JPH0256670B2 - - Google Patents

Info

Publication number
JPH0256670B2
JPH0256670B2 JP58097973A JP9797383A JPH0256670B2 JP H0256670 B2 JPH0256670 B2 JP H0256670B2 JP 58097973 A JP58097973 A JP 58097973A JP 9797383 A JP9797383 A JP 9797383A JP H0256670 B2 JPH0256670 B2 JP H0256670B2
Authority
JP
Japan
Prior art keywords
carrier
particles
image
magnetic
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58097973A
Other languages
Japanese (ja)
Other versions
JPS59223467A (en
Inventor
Satoru Haneda
Seiichiro Hiratsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP9797383A priority Critical patent/JPS59223467A/en
Priority to GB08407567A priority patent/GB2141643B/en
Priority to DE3448470A priority patent/DE3448470C2/en
Priority to DE19843411655 priority patent/DE3411655C2/en
Publication of JPS59223467A publication Critical patent/JPS59223467A/en
Priority to US07/081,575 priority patent/US4746589A/en
Publication of JPH0256670B2 publication Critical patent/JPH0256670B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/065Arrangements for controlling the potential of the developing electrode

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Developing For Electrophotography (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子写真複写装置等における静電潜
像あるいは磁気潜像の像現像方法の改良に関し、
詳しくは、磁性キヤリヤ粒子とトナー粒子とを混
合した現像剤を現像剤搬送担体面に供給して、該
現像剤搬送担体上に現像剤層を形成させ、その現
像剤層によつて像担持体面の静電潜像あるいは磁
気潜像を現像する方法の改良に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an improvement in a method for developing an electrostatic latent image or a magnetic latent image in an electrophotographic copying apparatus, etc.
Specifically, a developer containing a mixture of magnetic carrier particles and toner particles is supplied to the surface of a developer transport carrier to form a developer layer on the developer transport carrier, and the developer layer forms a developer layer on the surface of the image carrier. The present invention relates to an improvement in a method for developing an electrostatic latent image or a magnetic latent image.

〔従来技術〕[Prior art]

一例として、電子写真複写装置における現像方
法の概略について説明する。それについて一般的
な二成分現像剤を用いた磁気ブラシ現像方法は、
トナー粒子の摩擦帯電制御が比較的容易で、トナ
ー粒子の凝集が起りにくく、磁気ブラシの穂立ち
がよくて、像担持体面の摺擦性に優れ、クリーニ
ングとの兼用においても十分なクリーニング効果
が発揮される等の特長を有することから、キヤリ
ヤ粒子に対するトナー粒子の量の管理を必要とす
るにも抱らず、多く用いられている。しかし、こ
の磁気ブラシを像担持体面に摺擦させて現像する
現像方法には、従来一般に平均粒径が数十〜数百
μmの磁性キヤリヤ粒子と平均粒径が十数μmの非
磁性トナー粒子とが用いられており、トナー粒子
やさらにはキヤリヤ粒子が粗いために、繊細な線
や点あるいは濃淡差等を再現する高画質画像が得
られにくいと云つた問題がある。そこで、この現
像方法において高画質画像を得るために、従来例
えば、キヤリヤ粒子の樹脂コーテイングとか、現
像剤搬送担体における磁石体の改良とか、現像剤
搬送担体へのバイアス電圧の検討とか、多くの努
力が払われているが、それでも未だ安定して十分
に満足し得る画像が得られないのが実情である。
したがつて、高画質画像を得るためには、トナー
粒子及びキヤリヤ粒子をより微粒子にすることが
必要であると考えられる。しかし、トナー粒子を
平均粒径が20μm以下、特に10μm以下の微粒子に
すると、現像時のクーロン力に対して相対的に
フアンデルワールス力の影響が現われて、像背景
の地部分にもトナー粒子が付着する所謂かぶりが
生ずるようになり、現像剤搬送担体への直流バイ
アス電圧印加によつてもかぶりを防ぐことが困難
となる、トナー粒子の摩擦帯電制御が難しくな
つて、凝集が起り易くなる。一方、キヤリヤ粒子
を微粒子化していくと、キヤリヤ粒子も像担持
体の静電像部分に付着するようになる。この原因
としては、磁気バイアスの力が低下して、キヤリ
ヤ粒子がトナー粒子と共に像担持体側に付着した
ためと考えられる。なお、バイアス電圧が大きく
なると、像背景の他部分にもキヤリヤ粒子が付着
するようになる。
As an example, an outline of a developing method in an electrophotographic copying apparatus will be described. Regarding this, the magnetic brush development method using a general two-component developer is as follows.
Frictional charging control of toner particles is relatively easy, toner particle aggregation is difficult to occur, the magnetic brush stands up well, has excellent abrasion properties on the image bearing surface, and has sufficient cleaning effect even when used for cleaning. Because of these characteristics, it is widely used even though it is not necessary to control the amount of toner particles relative to carrier particles. However, in the development method in which a magnetic brush is rubbed against the surface of the image carrier, magnetic carrier particles with an average particle size of several tens to hundreds of μm and non-magnetic toner particles with an average particle size of several tens of μm are conventionally used. However, because the toner particles and even the carrier particles are coarse, it is difficult to obtain high-quality images that reproduce delicate lines, dots, and differences in shading. Therefore, in order to obtain high-quality images using this developing method, many efforts have been made in the past, such as coating the carrier particles with resin, improving the magnets in the developer transport carrier, and examining the bias voltage for the developer transport carrier. However, the reality is that stable and fully satisfactory images still cannot be obtained.
Therefore, in order to obtain high quality images, it is considered necessary to make the toner particles and carrier particles even finer. However, when toner particles are made into fine particles with an average particle size of 20 μm or less, especially 10 μm or less, the influence of Van der Waals force appears relative to the Coulomb force during development, and the toner particles also appear in the ground area of the image background. It becomes difficult to prevent fogging even by applying a DC bias voltage to the developer transport carrier, and it becomes difficult to control triboelectric charging of toner particles, making it easier for agglomeration to occur. . On the other hand, as the carrier particles are made finer, the carrier particles also come to adhere to the electrostatic image portion of the image carrier. The reason for this is thought to be that the magnetic bias force was reduced and the carrier particles adhered to the image carrier side together with the toner particles. Note that as the bias voltage increases, carrier particles will also adhere to other parts of the image background.

微粒子化には、上述のような副作用の方が目立
つて、鮮明な画像が得られないと云う問題がある
ので、そのためにトナー粒子及びキヤリヤ粒子を
微粒子化することは実際に用いるのが困難であつ
た。
The problem with micronization is that the side effects mentioned above are more noticeable and clear images cannot be obtained, so it is difficult to actually use micronization of toner particles and carrier particles. It was hot.

〔発明の目的〕[Purpose of the invention]

本発明は、二成分現像剤のトナーやキヤリヤに
微粒子のものを用いることができて、しかもかぶ
りやキヤリヤ粒子の像担持体面に付着することが
防止され、鮮明な高画質画像の現像が行われる静
電像現像方法を提供するものである。
According to the present invention, fine particles can be used for the toner and carrier of the two-component developer, and fogging and adhesion of carrier particles to the image bearing surface are prevented, and a clear high-quality image can be developed. An electrostatic image developing method is provided.

〔発明の構成〕[Structure of the invention]

本発明は、トナー粒子と磁性キヤリヤ粒子とか
ら成る二成分現像剤を用いて、現像剤搬送担体上
に形成した二成分現像剤層により像担持体上の潜
像を現像する方法において、前記二成分現像剤層
搬送担体上の二成分現像剤層と像担持体とを非接
触に保つと共に、その間隙に現像剤層から像担持
体へのトナー粒子の飛翔を制御する制御電極を設
けて、該制御電極または前記現像剤搬送担体の少
くともいずれか一方に印加する交流電圧成分によ
り振動電界下で現像を行うようにしたことを特徴
とする現像方法、にあり、この特徴によつて上述
の目的を達成したものである。
The present invention provides a method for developing a latent image on an image carrier with a two-component developer layer formed on a developer transport carrier using a two-component developer consisting of toner particles and magnetic carrier particles. The two-component developer layer on the component developer layer transport carrier and the image carrier are maintained in non-contact, and a control electrode is provided in the gap therebetween to control the flight of toner particles from the developer layer to the image carrier, A developing method characterized in that development is carried out under an oscillating electric field by an alternating current voltage component applied to at least one of the control electrode or the developer transport carrier, and by this feature, the above-mentioned The purpose has been achieved.

