JPS60123859A - Developing method - Google Patents

Developing method

Info

Publication number
JPS60123859A
JPS60123859A JP58231434A JP23143483A JPS60123859A JP S60123859 A JPS60123859 A JP S60123859A JP 58231434 A JP58231434 A JP 58231434A JP 23143483 A JP23143483 A JP 23143483A JP S60123859 A JPS60123859 A JP S60123859A
Authority
JP
Japan
Prior art keywords
toner
carrier
particles
developer
transport carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58231434A
Other languages
Japanese (ja)
Inventor
Seiichiro Hiratsuka
平塚 誠一郎
Satoru Haneda
羽根田 哲
Hisafumi Shoji
尚史 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP58231434A priority Critical patent/JPS60123859A/en
Publication of JPS60123859A publication Critical patent/JPS60123859A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/06Developing
    • G03G13/08Developing using a solid developer, e.g. powder developer
    • G03G13/09Developing using a solid developer, e.g. powder developer using magnetic brush

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Dry Development In Electrophotography (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

PURPOSE:To form a uniform toner layer which has a uniform polarity, large quantity of electrification and small thickness on a conveying carrier by adjusting the respective average grain sizes of a carrier and toner at specific grain sizes or below. CONSTITUTION:A two-component developer consisting of insulating carrier particles having 5-50mum average grain size and about >=10<8>OMEGAcm, more preferably >=10<13>OMEGAcm resistivity and toner particles having <=20mum average grain size is used. Ferromagnetic materials of metals such as iron, chromium, nickel cobalt, etc. or the compd. or alloy thereof or the ferromagnetic particles coated with various resins are used for the carrier particles. Various shapeless or spherical particles having <=20mum average grain sizes are used for the toner particles. A developer 9 is fed toward an arrow from a developer conveying carrier 5 and develops the electrostatic latent image on an image carrying body 1 on the surface of the carrier 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子写真法、静電記録法、静電印刷法あるい
は磁気記録法などによって像担持体上に形成された静電
潜像や磁気潜像にトナー粒子を付着させる現像方法に関
し、特に、キャリヤ粒子とトナー粒子とか、ら成る二成
分現像剤を現像剤搬送担体面に供給して現像剤層を形成
させ、該現像剤搬送担体面上の現像剤層からトナー粒子
をトナー搬送担体面に移行させてトナ一層を形成させ、
トナー搬送担体面上のトナ一層から像担持体面にトナー
粒子を飛翔させて像担持体の潜像にトナー粒子を付着さ
せるようKした現像方法に関する。なお、トナー粒子が
磁性体を含有している場合には磁気潜像の現像忙も適用
し得る。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an electrostatic latent image formed on an image carrier by an electrophotographic method, an electrostatic recording method, an electrostatic printing method, a magnetic recording method, or the like. Regarding a developing method for attaching toner particles to a magnetic latent image, in particular, a two-component developer consisting of carrier particles and toner particles is supplied to the surface of a developer transport carrier to form a developer layer, and the developer layer is formed on the developer transport carrier. Toner particles are transferred from the developer layer on the surface to the toner transport carrier surface to form a single layer of toner,
The present invention relates to a developing method in which toner particles are caused to fly from a layer of toner on the surface of a toner transport carrier to the surface of an image carrier so that the toner particles adhere to a latent image on the image carrier. Incidentally, when the toner particles contain a magnetic substance, development of a magnetic latent image can also be applied.

