chromium, nickel, and cobalt, or their compounds and alloys, such as triiron tetroxide, γ
- Ferric oxide, chromium dioxide, manganese oxide, ferrite, manganese - Particles of ferromagnetic or paramagnetic substances such as copper alloys, or the surface of these magnetic particles with styrene resin, vinyl resin, ethyl coated with resin such as rosin-modified resin, acrylic resin, polyamide resin, epoxy resin, polyester resin, or fatty acid wax such as palmitic acid or stearic acid, or resin containing dispersed magnetic particles. It can be obtained by making particles of fatty acid wax and sorting the particle size using a conventionally known mean particle size classification method.

また本発明の方法に用いられるキヤリヤは公知
の方法によつて球形化することが好ましい。
The carrier used in the method of the invention is also preferably spheroidized by known methods.

キヤリヤ粒子を球状に形成することは、流動性
の向上の効果の他に、現像剤搬送担体に形成され
る現像剤層が均一となり、また現像剤搬送担体に
高いバイアス電圧を印加することが可能となると
云う効果も与える。即ち、キヤリヤ粒子が樹脂等
によつて球形化されていることは、 (1) 一般に、キヤリヤ粒子は長軸方向に磁化吸着
され易いが、球形化によつてその方向性が無く
なり、したがつて、現像剤層が均一に形成さ
れ、局所的に抵抗の低い領域や層厚のムラの発
生を防止する。
Forming the carrier particles into a spherical shape not only improves fluidity, but also makes the developer layer formed on the developer transport carrier uniform, and also makes it possible to apply a high bias voltage to the developer transport carrier. It also gives the effect of saying. That is, the carrier particles are made spherical by resin or the like because (1) Generally, carrier particles tend to be magnetized and attracted in the long axis direction, but by sphericalization, this directionality is lost; , the developer layer is formed uniformly, and local regions of low resistance and uneven layer thickness are prevented from occurring.

(2) キヤリヤ粒子の高抵抗化と共に、従来のキヤ
リヤ粒子に見られるようなエツジ部が無くなつ
て、エツジ部への電界の集中が起らなくなり、
その結果、現像剤搬送担体に高いバイアス電圧
を印加しても、像担持体面に放電して静電潜像
を乱したり、バイアス電圧がブレークダウンし
たりすることが起らない。
(2) As the resistance of the carrier particles increases, the edge portions seen in conventional carrier particles disappear, and the electric field no longer concentrates on the edge portions.
As a result, even if a high bias voltage is applied to the developer transport carrier, the electrostatic latent image will not be disturbed due to discharge on the surface of the image carrier, and the bias voltage will not break down.

と云う効果を与える。この高いバイアス電圧を印
加できるということは、本発明における振動電界
下での現像が振動するバイアス電圧の印加によつ
て行われるものである場合に、それによる後述す
る効果を十分に発揮させることができると云うこ
とである。
It gives the effect of. The fact that this high bias voltage can be applied means that when development under an oscillating electric field in the present invention is performed by applying an oscillating bias voltage, the effects described below can be fully exhibited. That means it can be done.

以上を総合すれば、本発明に用いられるキヤリ
ヤ粒子は、抵抗率が104V/cmの電界下でも1013Ω
cm以上であることが好ましく、このようなキヤリ
ヤ粒子は、磁性キヤリヤ粒子の場合は、高抵抗化
された球状の磁性粒子や樹脂被覆キヤリヤでは、
磁性体粒子にできるだけ球形のものを選んでそれ
に樹脂の被覆処理を施すこと、磁性体微粒子分散
系のキヤリヤでは、できるだけ磁性体の微粒子を
用いて、分散樹脂粒子形成後に球形化処理を施す
こと、あるいはスプレードライの方法によつて分
散樹脂粒子を得ること等によつて製造することが
できる。
Taken together, the carrier particles used in the present invention have a resistivity of 10 13 Ω even under an electric field of 10 4 V/cm.
cm or more, and in the case of magnetic carrier particles, such carrier particles are spherical magnetic particles with high resistance or resin-coated carrier particles,
Select magnetic particles that are as spherical as possible and apply a resin coating treatment to them; In a carrier of a magnetic fine particle dispersion system, use magnetic fine particles as much as possible and perform a spheroidization treatment after forming the dispersed resin particles; Alternatively, it can be manufactured by obtaining dispersed resin particles by a spray drying method.