以下本発明を、特に電子写真法等による静電潜
像を現像する場合について、図面を参照して詳細
に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings, particularly in the case of developing an electrostatic latent image by electrophotography or the like.

第1図乃至第3図はそれぞれ本発明に用いられ
る現像装置の例を示す概略断面図である。
1 to 3 are schematic cross-sectional views showing examples of developing devices used in the present invention.

図において、1は矢印方向に回転し、表面に、
図示せざる公知の帯電及び露光装置あるいはマル
チスタイラス電極やイオン制御電極を用いる静電
像形成装置によつて、静電像を形成される電子写
真感光体層あるいは誘電体層を有するドラム状の
像担持体、2はアルミニウム等の非磁性材料から
なるスリーブ、3はスリーブ2の内部に設けられ
て表面に複数のN,S磁極を周方向に有する磁石
体で、このスリーブ2と磁石体3とで現像剤搬送
担体を構成している。そして、スリーブ2と磁石
体3とは相対回転可能であり、図はスリーブ2が
左方向に回転し、磁石体3が右回転するものであ
ることを示している。また、磁石体3のN,S磁
極は通常500〜1500ガウスの磁束密度に磁化され
ており、その磁力によつてスリーブ2の表面にト
ナー粒子とキヤリヤ粒子とから成る現像剤Dの層
を付着させて所謂磁気ブラシを形成する。この磁
気ブラシはスリーブ2と磁石体3の上記回転によ
つてスリーブ2の回転と同方向に移動し、現像領
域Aに搬送される。4はスリーブ2表面の磁気ブ
ラシの高さ、量を規制する磁性体や非磁性体から
成る層厚規制ブレード、5は現像域Aを通過した
磁気ブラシをスリーブ2上から除去するクリーニ
ングブレード、6は現像剤溜り、7は現像剤溜り
6の現像剤Dを撹拌してトナー粒子とキヤリヤ粒
子の混合を均一にする撹拌スクリユー、8はトナ
ー粒子Tを補給するためのトナーホツパー、9は
現像剤溜り6にトナー粒子Tを落すための表面に
凹部を有するトナー供給ローラである。すなわ
ち、現像剤溜り6にはトナー粒子とキヤリヤ粒子
から成る二成分現像剤が入つている。ここまでの
現像装置の構成は、従来の二成分現像剤による現
像方法に用いられる現像装置の構成と変るところ
はない。そして、第1図の装置は、磁石体3の
N,S磁極の磁束密度が略等しいものであつて、
磁石体3がスリーブ2と逆方向に回転するもので
あるのに対し、第2図の装置は、磁石体3が回転
しない点で第1図の装置と異なり、第3図の装置
は、固定の磁石体3のN,S磁極の磁束密度が同
じではなく、像担持体1に対向した磁極の磁束密
度が他のN,S磁極の磁束密度よりも大である点
で第2図の装置と異なる。なお、像担持体1に対
向した磁束密度を大にするのは、第3図示のよう
に同じNまたはS磁極を並べた形で対向させる例
に限らずN,S磁極を並べて対向させてもよいこ
とは勿論である。このように複数個の磁極を対向
させることによつて、単極を対向させた場合より
も現像が安定すると云う効果が得られる。
In the figure, 1 rotates in the direction of the arrow, and on the surface,
A drum-shaped image having an electrophotographic photoreceptor layer or dielectric layer on which an electrostatic image is formed by a known charging and exposure device (not shown) or an electrostatic image forming device using a multi-stylus electrode or an ion control electrode. The carrier body 2 is a sleeve made of a non-magnetic material such as aluminum, and 3 is a magnet body that is provided inside the sleeve 2 and has a plurality of N and S magnetic poles on its surface in the circumferential direction. This constitutes a developer transport carrier. The sleeve 2 and the magnet 3 can rotate relative to each other, and the figure shows that the sleeve 2 rotates to the left and the magnet 3 rotates to the right. Further, the N and S magnetic poles of the magnet body 3 are normally magnetized to a magnetic flux density of 500 to 1500 Gauss, and the layer of developer D consisting of toner particles and carrier particles is attached to the surface of the sleeve 2 by the magnetic force. This forms a so-called magnetic brush. This magnetic brush is moved in the same direction as the rotation of the sleeve 2 by the rotation of the sleeve 2 and the magnet body 3, and is conveyed to the development area A. 4 is a layer thickness regulating blade made of magnetic or non-magnetic material that regulates the height and amount of the magnetic brush on the surface of the sleeve 2; 5 is a cleaning blade that removes the magnetic brush that has passed through the development area A from above the sleeve 2; is a developer reservoir; 7 is a stirring screw that stirs the developer D in the developer reservoir 6 to uniformly mix toner particles and carrier particles; 8 is a toner hopper for replenishing toner particles T; 9 is a developer reservoir 6 is a toner supply roller having a concave portion on its surface for dropping toner particles T thereon. That is, the developer reservoir 6 contains a two-component developer consisting of toner particles and carrier particles. The configuration of the developing device up to this point is the same as that of a developing device used in a conventional developing method using a two-component developer. In the device shown in FIG. 1, the magnetic flux densities of the N and S magnetic poles of the magnet body 3 are approximately equal,
The device shown in FIG. 2 differs from the device shown in FIG. 1 in that the magnet 3 rotates in the opposite direction to the sleeve 2, whereas the device shown in FIG. 3 does not rotate. The magnetic flux density of the N and S magnetic poles of the magnet body 3 are not the same, and the magnetic flux density of the magnetic pole facing the image carrier 1 is larger than the magnetic flux density of the other N and S magnetic poles. different from. Note that increasing the magnetic flux density facing the image carrier 1 is not limited to the case where the same N or S magnetic poles are lined up and facing each other as shown in the third figure, but also when the N and S magnetic poles are lined up and facing each other. Of course it's a good thing. By arranging a plurality of magnetic poles to face each other in this manner, it is possible to obtain the effect that development is more stable than when a single pole is posed to face each other.

以上の現像装置の構成に対して、本発明に用い
られる現像装置においては、スリーブ2上に形成
される磁気ブラシが像担持体1の表面に接触せず
間隙を保つように、スリーブ2と層厚規制ブレー
ド5の間隙及びスリーブ2と像担持体1の間隙を
調整され、そして磁気ブラシと像担持体1の間隙
には、スリーブ2の軸方向に平行に張設するワイ
ヤーのような、それ自体はトナー粒子が磁気ブラ
シから像担持体1に飛翔するのを妨げない制御電
極10を設けて、この制御電極10またはスリー
ブ2に交流電圧成分を有する電圧を印加し、それ
によつて現像領域Aに振動電界を形成して、この
振動電界下において磁気ブラシによる現像が行わ
れるようにする。11,12はそれぞれ制御電極
10及びスリーブ2に電圧を印加するための電
源、13および14は保護抵抗である。
In contrast to the above-described structure of the developing device, in the developing device used in the present invention, the magnetic brush formed on the sleeve 2 is layered with the sleeve 2 so that a gap is maintained without contacting the surface of the image carrier 1. The gap between the thickness regulating blade 5 and the gap between the sleeve 2 and the image carrier 1 is adjusted, and the gap between the magnetic brush and the image carrier 1 is provided with a wire, such as a wire stretched parallel to the axial direction of the sleeve 2. A control electrode 10 which itself does not prevent toner particles from flying from the magnetic brush to the image carrier 1 is provided, and a voltage having an alternating current voltage component is applied to the control electrode 10 or the sleeve 2, whereby the development area A is An oscillating electric field is formed under the oscillating electric field, and development is performed using a magnetic brush under this oscillating electric field. 11 and 12 are power sources for applying voltage to the control electrode 10 and the sleeve 2, respectively, and 13 and 14 are protection resistors.