〔従来技術〕[Prior art]

上述のような現像方法は特開昭56−40862号公報
によって知られている。このような現像方法は、二成分
現像剤を用いてまず現像剤搬送担体面に現像剤層を形成
させることによって、トナー粒子の帯電極性と帯電量を
制御することが一成分現像剤を用いる現像方法よシもゝ
容易であると云う二成分現像剤を用いる現像方法の特長
を採シ入れ、像担持体の静電潜像の現像を現像剤搬送担
体の現像剤層からトナー粒子をトナー搬送担体面に移行
させて形成したトナ一層で行うようにしたことによって
、−成分現像剤を用いる現像方法の本質的に現像剤が組
成変化せず、特性の劣化も生じにくいと云う特長と同様
の結果が得られるようKし、しかも、その現像をトナー
粒子が静電潜像に選択的に吸着されてずらされることの
ない非接触現像方法によって行い、その非接触現像方法
において一般的に要求されるトナー粒子の帯電極性が揃
っていて帯電量が相当に大きいこと、および、飛翔する
ベースのトナ一層の厚さが簿く均一で表面状態も均一で
あることの条件を、前述のように二成分現像剤を用いて
いること、および、現像剤搬送担体の現像剤層からトナ
ー粒子をトナー搬送担体面に移行させてトナ一層を形成
させたことにより、満足させるようにしたものである。
A developing method as described above is known from Japanese Patent Application Laid-Open No. 56-40862. In such a developing method, a two-component developer is used to first form a developer layer on the surface of a developer transporting carrier to control the charge polarity and charge amount of the toner particles. Incorporating the features of the development method using a two-component developer, which is said to be easy, the electrostatic latent image on the image carrier is developed by transporting toner particles from the developer layer of the developer transport carrier. By using a single layer of toner formed by transferring to the carrier surface, this method has the same characteristics as the development method using a -component developer, which essentially does not change the composition of the developer and does not easily cause deterioration of characteristics. In addition, the development is performed by a non-contact development method in which toner particles are selectively attracted to the electrostatic latent image and not displaced, and the development is performed by a non-contact development method that is generally required in such non-contact development methods. As mentioned above, two conditions were met: the toner particles must have uniform charge polarity and a considerably large amount of charge, and the thickness of the toner layer on the flying base should be fairly uniform and the surface condition should be uniform. This is achieved by using a component developer and by transferring toner particles from the developer layer of the developer transporting carrier to the surface of the toner transporting carrier to form a single layer of toner.

しかし、このような現像方法も、現像剤に通常の二成分
現像剤すなわち、磁性体粒子から成シ抵抗率が低くて平
均粒径が100μm前後のキャリヤ粒子と平均粒径が2
0μm前後のトナー粒子との混合から成るようなものを
用いると、トナー搬送担体面へのトナ一層の形成は、特
開昭56−40862号公報に記載しているような、現
像剤搬送担体面上の現像剤層をトナー搬送担体面に接触
させる所謂磁気ブラシ現像法と同様の方法によらないこ
とには困難になり、その方法によっても現像剤搬送担体
とトナー搬送担体の間にトナー粒子を移行させるだめの
十分な電圧を印加できないから、トナー搬送担体上に望
ましいトナ一層を得ることが難しい。また、磁気ブラシ
現像法と同様の方法は、特にキャリヤ粒子の粒径が粗い
と、形成されるトナ一層に掃き目や層厚ムラを生じさせ
易く、さらに、現像剤搬送担体とトナー搬送担体の間に
十分な電圧の印加ができないと、トナー粒子間摩擦等に
よって逆極性に帯電したトナー粒子も続映力によってト
ナー搬送担体(移行するようなことが起る。したがって
、非接触現像方法において要求される、トナー搬送担体
上のトナ一層の厚さが薄く均一で表面状態も均一である
こと、および、トナー粒子の帯電極性が揃っていて@電
量も相当に大きいことの条件が満たされなくなって、そ
のために、静電潜像へのトナー粒子の付着ムラや静電潜
像以外にトナー粒子が付着する所謂かぶりが生じたシし
て、高画質画像の現像が行われなくなる。
However, such a development method also uses a conventional two-component developer, that is, magnetic particles, carrier particles with a low resistivity and an average particle size of around 100 μm, and carrier particles with an average particle size of 2.0 μm.
When using a mixture of toner particles of around 0 μm, a single layer of toner can be formed on the surface of the toner transport carrier, as described in JP-A-56-40862. It is difficult to do this without using a method similar to the so-called magnetic brush development method in which the upper developer layer is brought into contact with the surface of the toner transport carrier. Since sufficient voltage cannot be applied to cause the transfer, it is difficult to obtain the desired toner layer on the toner transport carrier. In addition, in a method similar to the magnetic brush development method, especially when the particle size of the carrier particles is coarse, sweeping marks and uneven layer thickness are likely to occur in the formed toner layer. If a sufficient voltage cannot be applied between the toner particles, toner particles charged with opposite polarity due to friction between toner particles may be transferred to the toner transport carrier by the continuous image force. The conditions that the thickness of the toner layer on the toner transport carrier be thin and uniform and the surface condition be uniform, and that the toner particles have uniform charge polarity and a considerably large amount of charge are no longer satisfied, As a result, uneven adhesion of toner particles to the electrostatic latent image and so-called fogging in which toner particles adhere to areas other than the electrostatic latent image occur, making it impossible to develop a high-quality image.