次にトナーについて述べると、一般にトナー粒
子の平均粒径が小さくなると、定性的に粒径の二
乗に比例して帯電量が減少し、相対的にフアンデ
ルワールス力のような付着力が大きくなつて、ト
ナー粒子がキヤリヤ粒子から離れにくくなつた
り、またトナー粒子が一旦像担持体面の非画像部
に付着すると、それが従来の磁気ブラシによる摺
擦では容易に除去されずにかぶりを生ぜしめるよ
うになる。従来の磁気ブラシ現像方法では、トナ
ー粒子の平均粒径が10μm以下になると、このよ
うな問題が顕著になつた。この点を本発明の現像
方法は、現像剤層、所謂磁気ブラシによる現像を
振動電界下で行うようにしたことで解消するよう
にしている。即ち、現像剤層に付着しているトナ
ー粒子は、電気的に与えられる振動によつて現像
剤層から離れ、像担持体面の画像部及び非画像部
に移行し易く、かつ、離れ易くなる。そして、現
像剤層で像担持体面を摺擦するようにした場合
は、像担持体の非画像部に付着したトナー粒子は
容易に除去乃至画像部に移動させられるようにな
る。そして現像剤層厚を像担持体面と現像剤搬送
担体面の間〓より薄く形成した場合は、帯電量の
低いトナー粒子が画像部や非画像部に移行するこ
とが殆んどなくなり、また、像担持体面と擦られ
ることがないために摩擦帯電により像担持体に付
着することもなくなつて、1μm程度のトナー粒
径のものまで用いられるようになる。したがつ
て、静電潜像を忠実に現像した再現性のよい鮮明
なトナー像を得ることができる。さらに、振動電
界はトナー粒子とキヤリヤ粒子の結合を弱めるの
で、トナー粒子に伴うキヤリヤ粒子の像担持体面
への付着も減少する。特に、現像剤層の厚さを像
担持体面と現像剤搬送担体面の間〓よりも薄くし
た場合は、画像部及び非画像部領域において、大
きな帯電量を持つトナー粒子が振動電界下で振動
し、電界の強さによつてはキヤリヤ粒子も振動す
ることにより、トナー粒子が選択的に像担持体面
の画像部に移行するようになるから、キヤリヤ粒
子の像担持体面への付着は大幅に軽減される。電
界により、非画像部領域のトナー粒子は非画像部
へ到達する場合も到達しない場合もある。キヤリ
ヤについても同様である。
Next, regarding toner, as the average particle size of toner particles becomes smaller, the amount of charge qualitatively decreases in proportion to the square of the particle size, and the adhesion force such as van der Waals force becomes relatively large. Therefore, it becomes difficult for the toner particles to separate from the carrier particles, and once the toner particles adhere to the non-image area of the image carrier surface, they cannot be easily removed by rubbing with a conventional magnetic brush, causing fogging. become. In the conventional magnetic brush development method, such problems become noticeable when the average particle size of toner particles becomes 10 μm or less. The developing method of the present invention solves this problem by performing development using a developer layer, a so-called magnetic brush, under an oscillating electric field. That is, the toner particles adhering to the developer layer are easily separated from the developer layer by the electrically applied vibrations, and are easily transferred to and separated from the image area and non-image area on the surface of the image carrier. When the surface of the image carrier is rubbed with the developer layer, toner particles attached to the non-image area of the image carrier can be easily removed or moved to the image area. If the thickness of the developer layer is made thinner than that between the image carrier surface and the developer transport carrier surface, toner particles with a low charge amount will hardly migrate to the image area or non-image area, and Since there is no friction with the surface of the image carrier, there is no possibility of adhesion to the image carrier due to frictional charging, and toner particles having a particle size of about 1 μm can now be used. Therefore, it is possible to obtain a clear toner image with good reproducibility in which the electrostatic latent image is faithfully developed. Furthermore, since the oscillating electric field weakens the bond between the toner particles and the carrier particles, the adhesion of the carrier particles associated with the toner particles to the image carrier surface is also reduced. In particular, when the thickness of the developer layer is made thinner than the thickness between the image carrier surface and the developer transport carrier surface, toner particles with a large amount of charge vibrate under the oscillating electric field in the image area and non-image area. However, depending on the strength of the electric field, the carrier particles also vibrate, and the toner particles selectively migrate to the image area on the image carrier surface, so that the adhesion of the carrier particles to the image carrier surface is greatly reduced. Reduced. Depending on the electric field, toner particles in the non-image area may or may not reach the non-image area. The same applies to carriers.

一方、トナーの平均粒径が大きくなると、先に
も述べたように画像の荒れが目立つようになる。
通常、10本/mm程度のピツチで並んだ細線の解像
力ある現像には、平均粒径20μm程度のトナーで
も実用上は問題ないが、しかし、平均粒径10μm
以下の微粒子化したトナーを用いると、解像力は
格段に向上して、濃淡差等も忠実に再現した鮮明
な高画質画像を与えるようになる。以上の理由か
らトナーの粒径は平均粒径が20μm以下、好まし
くは10μm以下が適正条件である。また、トナー
粒子が電界に追随するために、トナー粒子の平均
帯電量が1〜3μC/gより大きいこと(好ましく
は3〜300μC/g)が望ましい。特に粒径の小さ
い場合は高い帯電量が必要である。
On the other hand, as the average particle size of the toner increases, as described above, the roughness of the image becomes noticeable.
Normally, toner with an average particle size of about 20 μm is not a problem in practice for developing fine lines arranged at a pitch of about 10 lines/mm with high resolution.
When the following micronized toner is used, the resolving power is significantly improved, and it becomes possible to provide clear, high-quality images that faithfully reproduce gradation differences, etc. For the above reasons, the appropriate particle size of the toner is an average particle size of 20 μm or less, preferably 10 μm or less. Further, in order for the toner particles to follow the electric field, it is desirable that the average charge amount of the toner particles be greater than 1 to 3 μC/g (preferably 3 to 300 μC/g). Particularly when the particle size is small, a high amount of charge is required.

そして、このようなトナーは、従来のトナーと
同様の方法で得られる。即ち、従来のトナーにお
ける球形や不定形の非磁性または磁性のトナー粒
子を平均粒径別手段によつて選別したようなトナ
ーを用いることができる。中でも、トナー粒子が
磁性体粒子を含有した磁性粒子であることは好ま
しく、特に磁性体微粒子の量が60重量%を超えな
いものが好ましい。トナー粒子が磁性粒子を含有
したものである場合は、トナー粒子が現像剤搬送
担体に含まれる磁石の磁力の影響を受けるように
なるから、磁気ブラシの均一形成性が一層向上し
て、しかも、かぶりの発生が防止され、さらにト
ナー粒子の飛散も起りにくくなる。しかし、含有
する磁性体の量を多くし過ぎると、キヤリヤ粒子
との間の磁気力が大きくなり過ぎて、十分な現像
濃度を得ることができなくなるし、また、磁性体
微粒子がトナー粒子の表面に現われるようにもな
つて、摩擦帯電制御が難しくなつたり、トナー粒
子が破損し易くなつたり、キヤリヤ粒子との間で
凝集し易くなつたりする。特にカラートナーを用
いる場合、磁性体量は30重量%以下にしないと鮮
明な色が得られない。
Such toner can be obtained in the same manner as conventional toner. That is, it is possible to use a toner in which spherical or amorphous non-magnetic or magnetic toner particles in conventional toners are sorted by means of determining average particle size. Among these, it is preferable that the toner particles are magnetic particles containing magnetic particles, and it is particularly preferable that the amount of magnetic fine particles does not exceed 60% by weight. When the toner particles contain magnetic particles, the toner particles are influenced by the magnetic force of the magnet included in the developer transport carrier, so that the uniform formation of the magnetic brush is further improved. The occurrence of fogging is prevented, and furthermore, scattering of toner particles becomes less likely to occur. However, if the amount of magnetic material contained is too large, the magnetic force between the carrier particles and the carrier particles becomes too large, making it impossible to obtain a sufficient developing density. As a result, frictional charging control becomes difficult, toner particles are more likely to be damaged, and toner particles are more likely to aggregate with carrier particles. In particular, when using color toner, the amount of magnetic material must be 30% by weight or less to obtain clear colors.