磁気ブラシと像担持体1の間隙に制御電極10
を張設するのは、スリーブ2と制御電極10との
間隙が数10μm以上、制御電極10と像担持体1
との間隙も数10μm以上で、かつ、スリーブ2と
像担持体1との間隙が2000μm以下であるように
するのが好ましい。スリーブ2と制御電極10の
間隙が数10μmよりも狭くなると、均一な磁気ブ
ラシの穂を形成することが困難になり、十分なト
ナー粒子を現像部に供給することができなくなつ
て、安定した現像が行われなくなるし、制御電極
10と像担持体1の間隙が数10μmよりも狭くな
ると放電が起り易くなる。また、スリーブ2と像
担持体1の間隙が2000μmを超すと、スリーブ2
の電極効果が低下して、十分な現像濃度が得られ
ないようになり、エツジ効果も目立つようにな
る。なお、制御電極10には、100〜1000μmの太
さのワイヤーを0.5〜5mmの間隔で平行に張設す
るようにしたものが好ましい。また、同様に、
0.5〜5mmの格子孔をもつメツシユも用いられる。
そのような制御電極10は、磁気ブラシから像担
持体1の静電像に飛翔するトナー粒子に十分な制
御効果を与えて、その飛翔を妨げることが少な
く、トナー粒子が付着してもその除去が容易に行
うことができると云つた優れた特長を有する。
A control electrode 10 is placed between the magnetic brush and the image carrier 1.
This is because the gap between the sleeve 2 and the control electrode 10 is several tens of μm or more, and the gap between the control electrode 10 and the image carrier 1 is
It is preferable that the gap between the sleeve 2 and the image carrier 1 is several tens of μm or more, and the gap between the sleeve 2 and the image carrier 1 is 2000 μm or less. When the gap between the sleeve 2 and the control electrode 10 becomes narrower than several tens of micrometers, it becomes difficult to form uniform magnetic brush ears, and it becomes impossible to supply sufficient toner particles to the developing section, resulting in a stable condition. Development is not performed, and if the gap between the control electrode 10 and the image carrier 1 becomes narrower than several tens of micrometers, discharge is likely to occur. Furthermore, if the gap between the sleeve 2 and the image carrier 1 exceeds 2000 μm, the sleeve 2
The electrode effect decreases, making it impossible to obtain a sufficient developed density, and edge effects also become noticeable. Note that the control electrode 10 is preferably one in which wires having a thickness of 100 to 1000 μm are stretched in parallel at intervals of 0.5 to 5 mm. Also, similarly,
Meshes with grid holes of 0.5 to 5 mm are also used.
Such a control electrode 10 provides a sufficient control effect to the toner particles flying from the magnetic brush to the electrostatic image on the image carrier 1, hardly hindering the flight of the toner particles, and even if the toner particles adhere, they can be removed. It has the excellent feature that it can be easily carried out.

振動電界下での現像は、上述のように設定され
た制御電極10やスリーブ2に、下記のように、
交流成分を有する電圧を電源11及び12によつ
て印加することにより行われる。
Development under an oscillating electric field is performed by applying the following to the control electrode 10 and sleeve 2 set as described above.
This is done by applying a voltage having an alternating current component using power supplies 11 and 12.

(i) 制御電極10にのみ交流成分を有する電圧を
印加する。この場合、制御電極10には100Hz
〜10kHz、好ましくは1〜5kHzの周波数の200
〜4000Vの交流電圧、好ましくはそれに600V
までの範囲の直流電圧を重畳した電圧を印加
し、スリーブ2には600Vまでの範囲の直流電
圧を印加するのが好ましい。なお、このスリー
ブ2に印加する直流電圧は、トナーのかぶり防
止のため、像担持体1の非画像部電位よりも高
く設定するのが好ましい。
(i) A voltage having an AC component is applied only to the control electrode 10. In this case, the control electrode 10 has a frequency of 100Hz.
200 at a frequency of ~10kHz, preferably 1-5kHz
~4000V AC voltage, preferably 600V to it
It is preferable to apply a superimposed voltage of a DC voltage in the range up to 600V, and to apply a DC voltage in the range up to 600V to the sleeve 2. Note that the DC voltage applied to the sleeve 2 is preferably set higher than the potential of the non-image area of the image carrier 1 in order to prevent toner fogging.

(ii) 制御電極10とスリーブ2の両方に交流成分
を有する電圧を印加する。この場合、両交流成
分に同一周波数を用いるときは、通常、スリー
ブ2には制御電極10よりも大きな交流電圧を
印加するのが好ましく、異なつた周波数を用い
るときは、電界にうねりが生じないように、互
いの周波数が整数倍から離れていることが好ま
しい。そしてさらに、スリーブ2に高い周波数
の交流成分電圧を印加する方が、制御電極10
との間に均一なトナー粒子のクラウドが生じ易
いので好ましい。また、交流電圧成分の大きさ
もスリーブ2の方を制御電極10よりも大きく
することが好ましいし、スリーブ2と制御電極
10に600Vまでの範囲で直流電圧を重畳印加
するようにするのが好ましい。このスリーブ2
に印加する直流電圧も、トナーのかぶり防止の
ために、像担持体1の非画像部電位より高く設
定するのが好ましい。なお、この場合も交流成
分の周波数および電圧値は(i)の場合と同じ範囲
が好ましく用いられる。
(ii) Applying a voltage having an alternating current component to both the control electrode 10 and the sleeve 2. In this case, when the same frequency is used for both AC components, it is usually preferable to apply a larger AC voltage to the sleeve 2 than to the control electrode 10, and when different frequencies are used, to avoid waviness in the electric field. In addition, it is preferable that the frequencies are separated from each other by an integral multiple. Furthermore, it is better to apply a high frequency AC component voltage to the sleeve 2 than to the control electrode 10.
This is preferable because a uniform cloud of toner particles is likely to be formed between the two. Further, it is preferable that the magnitude of the AC voltage component is larger in the sleeve 2 than in the control electrode 10, and it is preferable that DC voltages of up to 600V are applied to the sleeve 2 and the control electrode 10 in a superimposed manner. This sleeve 2
It is also preferable that the DC voltage applied to the image carrier 1 is set higher than the potential of the non-image area of the image carrier 1 in order to prevent toner fogging. In this case as well, the frequency and voltage value of the AC component are preferably in the same range as in case (i).

(iii) スリーブ2にのみ交流成分を有する電圧を印
加する。この場合、スリーブ2には100Hz〜
10kHz、好ましくは1〜5kHzの周波数の200〜
4000Vの交流電圧、好ましくはそれに600Vま
での直流電圧を重畳した電圧を印加し、制御電
極10にも600Vまでの適当な直流電圧を印加
するのが好ましい。この場合もスリーブ2の直
流電圧は、トナーのかぶり防止のため、像担持
体1の非画像部電位よりも高く設定するのが好
ましい。
(iii) A voltage having an AC component is applied only to the sleeve 2. In this case, sleeve 2 has 100Hz~
200 to 10kHz, preferably 1 to 5kHz frequency
It is preferable to apply an AC voltage of 4000V, preferably a DC voltage of up to 600V superimposed thereon, and also apply a suitable DC voltage of up to 600V to the control electrode 10. In this case as well, the DC voltage of the sleeve 2 is preferably set higher than the potential of the non-image area of the image carrier 1 in order to prevent toner fogging.

以上の交流成分電圧は波形が正弦波に限らず、
矩形波や三角波等であつてもよい。そして、周波
数も関係するが、電圧値は高い程現像剤の磁気ブ
ラシを振動させるようになつて、トナー粒子のキ
ヤリヤ粒子からの分離飛翔が行われ易くなるが、
反面、かぶりや落雷現像のような絶縁破壊が発生
し易くなる。これについて、かぶりの発生は、直
流電圧成分で防止し、絶縁破壊は、制御電極10
やスリーブ2の表面を樹脂や酸化被膜等により絶
縁乃至は半絶縁にコートすること、あるいは、現
像剤のキヤリヤ粒子に後述するような絶縁性のキ
ヤリヤ粒子を用いること、等によつて防止するこ
とができる。
The waveforms of the above AC component voltages are not limited to sine waves;
It may be a rectangular wave, a triangular wave, or the like. Although the frequency is also related, the higher the voltage value, the more the magnetic brush of the developer is vibrated, and the more easily the toner particles are separated from the carrier particles.
On the other hand, dielectric breakdowns such as fogging and lightning development are more likely to occur. Regarding this, the occurrence of fogging is prevented by the DC voltage component, and the dielectric breakdown is prevented by the control electrode 10.
This can be prevented by coating the surface of the sleeve 2 with an insulating or semi-insulating layer such as a resin or oxide film, or by using insulating carrier particles as described below for the carrier particles of the developer. Can be done.