〔発明の目的〕[Purpose of the invention]

本発明は、上述のような現像方法の問題を解消するため
になされたものであシ、現像剤搬送担体とトナー搬送担
体の間に十分な電圧を印加することができて、トナー搬
送担体上に帯電極性が揃って帯電量が相当に大きいトナ
ー粒子から成る厚さが薄く均一で表面状態も均一なトナ
一層を形成でき、そのトナ一層によって非接触現像を行
う方法を提供するものである。
The present invention has been made in order to solve the problems of the above-mentioned developing method. To provide a method for performing non-contact development by forming a single layer of toner having a thin and uniform thickness and uniform surface condition, which is made of toner particles having uniform charging polarity and a considerably large amount of charge.

〔発明の構成〕[Structure of the invention]

本発明は、キャリヤ粒子とトナ′−粒子とから成る二成
分現像剤を現像剤搬送担体面に供給して現像剤層を形成
させ、該現像剤搬送担体面上の現像剤層からトナー粒子
をトナー搬送担体面に移行させてトナ一層を形成させ、
トナー搬送担体面上のトナ一層から像担持体面にトナー
粒子を飛翔させて像担持体の潜像にトナー粒′子を付着
させる方法において(前記キャリヤ粒子を平均粒径が5
〜50゛μmの絶縁性粒子とし、前記トナー粒子の平均
粒径を20μm以下としたことを特徴とする現像方法に
あり、この構成によって上記目的を達成したものである
In the present invention, a two-component developer consisting of carrier particles and toner particles is supplied to the surface of a developer transporting carrier to form a developer layer, and the toner particles are removed from the developer layer on the surface of the developer transporting carrier. The toner is transferred to the toner transport carrier surface to form a single layer of toner,
In a method in which toner particles are caused to fly from a single layer of toner on a toner transport carrier surface to an image carrier surface to adhere to a latent image on an image carrier (the carrier particles have an average particle diameter of 5
The developing method is characterized in that the toner particles are made of insulating particles of 50 .mu.m or less, and the average particle diameter of the toner particles is 20 .mu.m or less, and this structure achieves the above object.

本発明の方法は、第1図、第2図に示したような現像装
置を用いて実施される。
The method of the present invention is carried out using a developing device as shown in FIGS. 1 and 2.