以上を纏めると、本発明の現像方法において好
ましいトナーは、キヤリヤについて述べたような
樹脂及びさらには磁性体の微粒子を用い、それに
カーボン等の着色成分や必要に応じて帯電制御剤
等を加えて、従来公知のトナー粒子製造方法と同
様の方法によつて作ることができる平均粒径が
20μm以下、特に好まくは10μm以下の粒子から
成るものである。さらにトナーの球形化は流動性
の向上、現像剤の撹拌、搬送、帯電に好ましい結
果をもたらす。
To summarize the above, the preferred toner in the developing method of the present invention uses a resin as described for the carrier and furthermore fine particles of magnetic material, and a coloring component such as carbon and a charge control agent, etc. are added thereto as necessary. , the average particle size that can be produced by a method similar to the conventionally known toner particle production method is
It consists of particles of 20 μm or less, particularly preferably 10 μm or less. Furthermore, spheroidizing the toner brings about improved fluidity and favorable results in stirring, transporting, and charging the developer.

本発明の現像方法においては、以上述べたよう
なキヤリヤ粒子とトナー粒子とが、従来の二成分
現像剤におけると同様の割合で混合した現像剤が
好ましく用いられるが、より高いトナー濃度にも
適用しうる。これにはまた、必要に応じて粒子の
流動滑りをよくするための流動化剤や、像担持体
面の清浄化に役立つクリーニング剤等が混合され
る。流動化剤としては、コロイダルシリカ、シリ
コンワニス、金属石鹸あるいは非イオン表面活性
剤等を用いることができ、クリーニング剤として
は、脂肪酸金属塩、有機基置換シリコンあるいは
弗素等表面活性剤等を用いることができる。
In the developing method of the present invention, a developer in which carrier particles and toner particles as described above are mixed in the same ratio as in a conventional two-component developer is preferably used, but it is also applicable to higher toner concentrations. I can do it. If necessary, a fluidizing agent for improving the fluidity and sliding of the particles, a cleaning agent for cleaning the surface of the image bearing member, and the like are mixed. As the fluidizing agent, colloidal silica, silicone varnish, metal soap, or nonionic surfactant can be used, and as the cleaning agent, fatty acid metal salt, organic group-substituted silicone, fluorine, etc. can be used as a surfactant. I can do it.

以上が現像剤についての条件であり、次に、こ
のような現像剤で現像剤層を形成して像担持体上
の静電像を現像する現像剤搬送担体に関する条件
について述べる。
The above are the conditions for the developer, and next, the conditions for the developer transport carrier that forms a developer layer with such developer to develop the electrostatic image on the image carrier will be described.

現像剤搬送担体には、バイアス電圧を印加し得
る従来の現像方法におけると同様の現像剤搬送担
体が用いられるが、特に、表面に現像剤層が形成
されるスリーブの内部に複数の磁極を有する回転
磁石体が設けられている構造のものが好ましく用
いられる。このような現像剤搬送担体において
は、回転磁石体の回転によつて、スリーブの表面
に形成される現像剤層が波状に起伏して移動する
ようになるから、新しい現像剤が次々と供給さ
れ、スリーブ表面の現像剤層に多少の層厚の不均
一があつても、その影響は上記波状の起伏によつ
て実際上問題とならないように十分カバーされ
る。そして、回転磁石体の回転あるいはさらにス
リーブの回転による現像剤の搬送速度は、像担持
体の移動速度と殆んど同じか、それよりも早いこ
とが好ましい。また、回転磁石体の回転とスリー
ブの回転による搬送方向は、同方向が好ましい。
同方向の方が反対方向の場合よりも画像再現性に
優れている。しかし、それらに限定されるもので
はない。
A developer transport carrier similar to that used in conventional development methods to which a bias voltage can be applied is used as the developer transport carrier, but in particular, a developer transport carrier having a plurality of magnetic poles inside a sleeve on which a developer layer is formed on the surface. A structure in which a rotating magnet is provided is preferably used. In such a developer transport carrier, the developer layer formed on the surface of the sleeve moves in an undulating manner due to the rotation of the rotating magnet, so new developer is continuously supplied. Even if there is some degree of non-uniformity in the thickness of the developer layer on the surface of the sleeve, the above-mentioned wave-like undulations sufficiently cover the effect so that it does not become a problem in practice. It is preferable that the developer conveying speed due to the rotation of the rotating magnet or the rotation of the sleeve is almost the same as or faster than the moving speed of the image carrier. Further, it is preferable that the rotation of the rotating magnet and the rotation of the sleeve are carried in the same direction.
Image reproducibility is better in the same direction than in the opposite direction. However, it is not limited to these.

また、現像剤搬送担体上に形成する現像剤層の
厚さは、付着した現像剤が厚さの規制ブレードに
よつて十分に掻き落されて均一な層となる厚さで
あることが好ましく、そして、現像剤搬送担体と
像担持体との間〓は数10〜2000μmが好ましい。
Further, the thickness of the developer layer formed on the developer transport carrier is preferably such that the adhered developer is sufficiently scraped off by a thickness regulating blade to form a uniform layer. The distance between the developer transport carrier and the image carrier is preferably several 10 to 2000 μm.

現像剤搬送担体と像担持体の表面間〓が数10μ
mよりも狭くなり過ぎると、それに対して均一に
現像作用する磁気ブラシの穂を形成するのが困難
となり、また、十分なトナー粒子を現像部に供給
することもできなくなつて、安定した現像が行わ
れなくなるし、間〓が2000μmを大きく超すよう
になると、対向電極効果が低下して十分な現像濃
度が得られないようになる。このように、現像剤
搬送担体と像担持体の間〓が極端になると、それ
に対して現像剤搬送担体上の現像剤層の厚さを適
当にすることができなくなるが、間〓が数10〜
2000μmの範囲では、それに対して現像剤層を厚
さを適当に形成することができる。そこで、間〓
と現像剤層の厚さを振動電界を与えていない状態
の下で磁気ブラシの穂が像担持体の表面に接触せ
ず、しかもできるだけ近接するような条件に設定
することが特に好ましい。それは、潜像のトナー
現像に磁気ブラシの摺擦による掃き目が生じた
り、またかぶりが生じたりすることが防止される
からである。
The distance between the surfaces of the developer transport carrier and the image carrier is several tens of microns.
If the width is too narrow than m, it will be difficult to form magnetic brush ears that will uniformly develop the area, and it will also be impossible to supply sufficient toner particles to the developing section, resulting in stable development. If the distance is significantly greater than 2000 .mu.m, the opposing electrode effect will deteriorate and a sufficient developed density will not be obtained. In this way, when the distance between the developer transport carrier and the image carrier becomes extreme, it becomes impossible to make the thickness of the developer layer on the developer transport carrier appropriate; ~
In the range of 2000 μm, the developer layer can be formed with an appropriate thickness. So, between
It is particularly preferable to set the thickness of the developer layer to such a condition that the ears of the magnetic brush do not come into contact with the surface of the image carrier and are as close as possible to the surface of the image carrier under the condition that no oscillating electric field is applied. This is because the toner development of the latent image is prevented from having scratches or fog caused by the rubbing of the magnetic brush.