本発明の現像方法は、以上述べたように二成分
現像剤の磁気ブラシを像担持体1に対して非接触
に保ち、その非接触の間に制御電極10を設け
て、磁気ブラシによる現像を振動電界下で行うよ
うにしたことによつて、トナー粒子の磁気ブラシ
からの分離飛翔性を向上させ、静電像への選択吸
着性を向上させて、キヤリヤ粒子の像担持体1に
付着することを防止し、したがつて、トナー粒子
やキヤリヤ粒子に微粒子のものを用いることを可
能にして、高画質画像の現像が行われるようにし
たものであるが、それには次のようなキヤリヤ粒
子及びトナー粒子から成る二成分現像剤を用いる
ことが好ましい。
As described above, in the developing method of the present invention, the magnetic brush of the two-component developer is maintained in a non-contact manner with respect to the image bearing member 1, and the control electrode 10 is provided between the non-contact points, and development by the magnetic brush is carried out. By performing the toner particles under an oscillating electric field, the ability to separate the toner particles from the magnetic brush is improved, the selective adsorption to the electrostatic image is improved, and the carrier particles adhere to the image carrier 1. Therefore, it is possible to use fine toner particles and carrier particles to develop high-quality images. It is preferable to use a two-component developer consisting of toner particles and toner particles.

先ずキヤリヤ粒子について、一般に磁性キヤリ
ヤ粒子は平均粒径が大きいと、○イ現像剤搬送担体
上に形成される磁気ブラシの穂の状態が粗くなつ
て、電界により振動を与えながら静電像を現像し
てもトナー像にムラが現われ易くなり、○ロ磁気ブ
ラシの穂におけるトナー濃度も低くなつて高濃度
の現像が行われなくなる等の問題を起す。この○イ
の問題を解消するには、キヤリヤ粒子の平均粒径
を小さくすればよく、実験の結果、平均粒径が
50μm以下でその効果が現われ初め、30μm以下に
なると○イの問題は実質的に生じなくなることが判
明した。また、○ロの問題も、○イの問題に対する磁
性キヤリヤの微粒子化によつて、穂のトナー濃度
が高くなり、高濃度の現像が行われるようになつ
て解消する。しかし、キヤリヤ粒子が細か過ぎる
と、○ハトナー粒子と共に像担持体面に付着するよ
うになつたり、○ニ飛散し易くなつたりする。これ
らの現像は、キヤリヤ粒子に作用する磁界の強
さ、それによるキヤリヤ粒子の磁化の強さにも関
係するが、一般的には、キヤリヤ粒子の平均粒径
が15μm以下になると次第に傾向が出初め、5μm
以下で顕著に現われるようになる。そして、像担
持体面に付着したキヤリヤ粒子は、一部はトナー
と共に記録紙上に移行し、残部はブレードやフア
ーブラシ等によるクリーニング装置によつて残留
トナーと共に像担持体面から除かれることになる
が、従来の磁性体のみから成るキヤリヤ粒子で
は、○ホ記録紙上に移行したキヤリヤ粒子が、それ
自体では記録紙に定着されないので、脱落し易い
と云う問題があり、また、○ヘ像担持体面に残つた
キヤリヤ粒子がクリーニング装置によつて除かれ
る際に、感光体から成る像担持体面を傷付け易い
と云う問題がある。この○ホ,○ヘの問題は、磁性キ
ヤリヤ粒子を樹脂等記録紙に定着し得る物質と共
に形成することによつて解消される。即ち、磁性
キヤリヤ粒子が記録紙に定着し得る物質と共に形
成されていることで、記録紙に付着したキヤリヤ
粒子も熱や圧力で定着されることになり、また、
クリーニング装置によつて像担持体面から除かれ
る際にも像担持体面を傷付けたりすることが無く
なる。したがつて、キヤリヤ粒子を平均5〜
15μm以下の粒径にしても前記○ハの問題は実際上
トラブルを生ぜしめない。さらに、キヤリヤ粒子
が球形成されていると、トナーとキヤリヤの撹拌
性及び現像剤の搬送性を向上させると共にトナー
の荷電制御性を向上させ、トナー粒子同志やトナ
ー粒子とキヤリヤ粒子の凝集を起りにくくする。
以上から、キヤリヤ粒子は、樹脂等と共に形成さ
れたもの、球形化された磁性キヤリヤ粒子の平均
粒径が好ましくは50μm以下、特に好ましくは
30μm以下5μm以上であるものが好適に用いられ
る。
First, regarding the carrier particles, generally speaking, when magnetic carrier particles have a large average particle size, the ears of the magnetic brush formed on the developer transport carrier become rough, and the electrostatic image is developed while being vibrated by the electric field. However, unevenness tends to appear in the toner image, and the toner concentration in the magnetic brush ear also decreases, causing problems such as high-density development is no longer possible. In order to solve this problem, the average particle size of the carrier particles can be reduced, and as a result of experiments, the average particle size
It was found that the effect begins to appear when the thickness is 50 μm or less, and when the thickness is 30 μm or less, the problems of ◯ and B virtually no longer occur. In addition, the problems of ◯ and ② are also solved by making the magnetic carrier finer particles, which increases the toner concentration in the spikes and enables high-density development. However, if the carrier particles are too fine, they tend to adhere to the surface of the image carrier together with the toner particles, or they tend to scatter. These developments are also related to the strength of the magnetic field acting on the carrier particles and the resulting magnetization of the carrier particles, but in general, a tendency gradually begins to appear when the average particle size of the carrier particles becomes 15 μm or less. ,5μm
This becomes noticeable below. A portion of the carrier particles adhering to the image bearing surface is transferred onto the recording paper along with the toner, and the remaining part is removed from the image bearing surface along with the residual toner by a cleaning device such as a blade or fur brush. With the carrier particles made only of magnetic material, there is a problem that the carrier particles transferred onto the recording paper (○) are not fixed to the recording paper by themselves and easily fall off, and the carrier particles (○) remain on the image carrier surface. There is a problem in that when the carrier particles are removed by a cleaning device, they tend to damage the surface of the image bearing member, which is a photoreceptor. The problems of ◯◯ and ◯ can be solved by forming magnetic carrier particles together with a substance that can be fixed to recording paper, such as resin. That is, since the magnetic carrier particles are formed together with a substance that can be fixed to the recording paper, the carrier particles attached to the recording paper are also fixed by heat and pressure.
Even when it is removed from the surface of the image carrier by the cleaning device, the surface of the image carrier will not be damaged. Therefore, on average the carrier particles are
Even if the particle size is 15 μm or less, the above-mentioned problem (○) does not actually cause any trouble. Furthermore, when the carrier particles are spherical, it improves the agitation performance of the toner and the carrier and the transportability of the developer, and also improves the charge controllability of the toner. Make it difficult.
From the above, the carrier particles are those formed with resin etc., and the average particle diameter of spherical magnetic carrier particles is preferably 50 μm or less, particularly preferably
Those having a diameter of 30 μm or less and 5 μm or more are preferably used.

このような磁性キヤリヤ粒子は、磁性体として
従来の磁性キヤリヤ粒子におけると同様の鉄、ク
ロム、ニツケル、コバルト等の金属、あるいはそ
れらの化合物や合金、例えば、四三酸化鉄、γ−
酸化第二鉄、二酸化クロム、酸化マンガン、フエ
ライト、マンガン−銅系合金、と云つた強磁性体
乃至は常磁性体の球形化された粒子、または、そ
れらの粒子の表面をスチレン系樹脂、ビニル系樹
脂、エチル系樹脂、ロジン変性樹脂、アクリル系
樹脂、ポリアミド樹脂、エポキシ樹脂、ポリエス
テル樹脂等の樹脂やパルミチン酸、ステアリン酸
等の脂肪酸ワツクスで球状に被覆するか、あるい
は、磁性体微粒子を分散して含有した樹脂や脂肪
酸ワツクスの球状粒子を作るかして得られ、平均
粒径については、必要に応じて従来公知の平均粒
径選別手段で粒径選別することによつて得られ
る。
Such magnetic carrier particles may contain metals such as iron, chromium, nickel, cobalt, etc. as in conventional magnetic carrier particles, or compounds or alloys thereof, such as triiron tetroxide, γ-
Spheroidal particles of ferromagnetic or paramagnetic substances such as ferric oxide, chromium dioxide, manganese oxide, ferrite, manganese-copper alloy, or the surfaces of these particles are coated with styrene resin, vinyl, etc. coated in a spherical shape with a resin such as resin, ethyl resin, rosin modified resin, acrylic resin, polyamide resin, epoxy resin, polyester resin, or fatty acid wax such as palmitic acid or stearic acid, or disperse magnetic fine particles. The average particle size can be obtained by selecting the particle size using a conventionally known average particle size selection means, if necessary.