図において、1は、表面にse等の感光体や誘電体から
成る像形成層を有し、図示していない帯電、露光装置等
によって像形成層に静電潜像を形成される回転するドラ
ム状の像担持体、2は、ステンレス鋼やアルミニウム等
の非磁性材料から成シ、矢印方向に回転するローラ状の
トナー搬送担体、3は、保護抵抗4を介してトナー搬送
担体にバイアス電圧を印加する電源、5は、通常500
〜1500ガラスの磁束密度に磁化された複数の磁極N
、Sを有する磁石体6が内部に設けられたステンレス鋼
やアルミニウム等の非磁性材料から成る円筒状の現像剤
搬送担体、7は、保護抵抗8を介して現像剤搬送担体6
にバイアス電圧を印加する電源、9は、現像剤槽、10
は、現像剤槽9のキャリヤ粒子とトナー粒子の混合から
成る現像剤りを攪拌する攪拌翼、11は、現像剤搬送担
体6上の現像剤層の厚さを規制する層厚規制ブレード、
12は、トナー搬送担体2からトナ一層を掻き落すクリ
ーニングブレード、13は、現像剤搬送担体5から現像
剤を掻き落すクリーニングブレード、14は、トナーホ
ッパー、15は、トナーホッパ=14からトナー粒子T
を現像剤槽9に補給するトナー補給ローラである。そし
て、第1図の現像装置は、磁石体6が矢印方向に回転し
、それによって現像剤槽9の現像剤りの層が現像剤搬送
担体5の表面に形成されて、磁石体6゛の回転とは逆の
矢印方向に移動するようになるものであり、現像剤搬送
担体5は、現像剤層の移動と同方向あるいは逆方向に回
転させることが好ましいが、静止しているものでもよい
。第2図の現像装置は、磁石体6が静止していて、現像
剤搬送担体5が矢印方向に回転することによって、現像
剤搬送担体5の回転と共に移動する現像剤層が形成され
るものであり・磁石体6は、トナー搬送担体2に対向す
る磁極の磁束密度を他の磁極の磁束密度よりも大きくし
ている。それは、特に磁化を強くすること、同極あるい
は異極の磁極を近接させて設けること等によってなされ
る。
In the figure, 1 is a rotating drum that has an image forming layer made of a photoreceptor or dielectric material such as SE on its surface, and an electrostatic latent image is formed on the image forming layer by a charging/exposure device (not shown). 2 is a roller-shaped toner transport carrier made of a non-magnetic material such as stainless steel or aluminum; 3 is a roller-shaped toner transport carrier that rotates in the direction of the arrow; 3 is a roller-shaped toner transport carrier that applies a bias voltage to the toner transport carrier via a protective resistor 4; The power to be applied, 5, is usually 500
~1500 Multiple magnetic poles N magnetized to the magnetic flux density of glass
, S is a cylindrical developer transport carrier made of a non-magnetic material such as stainless steel or aluminum, in which a magnet body 6 having magnets 6 and S is provided.
9 is a power supply for applying a bias voltage to a developer tank; 10 is a developer tank;
11 is a stirring blade that stirs the developer layer consisting of a mixture of carrier particles and toner particles in the developer tank 9; 11 is a layer thickness regulation blade that regulates the thickness of the developer layer on the developer transport carrier 6;
12 is a cleaning blade that scrapes off one layer of toner from the toner transport carrier 2; 13 is a cleaning blade that scrapes off the developer from the developer transport carrier 5; 14 is a toner hopper; and 15 is a toner particle T from the toner hopper = 14.
This is a toner supply roller that supplies toner to the developer tank 9. In the developing device shown in FIG. 1, the magnet body 6 rotates in the direction of the arrow, whereby a layer of developer in the developer tank 9 is formed on the surface of the developer transport carrier 5, and the magnet body 6 rotates in the direction of the arrow. The developer transport carrier 5 is preferably rotated in the same direction or in the opposite direction to the movement of the developer layer, but it may be stationary. . In the developing device shown in FIG. 2, the magnet body 6 is stationary and the developer transport carrier 5 rotates in the direction of the arrow, thereby forming a developer layer that moves with the rotation of the developer transport carrier 5. In the magnet body 6, the magnetic flux density of the magnetic pole facing the toner transport carrier 2 is made larger than the magnetic flux density of the other magnetic poles. This is done by, among other things, increasing the magnetization, and placing magnetic poles of the same or different polarities close to each other.