さらに、振動電界下での現像は、現像剤搬送担
体のスリーブに振動するバイアス電圧を印加する
ことによるのが好ましい。また、バイアス電圧に
は非画像部分へのトナー粒子の付着を防止する直
流電圧とトナー粒子をキヤリヤ粒子から離れ易く
するための交流電圧との重畳した電圧を用いるこ
とが好ましい。しかし本発明は、スリーブへの振
動電圧の印加による方法や直流と交流の重畳電圧
印加による方法に限られるものではない。
Further, development under an oscillating electric field is preferably carried out by applying an oscillating bias voltage to the sleeve of the developer transport carrier. Further, it is preferable to use a bias voltage that is a combination of a direct current voltage that prevents toner particles from adhering to non-image areas and an alternating current voltage that makes it easier for the toner particles to separate from the carrier particles. However, the present invention is not limited to the method of applying an oscillating voltage to the sleeve or the method of applying a superimposed voltage of DC and AC.

以上述べたような本発明の現像方法は、第1
図、第2図、第3図に例示したような装置によつ
て実施される。
The developing method of the present invention as described above includes the first
This is carried out by an apparatus such as that illustrated in FIGS. 2 and 3.

第1図乃至第3図において、1は矢印方向に回
転し、図示せざる帯電露光送致によつて表面に静
電像を形成されるSe、ZnO、CdS、無定形シリコ
ン、有機光導電体等の感光体よりなるドラム状の
像担持体、2はアルミニウム等の非磁性材料から
なるスリーブ、3はスリーブ2の内部に設けられ
て表面に複数のN,S磁極を周方向に有する磁石
体で、このスリーブ2と磁石体3とで現像剤搬送
担体を構成している。そして、スリーブ2と磁石
体3とは相対回転可能であり、第1図及び第2図
はスリーブ2が矢印方向に回転するものであるこ
とを示している。また、磁石体3のN,S磁極は
通常500〜1500ガウスの磁束密度に磁化されてお
り、その磁力によつてスリーブ2の表面に先に述
べたような現像剤Dの層即ち、磁気ブラシを形成
する。4は磁気ブラシの高さ、量を規制する磁性
や非磁性体からなる規制ブレード、5は現像域A
を通過した磁気ブラシをスリーブ2上から除去す
るクリーニングブレードである。スリーブ2の表
面は現像剤溜り6において現像剤Dと接触するか
らそれによつて現像剤Dの供給が行われることに
なり、7は現像剤溜り6の現像剤Dを撹拌して成
分を均一にする撹拌スクリユーである。現像剤溜
り6の現像剤Dは現像が行われるとその中のトナ
ー粒子が消耗されるようになるから、8は先に述
べたようなトナー粒子Tを補給するためのトナー
ホツパー、9は現像剤溜り6にトナー粒子Tを落
す表面に凹部を有する供給ローラである。10は
保護抵抗11を介してスリーブ2にバイアス電圧
を印加するバイアス電源である。
In FIGS. 1 to 3, reference numeral 1 rotates in the direction of the arrow, and an electrostatic image is formed on the surface of Se, ZnO, CdS, amorphous silicon, organic photoconductor, etc. by charging exposure and sending (not shown). 2 is a sleeve made of a non-magnetic material such as aluminum, and 3 is a magnet body provided inside the sleeve 2 and having a plurality of N and S magnetic poles on the surface in the circumferential direction. , this sleeve 2 and the magnet body 3 constitute a developer transport carrier. The sleeve 2 and the magnet body 3 can rotate relative to each other, and FIGS. 1 and 2 show that the sleeve 2 rotates in the direction of the arrow. Further, the N and S magnetic poles of the magnet body 3 are normally magnetized to a magnetic flux density of 500 to 1500 Gauss, and the magnetic force causes a layer of the developer D as described above, that is, a magnetic brush, to be formed on the surface of the sleeve 2. form. 4 is a regulating blade made of magnetic or non-magnetic material that regulates the height and amount of the magnetic brush; 5 is a developing area A;
This is a cleaning blade that removes the magnetic brush that has passed through the sleeve 2 from above. The surface of the sleeve 2 comes into contact with the developer D in the developer reservoir 6, thereby supplying the developer D, and 7 stirs the developer D in the developer reservoir 6 to make the components uniform. This is a stirring screw. Since the toner particles in the developer D in the developer reservoir 6 are consumed when development is performed, 8 is a toner hopper for replenishing the toner particles T as described above, and 9 is a developer. This is a supply roller having a concave portion on its surface that drops toner particles T into a reservoir 6. A bias power supply 10 applies a bias voltage to the sleeve 2 via a protective resistor 11.

このような第1図、第2図、第3図の装置の相
違は、第1図の装置においては、スリーブ2が矢
印方向に回転し、磁石体3がそれと反対の矢印方
向に回転して、そのN,S磁極の磁束密度が略等
しいものであるのに対して、第2図の装置におい
ては、スリーブ2は矢印方向に回転するが、磁石
体3は固定であり、第3図の装置においては、固
定の磁石体3のN,S磁極の磁束密度が同じでは
なく、像担持体1に対向したN磁極の磁束密度が
他のN,S磁極の磁束密度よりも大であることで
ある。なお、像担持体1に対向した極としては、
第3図示のようにN磁極を並べて対向させてもよ
いし、N,S磁極を並べて対向させてもよいこと
は勿論である。このように複数個の磁極を対向さ
せることによつて、単極を対向させた場合よりも
現像が安定すると云う効果が得られる。
The difference between the devices shown in FIGS. 1, 2, and 3 is that in the device shown in FIG. 1, the sleeve 2 rotates in the direction of the arrow, and the magnet body 3 rotates in the opposite direction of the arrow. , the magnetic flux densities of the N and S magnetic poles are approximately equal, whereas in the device shown in FIG. 2, the sleeve 2 rotates in the direction of the arrow, but the magnet body 3 is fixed, and the In the apparatus, the magnetic flux densities of the N and S magnetic poles of the fixed magnet body 3 are not the same, and the magnetic flux density of the N magnetic pole facing the image carrier 1 is larger than the magnetic flux density of the other N and S magnetic poles. It is. Note that the pole facing the image carrier 1 is as follows:
Of course, the N magnetic poles may be arranged side by side and facing each other as shown in the third figure, or the N and S magnetic poles may be arranged side by side and opposed to each other. By arranging a plurality of magnetic poles to face each other in this manner, it is possible to obtain the effect that development is more stable than when a single pole is posed to face each other.