なお、キヤリヤ粒子を上述のように樹脂等によ
つて球状に形成することは、先に述べた効果の他
に、現像剤搬送担体に形成される現像剤層が均一
となり、また現像剤搬送担体に高いバイアス電圧
を印加することが可能となると云う効果も与え
る。即ち、キヤリヤ粒子が樹脂等によつて球形化
されていることは、(1)一般にキヤリヤ粒子は長軸
方向に磁化吸着され易いが、球形化によつてその
方向性が無くなり、したがつて、現像剤層が均一
に形成され、局所的に抵抗の低い領域や層厚のム
ラの発生を防止する、(2)キヤリヤ粒子の高抵抗化
と共に、従来のキヤリヤ粒子に見られるようなエ
ツジ部が無くなつて、エツジ部への電界の集中が
起らなくなり、その結果、現像剤搬送担体に高い
バイアス電圧を印加しても、像担持体面に放電し
て静電潜像を乱したり、バイアス電圧がブレーク
ダウンしたりすることが起らない、と云う効果を
与える。この高いバイアス電圧を印加できると云
うことは、本発明の振動電界下での現像における
先に述べたような効果を十分に発揮させることが
できると云うことである。そして、以上のような
効果を奏するキヤリヤ粒子の球形化には前述のよ
うなワツクスも用いられるが、キヤリヤの耐久性
等からすると、前述のような樹脂を用いたものが
好ましく、さらに、キヤリヤ粒子の抵抗率が108
Ωcm以上、特に1013Ωcm以上であるように絶縁性
の磁性粒子を形成したものが好ましい。この抵抗
率は、粒子を0.50cm2の断面積を有する容器に入れ
てタツピングした後、詰められた粒子上に1Kg/
cm2の荷重を掛け、荷重と底面電極との間に
1000V/cmの電界が生ずる電圧を印加したときの
電流値を読み取ることで得られる値であり、この
抵抗率が低いと、現像剤搬送担体にバイアス電圧
を印加した場合に、キヤリヤ粒子に電荷が注入さ
れて、像担持体面にキヤリヤ粒子が付着し易くな
つたり、あるいはバイアス電圧のブレークダウン
が起り易くなつたりする。
In addition to the above-mentioned effects, forming the carrier particles into a spherical shape using a resin or the like as described above makes the developer layer formed on the developer transport carrier uniform, and also makes the developer layer formed on the developer transport carrier uniform. It also has the effect of making it possible to apply a high bias voltage to the. That is, the fact that the carrier particles are made spherical by resin or the like is because: (1) Generally, carrier particles tend to be magnetized and attracted in the long axis direction, but by sphericalization, this directionality is lost; The developer layer is formed uniformly, preventing the occurrence of locally low resistance areas and uneven layer thickness. As a result, even if a high bias voltage is applied to the developer transport carrier, the electric field will not be concentrated on the edge portion, and as a result, even if a high bias voltage is applied to the developer transport carrier, it will discharge to the image bearing surface and disturb the electrostatic latent image. This provides the effect that voltage breakdown does not occur. The fact that this high bias voltage can be applied means that the above-mentioned effects of the present invention in development under an oscillating electric field can be fully exhibited. Wax as described above can also be used to make the carrier particles spherical, which produces the above-mentioned effects, but from the viewpoint of the durability of the carrier, it is preferable to use resin as described above. The resistivity of 10 8
It is preferable to form insulating magnetic particles so that the resistance is Ωcm or more, particularly 10 13 Ωcm or more. This resistivity is calculated by placing the particles in a container with a cross-sectional area of 0.50 cm 2 and tapping, and then applying 1 kg/kg on the packed particles.
Apply a load of cm2 , and connect the load to the bottom electrode.
This value is obtained by reading the current value when applying a voltage that generates an electric field of 1000 V/cm. If this resistivity is low, when a bias voltage is applied to the developer transport carrier, the carrier particles will be charged. Injected carrier particles tend to adhere to the surface of the image carrier, or breakdown of the bias voltage tends to occur.

以上を総合して、磁性キヤリヤ粒子は、少くと
も長軸と短軸の比が3倍以下であるように球形化
されており、針状部やエツジ部等の突起が無く、
抵抗率が108Ωcm以上好ましくは1013Ωcm以上で
あることが適正条件である。そして、このような
磁性キヤリヤ粒子は、球状の磁性体粒子を酸化被
膜形成等によつて高抵抗化すること、樹脂被覆キ
ヤリヤでは、磁性体粒子にできるだけ球形のもの
を選んでそれに樹脂の被覆処理を施すこと、磁性
体微粒子分散系のキヤリヤでは、できるだけ磁性
体の微粒子を用いて、分散樹脂粒子形成後に球形
化処理を施すこと、あるいはスプレードライの方
法によつて分散樹脂粒子を得ること等によつて製
造される。
In summary, the magnetic carrier particles are spherical so that the ratio of the major axis to the minor axis is at least 3 times or less, and there are no protrusions such as needles or edges.
A suitable condition is that the resistivity is 10 8 Ωcm or more, preferably 10 13 Ωcm or more. For such magnetic carrier particles, spherical magnetic particles are made to have high resistance by forming an oxide film, etc., and resin-coated carrier particles are made by selecting spherical magnetic particles as much as possible and coating them with resin. For carriers of magnetic fine particle dispersion systems, use magnetic fine particles as much as possible, perform a spheroidization treatment after forming the dispersed resin particles, or obtain the dispersed resin particles by spray drying. It is manufactured by

次にトナー粒子について、一般にトナー粒子
は、平均粒径が小さくなると、定性的に粒径の二
乗に比例して帯電量が減少し、相対的にフアンデ
ルワールス力のような付着力が大きくなつて、飛
散し易くなり、かぶりを生ぜしめ易くなる一方、
磁気ブラシのキヤリヤ粒子から離れにくくなつた
りする。そして、従来の磁気ブラシ現像方法で
は、平均粒径が10μm以下になるとこのような問
題が顕著に現われるようになる。その点を本発明
の現像方法は、先にも述べたように、磁気ブラシ
による現像を振動電界下で行うことで解消するよ
うにしている。即ち、磁気ブラシの穂に付着して
いるトナー粒子は、特に制御電極が設けられてい
る部分で振動電界により強く振動を与えられて、
穂から容易に離れてクラウドを形成するようにな
り、したがつて、像担持体の静電像に制御電極の
設けられている部分でトナー粒子が忠実に吸着さ
れるようになる。また、帯電量の低にトナー粒子
が画像部や非画像部に移行することが殆んどなく
なるし、トナーが像担持体面と擦られることもな
いため摩擦帯電により像担持体面に付着すること
もなくなつて、1μm程度のトナー粒径のものまで
用いられるようになる。これによつて静電像を忠
実に現像した再現性のよい鮮明なトナー像が得ら
れる。また、振動電界がトナー粒子とキヤリヤ粒
子の結合を弱めることは、トナー粒子に伴うキヤ
リヤ粒子の像担持体面への付着も減少させるし、
磁気ブラシの穂が像担持体面と非接触に保たれて
いて、キヤリヤ粒子に対して大きな帯電量を持つ
トナー粒子が上述のように振動電界下で選択的に
静電像に移行することは、キヤリヤ粒子の像担持
体面への付着を大幅に減少させる。
Next, regarding toner particles, in general, when the average particle size of toner particles becomes smaller, the amount of charge qualitatively decreases in proportion to the square of the particle size, and the adhesion force such as Van der Waals force becomes relatively large. However, while it becomes easier to scatter and cause fogging,
It becomes difficult to separate from the carrier particles of the magnetic brush. In the conventional magnetic brush development method, such problems become noticeable when the average particle size becomes 10 μm or less. The developing method of the present invention solves this problem by performing development using a magnetic brush under an oscillating electric field, as described above. In other words, the toner particles attached to the ears of the magnetic brush are strongly vibrated by the oscillating electric field, especially in the area where the control electrode is provided.
The toner particles easily separate from the ears to form a cloud, and therefore, the toner particles are faithfully attracted to the electrostatic image on the image carrier at the portion where the control electrode is provided. In addition, due to the low charge amount, toner particles almost never migrate to the image area or non-image area, and since the toner particles are not rubbed against the image carrier surface, they are less likely to adhere to the image carrier surface due to frictional charging. After that, toner particles with a particle size of about 1 μm were used. As a result, a clear toner image with good reproducibility can be obtained by faithfully developing an electrostatic image. In addition, the oscillating electric field weakens the bond between toner particles and carrier particles, which also reduces the adhesion of carrier particles to the image bearing surface along with toner particles.
The fact that the ears of the magnetic brush are kept out of contact with the surface of the image carrier, and the toner particles having a larger charge amount than the carrier particles are selectively transferred to an electrostatic image under an oscillating electric field as described above. Adhesion of carrier particles to the image carrier surface is significantly reduced.