以上のような現像装置は、攪拌翼10等が現像剤槽9中
の現像剤りを攪拌して、トナー粒子が主としてキャリヤ
粒子との摩擦により帯電するようになり、現像剤搬送担
体5に付着して矢印方向に移動する現像剤層から帯電し
たトナー粒子が現像剤搬送担体5とトナー搬送担体2に
それぞれ電源7と3により適当なバイアス電圧を印加さ
れていることによってトナー搬送担体2に移行してトナ
ー搬送担体2上にトナ一層を形成し、トナー搬送担体2
と像担持体1の5表面が対向している現像域Aにおいて
トナー搬送担体2のトナ一層からトナー粒子が像担持体
1の静電潜像に飛翔して付着するようになるものである
。すなわち、トナー搬送担体2は像担持体1に対してト
ナ一層が接触しない適当な狭い表面間隙を保つように設
けられる。
In the above-described developing device, the stirring blades 10 and the like stir the developer in the developer tank 9, and the toner particles become electrically charged mainly due to friction with the carrier particles and adhere to the developer transport carrier 5. The charged toner particles from the developer layer moving in the direction of the arrow are transferred to the toner transport carrier 2 by applying appropriate bias voltages to the developer transport carrier 5 and toner transport carrier 2 by power supplies 7 and 3, respectively. to form a single layer of toner on the toner transport carrier 2.
In the development area A where the 5 surfaces of the image carrier 1 face each other, toner particles from the toner layer of the toner transport carrier 2 fly and adhere to the electrostatic latent image on the image carrier 1. That is, the toner conveyance carrier 2 is provided so as to maintain an appropriately narrow surface gap with respect to the image carrier 1 so that a single layer of toner does not come into contact with it.

それに対して、現像剤搬送担体5に刻しては、トナー搬
送担体2を現像剤搬送担体5の現像剤層が摺擦する適当
な表面間隙としても、あるいは、現像剤j町が接触しな
い適当な狭い表面間隙としてもよい。しかし、現像剤に
抵抗率が108Ωα以上と元った絶縁性キャリヤ粒子を
用いる本発明においては、現像剤搬送担体5やトナー搬
送担体2に現像剤層から帯電したトナー粒子が飛翔して
トナー搬送担体2に移行する適当なバイアス電圧を印加
することが容易にできるから、掃き目や逆極性帯電゛ト
ナー粒子の移行等が生ずる惧れのない現像剤層非接触の
条件とすることが好ましい。
On the other hand, by carving the toner transport carrier 5, the toner transport carrier 2 can be used as an appropriate surface gap where the developer layer of the developer transport carrier 5 rubs, or an appropriate surface gap where the developer layer does not come in contact with the toner transport carrier 2. A narrow surface gap may also be used. However, in the present invention, in which insulating carrier particles having a resistivity of 10 8 Ωα or more are used as the developer, charged toner particles from the developer layer fly onto the developer transport carrier 5 and the toner transport carrier 2, and the toner is transported. Since it is possible to easily apply an appropriate bias voltage for transfer to the carrier 2, it is preferable to use conditions in which the developer layer does not come into contact without causing any risk of scratches or transfer of reversely charged toner particles.

本発明は、以上のような現像装置に平均粒径が5〜50
μmで抵抗率が10Ω値以上、好ま゛しくは10 Ωは
以上の絶縁性キャリヤ粒子と平均粒径が20μm以下の
トナー粒子とから成る二成分現像剤を用いるようにした
ものである。
The present invention provides a developing device having an average particle size of 5 to 50 mm.
A two-component developer is used which comprises insulating carrier particles having a resistivity in μm of 10 Ω or more, preferably 10 Ω or more, and toner particles having an average particle size of 20 μm or less.