以上のような装置において、スリーブ2を像担
持体1に対して表面間〓が数10〜2000μmの範囲
にあるように設定して、像担持体1の静電像の現
像を行うと、スリーブ2の表面に形成された磁気
ブラシは、スリーブ2あるいは磁石体3の回転に
伴つてその表面の磁束密度が変化するから、振動
しながらスリーブ2上を移動するようになり、そ
れによつて像担持体1との間〓を安定して円滑に
通過し、その際像担持体1の表面に対し、均一な
現像効果を与えることによつて、安定して高いト
ナー濃度の現像を可能にする。それにより、かぶ
りの発生を防ぐため及び現像効果を向上させるた
めに、スリーブ2にバイアス電源10によつて振
動する交流成分を有したバイアス電圧が接地した
像担持体1の基体1aとの間に印加されている。
このバイアス電圧には、先にも述べたように、好
ましい直流電圧と交流電圧の重畳電圧が用いら
れ、直流成分がかぶりの発生を防止し、交流成分
が磁気ブラシに振動を与えて現像効果を向上す
る。なお、通常直流電圧成分には非画部電位と略
等しいか、それよりも高い50〜600Vの電圧が用
いられ、交流電圧成分には100Hz〜10kHz、好ま
しくは1〜5kHzの周波数が用いられる。また交
流電圧成分の波形は正弦波に限らず矩形波や三角
波であつてもよい。なお、直流電圧成分は、トナ
ー粒子が磁性体を含有している場合は、非画部電
位よりも低くてもよい。交流電圧成分の周波数が
低過ぎると、振動を与える効果が得られなくな
り、高過ぎても電界の振動に現像剤が追従できな
くなつて、現像濃度が低下し、鮮明な高画質画像
が得られなくなると云う傾向が現われる。また、
交流電圧成分の電圧値は、周波数も関係するが、
高い程磁気ブラシを振動させるようになつてそれ
だけ効果を増すことになるが、その反面高い程か
ぶりを生じ易くし、落雷現象のような絶縁破壊も
起り易くする。しかし、現像剤Dのキヤリヤ粒子
が樹脂等によつて絶縁化かつ球形化されているこ
とが絶縁破壊を防止するし、かぶりの発生も直流
電圧成分で防止し得る。なお、この交流電圧を印
加するスリーブ2を表面を樹脂や酸化被膜によつ
て絶縁乃至は半絶縁被覆するようにしてもよい。
In the apparatus described above, when the sleeve 2 is set so that the distance between the surfaces of the image carrier 1 is in the range of several tens to 2000 μm, and the electrostatic image on the image carrier 1 is developed, the sleeve 2 The magnetic brush formed on the surface of the sleeve 2 changes its magnetic flux density as the sleeve 2 or the magnet 3 rotates, so the magnetic brush moves on the sleeve 2 while vibrating. By stably and smoothly passing between the toner and the image carrier 1 and imparting a uniform developing effect to the surface of the image carrier 1, stable development with a high toner density is possible. Thereby, in order to prevent the occurrence of fog and to improve the developing effect, a bias voltage having an oscillating AC component is applied to the sleeve 2 by the bias power supply 10 between the base body 1a of the grounded image carrier 1 and the sleeve 2. is being applied.
As mentioned earlier, this bias voltage uses a preferable superimposed voltage of DC voltage and AC voltage.The DC component prevents fogging, and the AC component vibrates the magnetic brush to improve the developing effect. improves. Note that a voltage of 50 to 600 V, which is approximately equal to or higher than the non-image area potential, is normally used for the DC voltage component, and a frequency of 100 Hz to 10 kHz, preferably 1 to 5 kHz, is used for the AC voltage component. Further, the waveform of the AC voltage component is not limited to a sine wave, but may be a rectangular wave or a triangular wave. Note that the DC voltage component may be lower than the non-image area potential when the toner particles contain a magnetic material. If the frequency of the AC voltage component is too low, the effect of imparting vibration cannot be obtained, and if it is too high, the developer will not be able to follow the vibrations of the electric field, resulting in a decrease in developer density and the ability to obtain clear, high-quality images. There is a tendency to disappear. Also,
The voltage value of the AC voltage component is also related to the frequency, but
The higher the height, the more the magnetic brush is vibrated, which increases the effect accordingly, but on the other hand, the higher it is, the more likely it is that fogging will occur, and the more likely it is that dielectric breakdown such as that caused by lightning strikes will occur. However, the fact that the carrier particles of the developer D are insulated and spherical by resin or the like prevents dielectric breakdown, and the occurrence of fog can also be prevented by using the DC voltage component. Note that the surface of the sleeve 2 to which this AC voltage is applied may be coated with an insulating or semi-insulating coating with a resin or an oxide film.

以上、第1図、第2図、第3図は現像剤搬送担
体に振動するバイアス電圧を印加する例を示して
いるが、本発明の現像方法はそれに限らず、例え
ば現像剤搬送担体と像担持体間の現像領域周辺に
電極ワイヤを数本張設して、それに振動する電圧
を印加するようにしても磁気ブラシに振動を与え
て現像効果を向上させることはできる。その場合
も、現像剤搬送担体には直流バイアス電圧を印加
し、あるいは、異なつた振動数の振動電圧を印加
するようにしてもよい。た、本発明の方法は反転
現像などにも同様に適用できる。その場合、直流
電圧成分は像担持体の非画像背景部における受容
電位と略等しい電圧に設定される。さらに、本発
明の方法は絶縁層を有する感光体の現像や磁気潜
像の現像にも同様に適用することができ、また本
件出願人が先に特願昭58−184381号、同58−
183152号、58−187000号、同58−187001号に記載
したような像担持体を繰返し現像し複数のトナー
を重ね合せるカラー像を形成する方式にも適用す
ることができる。
Although FIGS. 1, 2, and 3 have shown examples in which a vibrating bias voltage is applied to the developer transport carrier, the developing method of the present invention is not limited thereto. The developing effect can also be improved by applying vibration to the magnetic brush by extending several electrode wires around the developing area between the carriers and applying an oscillating voltage to them. In that case as well, a DC bias voltage may be applied to the developer transport carrier, or oscillating voltages of different frequencies may be applied. Furthermore, the method of the present invention can be similarly applied to reversal development and the like. In that case, the DC voltage component is set to a voltage approximately equal to the reception potential in the non-image background portion of the image carrier. Furthermore, the method of the present invention can be similarly applied to the development of a photoreceptor having an insulating layer and the development of a magnetic latent image.
It can also be applied to methods of forming a color image by repeatedly developing an image carrier and superimposing a plurality of toners as described in No. 183152, No. 58-187000, and No. 58-187001.