トナーの平均粒径が大きくなると、既に触れて
いるように、画像の荒れが目立つようになる。通
常、10本/mm程度のピツチで並んだ細線の解像力
ある現像には、平均粒径20μm程度のトナーでも
実用上は問題ないが、しかし、平均粒径10μm以
下の微粒子化したトナーを用いると、解像力は格
段に向上して、濃淡差等も忠実に再現した鮮明な
高画質画像を与えるようになる。以上の理由から
トナーの粒径は平均粒径が20μm以下、好ましく
は10μm以下が適正条件である。また、トナー粒
子が電界に追随するために、トナー粒子の帯電量
が1〜3μc/gより大きいこと(好ましくは3〜
300μc/g)が望ましい。特に粒径の小さい場合
は高い帯電量が必要である。
As the average particle size of the toner increases, as already mentioned, the roughness of the image becomes noticeable. Normally, toner with an average particle size of about 20 μm is not a practical problem for developing fine lines arranged at a pitch of about 10 lines/mm with high resolution, but when using fine toner particles with an average particle size of 10 μm or less, The resolution has been significantly improved, and it is now possible to produce clear, high-quality images that faithfully reproduce the differences in shading. For the above reasons, the appropriate particle size of the toner is an average particle size of 20 μm or less, preferably 10 μm or less. In addition, in order for the toner particles to follow the electric field, the amount of charge of the toner particles should be greater than 1 to 3 μc/g (preferably 3 to 3 μc/g).
300μc/g) is desirable. Particularly when the particle size is small, a high amount of charge is required.

このようなトナーは、従来のトナーと同様の方
法で得られる。即ち、従来のトナーにおける球形
や不定形の非磁性または磁性のトナー粒子を平均
粒径選別手段によつて選別したようなトナーを用
いることができる。中でも、トナー粒子が磁性体
微粒子を含有した磁性粒子であることは好まし
く、特に磁性体微粒子の量が60wt%以下、特に
30wt%を超えないものが好ましい。トナー粒子
が磁性粒子を含有したものである場合は、トナー
粒子が現像剤搬送担体に含まれる磁石の磁力の影
響を受けるようになるから、磁気ブラシの均一形
成性が一層向上して、しかも、かぶりの発生が防
止され、さらにトナー粒子の飛散も起りにくくな
る。したがつて、磁性トナーの場合は、制御電極
やスリーブに印加するかぶり防止のための直流電
圧は像担持体の非画像部電位よりも低くてよくな
る。しかし、含有する磁性体の量を多くし過ぎる
と、キヤリヤ粒子との間の磁気力が大きくなり過
ぎて、十分な現像濃度を得ることができなくなる
し、また、磁性体微粒子がトナー粒子の表面に現
われるようにもなつて、摩擦帯電制御が難しくな
つたり、トナー粒子が破損し易くなつたり、キヤ
リヤ粒子との間で凝集し易くなつたりする。
Such toners can be obtained in the same manner as conventional toners. That is, it is possible to use a toner in which spherical or amorphous nonmagnetic or magnetic toner particles in conventional toners are sorted by an average particle size sorting means. Among these, it is preferable that the toner particles are magnetic particles containing magnetic fine particles, and in particular, the amount of magnetic fine particles is 60 wt% or less, especially
Preferably it does not exceed 30wt%. When the toner particles contain magnetic particles, the toner particles are influenced by the magnetic force of the magnet included in the developer transport carrier, so that the uniform formation of the magnetic brush is further improved. The occurrence of fogging is prevented, and furthermore, scattering of toner particles becomes less likely to occur. Therefore, in the case of magnetic toner, the DC voltage applied to the control electrode and sleeve to prevent fogging can be lower than the potential of the non-image area of the image carrier. However, if the amount of magnetic material contained is too large, the magnetic force between the carrier particles and the carrier particles becomes too large, making it impossible to obtain a sufficient developing density. As a result, frictional charging control becomes difficult, toner particles are more likely to be damaged, and toner particles are more likely to aggregate with carrier particles.

以上を纒めると、本発明の現像方法において好
ましいトナーは、キヤリヤについて述べたような
樹脂及びさらには磁性体の微粒子を用い、それに
カーボン等の着色成分や必要に応じて帯電制御剤
等を加えて、従来公知のトナー粒子製造方法と同
様の方法によつて作ることができる平均粒径が
20μm以下、特に好ましくは10μm以下の粒子から
成るものである。
To summarize the above, the preferred toner in the developing method of the present invention uses the resin described above for the carrier and furthermore fine particles of magnetic material, and contains a coloring component such as carbon and a charge control agent, etc. as necessary. In addition, the average particle size that can be produced by the same method as the conventionally known toner particle production method is
It consists of particles of 20 μm or less, particularly preferably 10 μm or less.

本発明の現像方法においては、以上述べたよう
な球状のキヤリヤ粒子とトナー粒子とが従来の二
成分現像剤におけると同様の割合で混合した現像
剤が好ましく用いられるが、これにはまた、必要
に応じて粒子の流動滑りをよくするための流動化
剤や像担持体面の清浄化に役立つクリーニング剤
等が混合される。流動化剤としては、コロイダル
シリカ、シリコンワニス、金属石鹸あるいは非イ
オン表面活性剤等を用いることができ、クリーニ
ング剤としては、脂肪酸金属塩、有機基置換シリ
コンあるいは弗素等表面活性剤等を用いることが
できる。
In the developing method of the present invention, a developer in which the above-mentioned spherical carrier particles and toner particles are mixed in the same ratio as in a conventional two-component developer is preferably used; Depending on the conditions, a fluidizing agent for improving the fluidity and sliding of particles, a cleaning agent for cleaning the surface of the image bearing member, etc. are mixed. As the fluidizing agent, colloidal silica, silicone varnish, metal soap, or nonionic surfactant can be used, and as the cleaning agent, fatty acid metal salt, organic group-substituted silicone, fluorine, etc. can be used as a surfactant. Can be done.

以上詳述したように、本発明の現像方法におい
ては、磁気ブラシの穂を像担持体に対して非接触
に保つて、その間に制御電極を設け、振動電界下
で現像を行うようにしたことによつて、微粒子ト
ナー及びキヤリヤより成る二成分現像剤の長所を
遺憾なく発揮させることができ、したがつて鮮明
な高画質画像の現像がなされると云う優れた効果
が得られる。なお、本発明において振動電界を形
成するための交流電圧成分は、波形が正弦波に限
らず、矩形波や三角波であつてもよい。また、二
成分現像剤中のトナーが磁性を有するものであれ
ば、磁気潜像に対しても同様の現像条件により、
可視化することができることはもちろんである。
As detailed above, in the developing method of the present invention, the ears of the magnetic brush are kept in non-contact with the image carrier, a control electrode is provided between them, and development is performed under an oscillating electric field. Accordingly, the advantages of the two-component developer consisting of fine particle toner and carrier can be fully utilized, and the excellent effect of developing clear, high-quality images can be obtained. In addition, in the present invention, the waveform of the AC voltage component for forming the oscillating electric field is not limited to a sine wave, but may be a rectangular wave or a triangular wave. Furthermore, if the toner in the two-component developer has magnetism, the same developing conditions can be applied to the magnetic latent image.
Of course, it can be visualized.

次に本発明を具体的実施例によつて説明する。 Next, the present invention will be explained using specific examples.

〔実施例〕〔Example〕

実施例 1 キヤリヤに平均粒径が30μm、磁化が50emu/
g、抵抗率が1014Ωcm以上の樹脂コーテイングさ
れた球状フエライト粒子からなるものを用い、ト
ナーにスチレン、アクリル樹脂(三洋化成製ハイ
マーup110)100重量部、カーボンブラツク(三
菱化成製MA−100)10重量部、ニグロシン5重
量部から成る平均粒径が10μmの粉砕造粒法によ
つて得られた非磁性粒子からなるものを用いて、
第1図に示した装置により現像剤溜り6における
現像剤Dのトナー粒子比率がキヤリヤ粒子に対し
て10wt%になる条件で現像を行つた。トナーの
平均帯電量は15μc/gであつた。
Example 1 The carrier has an average particle size of 30 μm and a magnetization of 50 emu/
g, resin-coated spherical ferrite particles with a resistivity of 10 14 Ωcm or more were used, and the toner contained styrene, 100 parts by weight of acrylic resin (Himer UP110 manufactured by Sanyo Chemical Co., Ltd.), and carbon black (MA-100 manufactured by Mitsubishi Chemical Co., Ltd.). Using non-magnetic particles obtained by a pulverization granulation method with an average particle size of 10 μm consisting of 10 parts by weight of nigrosine and 5 parts by weight of nigrosine,
Development was carried out using the apparatus shown in FIG. 1 under conditions such that the toner particle ratio of the developer D in the developer reservoir 6 was 10% by weight relative to the carrier particles. The average charge amount of the toner was 15 μc/g.