本発明に用いられるキャリヤ粒子は、鉄、クロム、ニツ
ーケル、:ffバルト等の金属、あるいはそれらの化合
物や合金、例えば四三酸化鉄、γ−酸化第二鉄、二酸化
クロム、酸化マンガン、フェライト、マンガン−銅系合
金と云った強磁性体乃至は常磁性体の粒子の表面をスチ
レン系樹脂、ビニル系樹脂、エチル系樹脂、ロジン変性
樹脂、アクリル系樹脂、ポリアミド樹脂、エポキシ樹脂
、ポリエステル樹脂等の樹脂やパルミチン酸、ステアリ
ン酸等の脂肪酸ワックスで被覆すること、あるいは、上
述のような磁性体の微粒子を分散台ダさせた上述のよう
な樹脂を粒子化することKよって得られる、抵抗率が1
08Ω傭以上、好ましくは1o13Ωス以上の絶縁性の
磁性粒から成る平均粒径が5〜50μm1好ましくは3
〜30μmのものである。なお、キャリヤ粒子は、耐久
安定性等の面がら、脂肪酸ワックスを用いたものよシも
、樹脂を用いたものの方が好ましい。
The carrier particles used in the present invention include metals such as iron, chromium, nickel, and balt, or compounds and alloys thereof, such as triiron tetroxide, γ-ferric oxide, chromium dioxide, manganese oxide, ferrite, The surface of particles of ferromagnetic or paramagnetic material such as manganese-copper alloy is coated with styrene resin, vinyl resin, ethyl resin, rosin modified resin, acrylic resin, polyamide resin, epoxy resin, polyester resin, etc. The resistivity can be obtained by coating with resin or fatty acid wax such as palmitic acid or stearic acid, or by making particles of the above-mentioned resin by dispersing fine particles of the above-mentioned magnetic material. is 1
08Ω or more, preferably 1013Ω or more, consisting of insulating magnetic grains with an average particle size of 5 to 50μm1, preferably 3
~30 μm. Note that, from the viewpoint of durability and stability, it is preferable to use a resin as the carrier particle rather than a fatty acid wax.

キャリヤ粒子の抵抗率は、粒子を0.5cm2の断面積
を有する容器に入れてタッピングした後、詰められた粒
子上KIKy/cm2の荷重を掛け、荷重と底面電極と
の間に1000 V/cmの電界が生ずる電圧と印加し
たときの電流値を読み取って得られる値である。また、
平均粒径は、各粒子の長軸長さと短軸長さの平均値の平
均である。
The resistivity of the carrier particles is determined by placing the particles in a container with a cross-sectional area of 0.5 cm2, tapping them, applying a load of KIKy/cm2 on the packed particles, and applying a load of 1000 V/cm between the load and the bottom electrode. This value is obtained by reading the voltage at which an electric field is generated and the current value when applied. Also,
The average particle size is the average of the long axis length and short axis length of each particle.

キャリヤ粒子の抵抗率が108ΩGよりも低いと、され
て、トナー搬送担体2にキャリヤ粒子が付着し易くなっ
たり、十分なバイアス電圧の印加ができなくなったりす
ると云う問題が生ずる。
If the resistivity of the carrier particles is lower than 10 8 ΩG, problems arise in that the carrier particles tend to adhere to the toner transport carrier 2 or that a sufficient bias voltage cannot be applied.

また、キャリヤ粒子の平均粒径が5μmよシも小さくな
ると、それに伴って磁石体6の磁力によって吸着される
力が弱くなり、それに反して電気的なり−ロン力やファ
ンデルワールス力が強くなって、キャリヤ粒子がトナー
粒子と共にトナー搬送担体2に付着し易くなる。反対に
、′キャリヤ粒子の平均粒径が50μmよシも大きくな
ると、現像剤搬送担体5に形成される現像剤層が粗雑に
なって、現像剤層でトナー搬送体20表面を摺擦する場
合は勿論のこと、非接触でトナー粒子を移行させる場合
もトナー搬送体2上に表面状態が均一なトナ一層が形成
されなくなる。また、バイアス電圧のブレークダウンや
放電も起り易くなって、現像剤搬送担体5やトナー搬送
担体2に高電圧を印加することができなくなる。
Furthermore, when the average particle diameter of the carrier particles becomes smaller than 5 μm, the adsorption force by the magnetic force of the magnet body 6 becomes weaker, and on the other hand, the electric Ron force and Van der Waals force become stronger. Therefore, the carrier particles tend to adhere to the toner transport carrier 2 together with the toner particles. On the other hand, when the average particle size of the carrier particles becomes larger than 50 μm, the developer layer formed on the developer transport carrier 5 becomes rough, and the developer layer may rub against the surface of the toner transport member 20. Needless to say, even when toner particles are transferred without contact, a single layer of toner with a uniform surface condition cannot be formed on the toner conveying member 2. Furthermore, bias voltage breakdown and discharge tend to occur, making it impossible to apply high voltage to the developer transport carrier 5 and the toner transport carrier 2.