以下、実施例によつて具体的に説明する。 The present invention will be specifically explained below using examples.

実施例 1 温度50℃に設定した流動化ベツト上に置いた平
均粒径約5μmの球状フエライト粒子にスチレン
−アクリル樹脂のメチルエチルケトン4%溶液を
スプレー塗布し樹脂コーテイングキヤリヤを作成
した。
Example 1 A resin coating carrier was prepared by spraying a 4% solution of styrene-acrylic resin in methyl ethyl ketone onto spherical ferrite particles having an average particle diameter of about 5 μm placed on a fluidizing bed set at a temperature of 50°C.

樹脂塗布量を下記のように変化させ試料乃至
の4種の試料を得た(数字はフエライト1Kg当
りの樹脂g数)。
Four types of samples were obtained by changing the amount of resin applied as shown below (the numbers are the number of grams of resin per 1 kg of ferrite).

試料 40 試料 30 試料 20 試料 10 各試料について、前記の条件で抵抗率を測定し
第4図のような印加電圧と抵抗率の関係曲線を得
た。試料,は104V/cmの電界下でも1014Ωcm
以上の抵抗率を保持しているのに対し試料は
103V/cmの電界下では1014Ωcm以上の抵抗率を有
するにも拘らず104V/cmの電界下では1013Ωcmま
で低下し、試料は103V/cmにおいてすでに
1014Ωcmを若干下廻り、104V/cmの電界下では
1012Ωcm以下である。
Sample 40 Sample 30 Sample 20 Sample 10 The resistivity of each sample was measured under the conditions described above, and a relationship curve between applied voltage and resistivity as shown in FIG. 4 was obtained. The sample has a resistance of 10 14 Ωcm even under an electric field of 10 4 V/cm.
While the sample maintains a resistivity of
Although it has a resistivity of more than 10 14 Ωcm under an electric field of 10 3 V/cm, it decreases to 10 13 Ωcm under an electric field of 10 4 V/cm, and the resistivity of the sample has already decreased at 10 3 V/cm.
Slightly below 10 14 Ωcm, under an electric field of 10 4 V/cm,
10 12 Ωcm or less.

トナーにスチレン・アクリル樹脂(三洋化成製
ハイマーup 110)100重量部、カーボンブラツク
(三菱化成製MA−100)10重量部、ニグロシン5
重量部から成る平均粒径が10μmの粉砕造粒法に
よつて得られた非磁性粒子からなるものを用い、
前記キヤリヤ試料乃至と混合して現像剤1乃
至4を調製し、第1図に示した現像装置を備えた
静電複写機を用いてそれぞれ連続コピー試験を行
つた。
The toner contains 100 parts by weight of styrene/acrylic resin (HIMER UP 110 manufactured by Sanyo Kasei), 10 parts by weight of carbon black (MA-100 manufactured by Mitsubishi Kasei), and Nigrosine 5.
Using non-magnetic particles obtained by a crushing and granulation method with an average particle diameter of 10 μm based on parts by weight,
Developers 1 to 4 were prepared by mixing with the carrier samples to 4, and a continuous copying test was conducted using an electrostatic copying machine equipped with the developing device shown in FIG.

この場合、像担持体1は無定形シリコン感光
体、その周束は180mm/sec、像担持体1に形成さ
れた静電像の最高電位−500V、最低電位−
100V、磁石体3の現像域Aに対向した磁極の磁
束密度は1200ガウス、現像剤層の厚さ0.5mm、ス
リーブ2と像担持体1との間〓0.7mm、スリーブ
2に印加するバイアス電圧は直流電圧成分−
200V、交流電圧成分2kHz、1000Vとした。この
実施例ではスリーブ2上の現像剤層は像担持体1
の表面に接触していない。
In this case, the image carrier 1 is an amorphous silicon photoreceptor, its circumferential flux is 180 mm/sec, the highest potential of the electrostatic image formed on the image carrier 1 is -500V, and the lowest potential is -
100V, the magnetic flux density of the magnetic pole facing the development area A of the magnet body 3 is 1200 Gauss, the thickness of the developer layer is 0.5mm, the distance between the sleeve 2 and the image carrier 1 is 0.7mm, and the bias voltage applied to the sleeve 2 is 100V. is the DC voltage component −
200V, AC voltage component 2kHz, 1000V. In this embodiment, the developer layer on the sleeve 2 is
not in contact with the surface.

現像剤溜り6における現像剤Dのトナー粒子比
率がキヤリヤ粒子に対して20重量%になる条件で
現像を行つた。トナーの平均帯電量は30μC/g
であつた。
Development was carried out under conditions such that the toner particle ratio of the developer D in the developer reservoir 6 was 20% by weight relative to the carrier particles. The average charge amount of toner is 30μC/g
It was hot.

現像剤1,2を用いた場合、得られた複写物の
画像はエツジ効果やかぶりのない、そして濃度が
高いきわめて鮮明なものであり実施例1での画像
より、解像力が高い点、濃度が高い点で優れてい
た。引続いて5万枚の記録紙を得たが最初から最
後まで安定して変わらない画像を得ることができ
た。これに対し現像剤3,4の場合、印加し得る
交流電圧成分の電圧は上記電圧の1/5程度が限度
となり、像担持体及び複写物画面に対するキヤリ
ヤの付着、画像の荒れが発生し、現像剤4の場合
特に著るしかつた。現像剤層と像担持体層を非接
触とした本実施例の場合、キヤリヤの高電界下に
おける抵抗率を高めた。
When Developers 1 and 2 were used, the obtained copy image was extremely clear with no edge effect or fog, and had a high density. Excellent in high points. Subsequently, we obtained 50,000 sheets of recording paper, but were able to obtain stable and unchanged images from beginning to end. On the other hand, in the case of the developers 3 and 4, the voltage of the alternating current voltage component that can be applied is limited to about 1/5 of the above voltage, which causes adhesion of the carrier to the image carrier and the copy screen, and roughness of the image. In the case of developer 4, it was particularly noticeable. In this example, where the developer layer and the image carrier layer were not in contact with each other, the resistivity of the carrier under a high electric field was increased.