この場合、像担持体1はcds感光体、その周速
は180mm/sec、像担持体1に形成された静電像の
最高電位−500V、非画像部電位−100V、スリー
ブ2の外径30mm、その回転数100rpm、磁石体3
のN,S磁極の磁束密度は900ガウス、その回転
数は100rpm、現像剤層の厚さ0.4mm、スリーブ2
と像担持体1との間隙1.5mm即ち1500μm、制御電
極10の像担持体1の表面からの張設位置は0.5
mm、制御電極10には−200Vの直流電圧と1.5k
Hz、1000Vの交流電圧の重畳電圧を印加し、スリ
ーブ2には−250Vの直流電圧を印加した。なお、
制御電極10には、直径0.2mmのワイヤーを1mm
のピツチでスリーブ2と平行に張つたものを用い
た。
In this case, the image carrier 1 is a CDS photoreceptor, its peripheral speed is 180 mm/sec, the highest potential of the electrostatic image formed on the image carrier 1 is -500 V, the non-image area potential is -100 V, and the outer diameter of the sleeve 2 is 30 mm. , its rotation speed 100 rpm, magnet body 3
The magnetic flux density of the N and S magnetic poles is 900 Gauss, the rotation speed is 100 rpm, the thickness of the developer layer is 0.4 mm, and the sleeve 2
The gap between the image carrier 1 and the image carrier 1 is 1.5 mm, that is, 1500 μm, and the extending position of the control electrode 10 from the surface of the image carrier 1 is 0.5 mm.
mm, control electrode 10 has -200V DC voltage and 1.5k
A superimposed voltage of AC voltage of 1000 V at Hz was applied, and a DC voltage of -250 V was applied to the sleeve 2. In addition,
The control electrode 10 uses a 1mm wire with a diameter of 0.2mm.
A material stretched parallel to sleeve 2 at a pitch of 2 was used.

以上の条件で現像を行つて、それを普通紙にコ
ロナ放電転写器により転写し、表面温度140℃の
熱ローラ定着装置に通して定着した結果、得られ
た記録紙の画像はエツジ効果やかぶりのない、そ
して濃度が高いきわめて鮮明なものであり、引続
いて5万枚の記録紙を得たが最初から最終まで安
定して変らない画像を得ることができた。
The image was developed under the above conditions, transferred to plain paper using a corona discharge transfer device, and then fixed by a heat roller fixing device with a surface temperature of 140°C. The image was very clear, with no dark spots, high density, and even though 50,000 sheets of recording paper were subsequently obtained, it was possible to obtain an image that remained stable and unchanged from beginning to end.

実施例 2 キヤリヤ粒子に微粒フエライトを樹脂中に
50wt%分散した平均粒径が20μm、磁化が
30emu/g、抵抗率が1014Ωcm以上の熱による球
形化処理を行つた磁性粒子を用い、トナー粒子に
平均粒径が5μmの非磁性粒子を用いて、第2図に
示した装置により現像剤溜り6における現像剤D
のトナー粒子比率がキヤリヤ粒子に対して5wt%
になる条件で現像を行つた。トナーの平均帯電量
は30μc/gであつた。
Example 2 Fine ferrite is added to the carrier particles in the resin.
The average particle size of 50wt% dispersed particles is 20μm, and the magnetization is
Using thermally spheroidized magnetic particles with a resistivity of 30 emu/g and a resistivity of 10 14 Ωcm or more, and non-magnetic particles with an average particle size of 5 μm as toner particles, development was carried out using the apparatus shown in Figure 2. Developer D in developer reservoir 6
The toner particle ratio is 5wt% to the carrier particles.
The image was developed under the following conditions. The average charge amount of the toner was 30 μc/g.

この場合の像担持体1の条件は実施例1と同
じ、スリーブ2の外径も30mm、但し、その回転数
は150rpm、磁石体3の現像域Aに対向した磁極
の磁束密度は1200ガウス、現像剤層の厚さ0.5mm、
スリーブ2と像担持体1との間隙1.0mm即ち、
1000μm、制御電極10は直径50μmのワイヤーが
スリーブ2の軸方向に斜めに、かつ互いに交差し
て1mmの格子孔を形成したメツシユ構成のものを
像担持体1の表面から0.3mmの位置に張設した構
成からなり、この制御電極10には交流成分300
Hz、700Vのバイアス電圧を印加し、スリーブ2
には直流成分−200Vのバイアス電圧を印加した。
The conditions for the image carrier 1 in this case are the same as in Example 1, the outer diameter of the sleeve 2 is also 30 mm, however, its rotation speed is 150 rpm, and the magnetic flux density of the magnetic pole facing the development area A of the magnet body 3 is 1200 Gauss. Developer layer thickness 0.5mm,
The gap between the sleeve 2 and the image carrier 1 is 1.0 mm, that is,
The control electrode 10 has a mesh structure in which wires with a diameter of 50 μm are diagonally in the axial direction of the sleeve 2 and cross each other to form 1 mm grid holes, and are stretched at a position 0.3 mm from the surface of the image carrier 1. This control electrode 10 has an AC component of 300
Apply bias voltage of Hz, 700V, sleeve 2
A bias voltage with a DC component of -200V was applied to.

以上の条件で現像を行つて、実施例1と同じ条
件で普通紙に転写、定着した結果、得られた記録
紙の画像はエツジ効果やかぶりのない、そして濃
度が高いきわめて鮮明なものであつた。そして引
続いで5万枚の記録紙を得たが、最初から最後ま
で安定して変らない画像を得ることができた。
As a result of developing under the above conditions and transferring and fixing onto plain paper under the same conditions as in Example 1, the resulting image on the recording paper was extremely clear with no edge effects or fog, and with high density. Ta. Subsequently, we obtained 50,000 sheets of recording paper, and were able to obtain stable and unchanged images from beginning to end.

実施例 3 実施例1に対し、制御電極10のワイヤーの張
設ピツチが2mm、それに印加した重畳電圧の交流
電圧成分が300Hz、500V、スリーブ2に直流電圧
に加えて2kHz、1000Vの交流電圧を印加した点が
異なる以外は、実施例1と同じ条件で現像、転
写、定着を行つた。得られた記録画像は、実施例
1の場合と同様鮮明なものであり、5万枚の記録
紙についても安定して変らないものであつた。
Example 3 In contrast to Example 1, the wire tensioning pitch of the control electrode 10 was 2 mm, the AC voltage component of the superimposed voltage applied thereto was 300 Hz, 500 V, and the sleeve 2 was supplied with an AC voltage of 2 kHz, 1000 V in addition to the DC voltage. Development, transfer, and fixing were performed under the same conditions as in Example 1, except that the voltage was applied differently. The recorded images obtained were clear as in Example 1, and remained stable even after 50,000 sheets of recording paper were run.

実施例 4 実施例2に対し、制御電極10のワイヤーが交
差したメツシユの格子孔が2mm、スリーブ2に直
流成分に加えて2kHz、400Vの交流成分を印加し
た点が異なる以外は、実施例2と同じ条件で現
像、転写、定着を行つた。得られた記録画像は、
実施例2の場合と同様鮮明なものであり、5万枚
の記録紙についても安定して変らないものであつ
た。
Example 4 Example 2 was different from Example 2 except that the grid holes in the mesh where the wires of the control electrode 10 crossed were 2 mm, and an AC component of 2 kHz and 400 V was applied to the sleeve 2 in addition to the DC component. Development, transfer, and fixing were performed under the same conditions. The recorded image obtained is
As in the case of Example 2, the image was clear and remained stable even after 50,000 sheets of recording paper were used.