実施例 2 実施例1で使用した現像剤1乃至4を前記で使
用したものと同一の複写機に装填して複写試験を
行つた。但し現像条件を下記のように設定し現像
剤層が像担持体1の表面に接触しないようにし
た。
Example 2 A copying test was conducted by loading the developers 1 to 4 used in Example 1 into the same copying machine as used above. However, the developing conditions were set as follows to prevent the developer layer from coming into contact with the surface of the image carrier 1.

この場合の像担持体1の条件は実施例1と同
じ、スリーブ2の外径も30mm、但しその回転数は
100rpm、N,S極の磁束密度は700ガウス、その
回転数は500rpm、現像剤層の厚さ0.6mm、スリー
ブ2と像担持体1との間〓0.7mm、スリーブ2に
印加するバイアス電圧は直流電圧成分−200V、
交流電圧成分2kHz、1000Vとした。現像剤溜りに
おける現像D中のトナー粒子の比率はキヤリヤ粒
子に対し20重量%とした。トナーの平均帯電量は
30μC/gであつた。得られたトナー像の転写紙
への転写及び定着条件は前記の装置及び実施例1
と同一とした。
In this case, the conditions of the image carrier 1 are the same as in Example 1, and the outer diameter of the sleeve 2 is also 30 mm, but the rotation speed is
100 rpm, the magnetic flux density of N and S poles is 700 Gauss, the rotation speed is 500 rpm, the thickness of the developer layer is 0.6 mm, the distance between sleeve 2 and image carrier 1 is 0.7 mm, and the bias voltage applied to sleeve 2 is DC voltage component -200V,
The AC voltage component was 2kHz and 1000V. The ratio of toner particles in the developer D in the developer reservoir was 20% by weight relative to the carrier particles. The average charge amount of toner is
It was 30μC/g. The transfer and fixing conditions of the obtained toner image to the transfer paper were as described in the above-mentioned apparatus and Example 1.
It was made the same as.

現像剤1又は2を用いた場合、得られた複写物
の画像はキヤリヤ付着もなくエツジ効果やかぶり
のない、そして濃度が高いきわめて鮮明なもので
あり実施例1での画像より、解像力が高い点、濃
度が高い点で優れていた。引続いて5万枚の記録
紙を得たが最初から最後まで安定して変わらない
画像を得ることができた。これに対し現像剤3又
は4を用いた場合、実施例1の場合と同じくキヤ
リヤの付着と画像の荒れが著しく本発明の効果が
確認された。
When developer 1 or 2 is used, the obtained copy image has no carrier adhesion, no edge effect or fog, and is extremely clear with high density, and has higher resolution than the image in Example 1. It was excellent in terms of high concentration and high concentration. Subsequently, we obtained 50,000 sheets of recording paper, but were able to obtain stable and unchanged images from beginning to end. On the other hand, when developer 3 or 4 was used, carrier adhesion and image roughness were significant, as in Example 1, and the effects of the present invention were confirmed.

なお、以上の実施例において、スリーブ2に印
加する交流電圧成分の周波数と電圧を変化させた
結果を第5図に示した。第5図は実施例1及び実
施例2において現像剤1を用いた場合であつて実
施例の条件は図中×印で示されている。
In addition, in the above embodiment, the results of changing the frequency and voltage of the AC voltage component applied to the sleeve 2 are shown in FIG. FIG. 5 shows the case where developer 1 was used in Examples 1 and 2, and the conditions of the examples are indicated by x marks in the figure.

第5図において、横線で陰を付した付してない
範囲が安定して鮮明な画像の得られる好ましい範
囲である。図から明らかなように、かぶりの発生
し易い範囲は、交流電圧成分の変化によつて変化
する。また、第5図において、散点状の陰を施し
た低周波領域は、周波数が低いために現像ムラが
生ずるようになる範囲である。交流成分の印加電
圧を1/5以下に下げざるを得ない場合、画像形成
が不安定となることはこれらの図からも推定され
るところである。
In FIG. 5, the unmarked range shaded with horizontal lines is the preferred range from which a stable and clear image can be obtained. As is clear from the figure, the range where fogging is likely to occur changes depending on changes in the AC voltage component. Furthermore, in FIG. 5, the low frequency region shaded with scattered dots is a range where uneven development occurs due to the low frequency. It can be inferred from these figures that image formation becomes unstable if the applied voltage of the alternating current component has to be reduced to 1/5 or less.

〔発明の効果〕〔Effect of the invention〕

前記の実施例に見られる通り、本発明の方法を
とることにより、平均粒径50μm以下の微細キヤ
リヤと像担持体或いは記録物表面へ付着すること
なく使用することができ、平均粒径20μm以下の
微細トナーとの併用により解像性、鮮鋭性の高い
かぶりのない記録画像を得ることができる。本発
明の効果は現像剤層と像担持体が直接接触しない
条件下での現像の場合特に著しい。
As seen in the above examples, by employing the method of the present invention, it is possible to use fine carriers with an average particle size of 50 μm or less without adhering to the surface of an image carrier or recorded material, and with an average particle size of 20 μm or less. When used in combination with fine toner, it is possible to obtain recorded images with high resolution and sharpness and no fogging. The effects of the present invention are particularly remarkable in the case of development under conditions where the developer layer and the image carrier do not come into direct contact.

なお、上記実施例には静電複写機の例のみを挙
げたが、本発明の適用される記録装置の用途或い
はそれに使用される静電像形成の方法、装置等は
これに限定されるものではない。
In addition, although only an example of an electrostatic copying machine is given in the above embodiment, the application of the recording apparatus to which the present invention is applied, or the electrostatic image forming method, apparatus, etc. used therein is not limited to this. isn't it.