実施例 5 実施例3に対し、制御電極10に−150Vの直
流電圧を印加し、スリーブ2に−250Vの直流電
圧と1.5kHz、2000Vの交流電圧の重畳電圧を印加
した点が異なる以外は、実施例3と同じ条件で現
像、転写、定着を行つた。実施例1,3における
と同様の結果が得られた。
Example 5 The difference from Example 3 was that -150V DC voltage was applied to the control electrode 10, and a superimposed voltage of -250V DC voltage and 1.5kHz, 2000V AC voltage was applied to the sleeve 2. Development, transfer, and fixing were performed under the same conditions as in Example 3. Results similar to those in Examples 1 and 3 were obtained.

実施例 6 実施例4に対し、制御電極10に−200Vの直
流電圧を印加し、スリーブ2に−200Vの直流電
圧と1kHz、800Vの交流電圧の重畳電圧を印加し
た点が異なる以外は、実施例4と同じ条件で現
像、転写、定着を行つた。実施例2,4における
と同様の結果が得られた。
Example 6 The same procedure was carried out as in Example 4 except that -200V DC voltage was applied to the control electrode 10, and a superimposed voltage of -200V DC voltage and 1kHz, 800V AC voltage was applied to the sleeve 2. Development, transfer, and fixing were performed under the same conditions as in Example 4. Results similar to those in Examples 2 and 4 were obtained.

〔発明の効果〕 従来の磁気ブラシ現像法では、二成分系現像剤
を使用したとき、トナー粒子、及びキヤリヤ粒子
を微粒化出来なかつたことから、高画質の画像記
録をすることができなかつた。
[Effects of the Invention] In the conventional magnetic brush development method, when a two-component developer was used, it was not possible to atomize toner particles and carrier particles, making it impossible to record high-quality images. .

しかし、本発明の現像方法によれば、現像領域
内に振動電界を形成して制御する制御電極を設け
て、振動電界下でトナー粒子がクラウドを形成す
るようにしているので、平均粒径が1〜20μmの
トナーや平均粒径が5〜50μmのキヤリヤを使用
することができ、充分な画像濃度の階調性のある
解像力がすぐれた記録が得られるのである。
However, according to the developing method of the present invention, a control electrode that forms and controls an oscillating electric field is provided in the developing area, so that toner particles form a cloud under the oscillating electric field, so that the average particle size can be reduced. It is possible to use toner with a particle size of 1 to 20 μm or carrier with an average particle size of 5 to 50 μm, and it is possible to obtain records with sufficient image density, gradation, and excellent resolution.

そして、現像剤を二成分(若しくはそれ以上も
よい)系としているので、一成分系のものに比べ
てトナーの帯電が安定化し、凝集が生じ難い。
Since the developer is a two-component (or preferably more than one) type developer, the toner is more stable in charging and less likely to aggregate than a one-component type developer.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図乃至第3図はそれぞれ本発明に用いられ
る現像装置の例を示す概略断面図である。 1……像担持体、2……スリーブ、3……磁石
体、4……層厚規制ブレード、5……クリーニン
グブレード、6……現像剤溜り、7……撹拌スク
リユー、8……トナーホツパー、9……トナー供
給ローラ、10……制御電極、11,12……電
源、13,14……保護抵抗。
1 to 3 are schematic cross-sectional views showing examples of developing devices used in the present invention. DESCRIPTION OF SYMBOLS 1... Image carrier, 2... Sleeve, 3... Magnet, 4... Layer thickness regulating blade, 5... Cleaning blade, 6... Developer reservoir, 7... Stirring screw, 8... Toner hopper, 9... Toner supply roller, 10... Control electrode, 11, 12... Power supply, 13, 14... Protection resistor.

Claims (1)

【特許請求の範囲】 1 トナー粒子と磁性キヤリヤ粒子とから成る二
成分現像剤を用いて、現像剤搬送担体上に形成し
た二成分現像剤層により像担持体上の潜像を現像
する方法において、前記現像剤搬送担体上の二成
分現像剤層と像担持体とを非接触に保つと共に、
その間隙に二成分現像剤層から像担持体へのトナ
ー粒子の飛翔を制御する制御電極を設けて、該制
御電極または前記現像剤搬送担体の少くともいず
れか一方に印加する交流電圧成分により振動電界
下で現像を行うようにしたことを特徴とする現像
方法。 2 前記キヤリヤ粒子が絶縁性の粒子である特許
請求の範囲第1項記載の現像方法。 3 前記トナー粒子の平均粒径が20μm以下であ
り、前記キヤリヤ粒子の平均粒径が5〜50μmで
ある特許請求の範囲第1項または第2項記載の現
像方法。 4 前記現像剤搬送担体と像担持体との間隙を数
10〜2000μmに設定する特許請求の範囲第1項乃
至第3項記載の現像方法。
[Scope of Claims] 1. A method for developing a latent image on an image carrier with a two-component developer layer formed on a developer transport carrier using a two-component developer consisting of toner particles and magnetic carrier particles. , maintaining the two-component developer layer on the developer transport carrier and the image carrier in non-contact, and
A control electrode for controlling the flight of toner particles from the two-component developer layer to the image carrier is provided in the gap, and is vibrated by an AC voltage component applied to at least either the control electrode or the developer transport carrier. A developing method characterized by performing development under an electric field. 2. The developing method according to claim 1, wherein the carrier particles are insulating particles. 3. The developing method according to claim 1 or 2, wherein the toner particles have an average particle size of 20 μm or less, and the carrier particles have an average particle size of 5 to 50 μm. 4 Determine the number of gaps between the developer transport carrier and the image carrier.
The developing method according to any one of claims 1 to 3, wherein the developing method is set to 10 to 2000 μm.
JP9797383A 1983-03-31 1983-06-03 Developing method Granted JPS59223467A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP9797383A JPS59223467A (en) 1983-06-03 1983-06-03 Developing method
GB08407567A GB2141643B (en) 1983-03-31 1984-03-23 Developing electrostatic latent images
DE3448470A DE3448470C2 (en) 1983-03-31 1984-03-29 Development of electrostatic or magnetic latent image
DE19843411655 DE3411655C2 (en) 1983-03-31 1984-03-29 Development process
US07/081,575 US4746589A (en) 1983-03-31 1987-07-31 Developing method in electrophotography using oscillating electric field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9797383A JPS59223467A (en) 1983-06-03 1983-06-03 Developing method

Publications (2)

Publication Number Publication Date
JPS59223467A JPS59223467A (en) 1984-12-15
JPH0256670B2 true JPH0256670B2 (en) 1990-11-30

Family

ID=14206609

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9797383A Granted JPS59223467A (en) 1983-03-31 1983-06-03 Developing method

Country Status (1)

Country Link
JP (1) JPS59223467A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2206261B (en) * 1987-06-22 1992-02-05 Konishiroku Photo Ind Multicolour image forming method and apparatus
JPS6430550U (en) * 1987-08-18 1989-02-23
US4868600A (en) * 1988-03-21 1989-09-19 Xerox Corporation Scavengeless development apparatus for use in highlight color imaging
US5701553A (en) * 1994-09-08 1997-12-23 Konica Corporation Multi-color image forming apparatus having high developability without fogging and without mixing of colors
US5911098A (en) * 1997-01-28 1999-06-08 Minolta Co., Ltd. Development apparatus and method using selectively applied AC voltages

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121347A (en) * 1982-12-28 1984-07-13 Toshiba Corp Developing device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59121347A (en) * 1982-12-28 1984-07-13 Toshiba Corp Developing device

Also Published As

Publication number Publication date
JPS59223467A (en) 1984-12-15

Similar Documents

Publication Publication Date Title
JPH0436383B2 (en)
JPS58184158A (en) Developing method of electrostatic image
JPH0690543B2 (en) Development method
JPH06100848B2 (en) Development method
JPH0414793B2 (en)
JPH058424B2 (en)
JPH0256670B2 (en)
JPH047505B2 (en)
JPH06100849B2 (en) Development method
JPH047506B2 (en)
JPS60217370A (en) Developing method
JPS60131545A (en) Developing method
JPS60131550A (en) Developing method
JPS60123859A (en) Developing method
JPH0528379B2 (en)
JP2607405B2 (en) Development method
JP2614817B2 (en) Development method
JPS59222852A (en) Developing method
JP3103998B2 (en) Developing device
JPH04350875A (en) Developing device
JPS61166571A (en) Developing device
JPH0511617A (en) Developing device
JPS60131546A (en) Developing method
JPH0616185B2 (en) Development method
JPS60154261A (en) Reversal developing method