以上の実施例において、二成分現像剤中のトナ
ーが磁性を有するもであれば、磁気潜像に対して
も同様の現像条件により可視化できることは勿論
である。
In the above embodiments, if the toner in the two-component developer has magnetism, it goes without saying that the magnetic latent image can be visualized under the same developing conditions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図はそれぞれ本発明を実施する
装置の例を示す部分概略断面図、第4図は各キヤ
リヤ試料の抵抗率の電界依存性、第5図はそれぞ
れ本発明の実施例においてバイアス電圧の交流電
圧成分を変化させた場合の現像状態を示すグラフ
である。 1…像担持体、2…スリーブ、3…磁石体、4
…規制ブレード、5…クリーニングブレード、6
…現像剤溜り、7…撹拌スクリユー、8…トナー
ホツパー、9…供給ローラ、10…バイアス電
源、11…保護抵抗、A…現像域、D…現像剤、
T…トナー粒子、N,S…磁極。
1 to 3 are partial schematic sectional views showing an example of an apparatus for carrying out the present invention, FIG. 4 shows the electric field dependence of the resistivity of each carrier sample, and FIG. It is a graph showing the development state when changing the AC voltage component of the bias voltage. 1... Image carrier, 2... Sleeve, 3... Magnet, 4
...Regulation blade, 5...Cleaning blade, 6
... Developer reservoir, 7... Stirring screw, 8... Toner hopper, 9... Supply roller, 10... Bias power supply, 11... Protective resistor, A... Development area, D... Developer,
T...Toner particles, N, S...Magnetic poles.

Claims (1)

【特許請求の範囲】 1 キヤリヤ粒子とトナー粒子とから成る二成分
現像剤を現像剤搬送担持体面上に供給して現像剤
層を形成させ、該現像剤搬送担持体面上の現像剤
層を振動電界下に置き、もつて像担持体面の潜像
を非接触方式で現像する方法において、 前記キヤリヤ粒子が球状粒子で形成され、且つ
104V/cmの電界下で抵抗率が下記の測定条件で
1013Ω・cm以上の絶縁性を保持することを特徴と
する現像方法。 測定条件 キヤリヤ粒子を0.50cm2の断面積を有する容器に
入れタツピングした後、詰められた粒子上に1
Kg/cm2の荷重を掛け、荷重と低面電極との間に
102〜5V/cmの電界が生じる電圧を印加した時の
電流値を読み取ることで得る。 2 前記キヤリヤ粒子は5〜50μmであることを
特徴とする特許請求の範囲第1項記載の現像方
法。
[Scope of Claims] 1. A two-component developer consisting of carrier particles and toner particles is supplied onto the surface of a developer transport carrier to form a developer layer, and the developer layer on the surface of the developer transport carrier is vibrated. In the method of developing a latent image on the surface of an image carrier in a non-contact manner by placing it under an electric field, the carrier particles are formed of spherical particles, and
The resistivity under the electric field of 10 4 V/cm is measured under the following measurement conditions.
A developing method characterized by maintaining insulation of 10 13 Ω・cm or more. Measurement conditions After putting the carrier particles in a container with a cross-sectional area of 0.50 cm 2 and tapping, one
Apply a load of Kg/cm 2 and connect the load to the lower electrode.
Obtained by reading the current value when applying a voltage that generates an electric field of 10 2 to 5 V/cm. 2. The developing method according to claim 1, wherein the carrier particles have a size of 5 to 50 μm.
JP58240066A 1983-12-20 1983-12-20 Developing method Granted JPS60131549A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58240066A JPS60131549A (en) 1983-12-20 1983-12-20 Developing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58240066A JPS60131549A (en) 1983-12-20 1983-12-20 Developing method

Publications (2)

Publication Number Publication Date
JPS60131549A JPS60131549A (en) 1985-07-13
JPH058424B2 true JPH058424B2 (en) 1993-02-02

Family

ID=17053977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58240066A Granted JPS60131549A (en) 1983-12-20 1983-12-20 Developing method

Country Status (1)

Country Link
JP (1) JPS60131549A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0708378A2 (en) 1994-10-05 1996-04-24 Canon Kabushiki Kaisha Two-component type developer, developing method and image forming method
EP0708376A2 (en) 1994-10-05 1996-04-24 Canon Kabushiki Kaisha Two-component type developer, developing method and image forming method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2615565B2 (en) * 1986-09-29 1997-05-28 松下電器産業株式会社 Electrostatic latent image developing method
JP3397483B2 (en) * 1993-12-29 2003-04-14 キヤノン株式会社 Electrophotographic carrier, manufacturing method thereof, two-component developer, and image forming method
JP3992233B2 (en) 2003-01-31 2007-10-17 株式会社リコー Electrophotographic carrier, developer, and image forming apparatus
JP2008090055A (en) 2006-10-03 2008-04-17 Fuji Xerox Co Ltd Image forming apparatus
JP5207702B2 (en) 2006-10-20 2013-06-12 キヤノン株式会社 Image forming apparatus
US7715744B2 (en) 2007-04-20 2010-05-11 Canon Kabushiki Kaisha Image forming apparatus using peak AC potentials to move toner toward an image bearing member and a developer carrying member, respectively

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532073A (en) * 1978-08-28 1980-03-06 Minolta Camera Co Ltd Electrophotographic developing method
JPS56144452A (en) * 1980-04-14 1981-11-10 Hitachi Ltd Electrophotographic recorder
JPS58184158A (en) * 1982-04-21 1983-10-27 Konishiroku Photo Ind Co Ltd Developing method of electrostatic image

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5532073A (en) * 1978-08-28 1980-03-06 Minolta Camera Co Ltd Electrophotographic developing method
JPS56144452A (en) * 1980-04-14 1981-11-10 Hitachi Ltd Electrophotographic recorder
JPS58184158A (en) * 1982-04-21 1983-10-27 Konishiroku Photo Ind Co Ltd Developing method of electrostatic image

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0708378A2 (en) 1994-10-05 1996-04-24 Canon Kabushiki Kaisha Two-component type developer, developing method and image forming method
EP0708376A2 (en) 1994-10-05 1996-04-24 Canon Kabushiki Kaisha Two-component type developer, developing method and image forming method

Also Published As

Publication number Publication date
JPS60131549A (en) 1985-07-13

Similar Documents

Publication Publication Date Title
US4841332A (en) Toner control for a developer device
JPS58184158A (en) Developing method of electrostatic image
JPH0690543B2 (en) Development method
JPH06100848B2 (en) Development method
JPH058424B2 (en)
JPH0414793B2 (en)
JPH047505B2 (en)
JPH06100849B2 (en) Development method
JPS60131545A (en) Developing method
JPS59222853A (en) Developing method
JPS60131547A (en) Developing method
JPH0528379B2 (en)
JPH0256670B2 (en)
JPS60131550A (en) Developing method
JP2607405B2 (en) Development method
JPH0364063B2 (en)
JP2614817B2 (en) Development method
JPS60125863A (en) Developing device
JPH0685095B2 (en) Development method
JPS59222852A (en) Developing method
JPS61166571A (en) Developing device
JPH0616185B2 (en) Development method
JPH04350875A (en) Developing device
JPS6214169A (en) Developing method
JPH0414795B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term