本発明に用いられるトナー粒子は、従来の非磁性または
磁性トナー粒子を平均粒径選別手段によって選別したよ
う々、不定形あるいは球形の、平均粒径が20μm以下
、好ましくは1〜10μmのものである。すなわち、キ
ャリヤ粒子について述べたような樹脂またはさらに磁性
体の微粒子を用い、それにカーボン等の着色成分や必要
に応じて帯電制御剤等を加えて、従来公知のトナー粒子
製造方法と同様の方法によって作ることができる。
The toner particles used in the present invention are amorphous or spherical and have an average particle size of 20 μm or less, preferably 1 to 10 μm, like conventional non-magnetic or magnetic toner particles that are sorted by an average particle size sorting means. be. That is, using fine particles of resin or magnetic material as described for the carrier particles, adding a coloring component such as carbon and a charge control agent as necessary, and using a method similar to the conventional method for producing toner particles. can be made.

なお、平均粒径はキャリヤ粒子において定義したと同様
の値である。 。
Note that the average particle diameter is the same value as defined for the carrier particles. .

トナー粒子の平均粒径が20μmよりも大きくなると、
重量に対する帯電量が減少して移行制御が困難となシ、
現像における濃淡等の解像度も低下する。また、平均粒
径が余りに小さくなり過ぎると、トナー粒子1個の摩擦
による帯電量が小さくなるのと相対的にファンデルワー
ルス力が大きくなるから、トナー搬送担体2と現像剤搬
送担体5の間にバイアス電圧を印加してもトナー粒子が
キャリヤ粒子から分離し難くなる。したがって、トナー
粒子の平均粒径は、0.5〜20μm、好ましくは1〜
10μmの範囲とするのがよい。そして、平均帯電量が
3〜300μC/2、特に5〜50μC/2となるよう
に摩擦帯電するものが好ましい。
When the average particle size of the toner particles is larger than 20 μm,
The amount of charge relative to the weight decreases, making transfer control difficult.
Resolution such as shading during development also decreases. Furthermore, if the average particle diameter becomes too small, the van der Waals force becomes large relative to the amount of charge due to friction of one toner particle becoming small, so the gap between the toner transport carrier 2 and the developer transport carrier 5 increases. Even if a bias voltage is applied to the toner particles, it becomes difficult to separate the toner particles from the carrier particles. Therefore, the average particle size of the toner particles is 0.5 to 20 μm, preferably 1 to 20 μm.
The range is preferably 10 μm. It is preferable to use a material that is triboelectrically charged so that the average charge amount is 3 to 300 μC/2, particularly 5 to 50 μC/2.

さらにトナー粒子は、磁性体微粒子を50wt%を超え
ない範囲で含有したものであることが好ましい。トナー
粒子が磁性体微粒子を含有していると、現像剤搬送担体
5に内蔵されている磁石体6の磁力の影響を受けるよう
になるから、現像剤搬送担体5に形成される現像剤層の
均一性が向上すると共に、帯電量の大きいトナー粒子を
選択的にトナー搬送担体2に移行させるトナーの荷電制
御性が向上し、その結果、現像におけるトナー粒子の制
御性も向上して、かぶりの発生が防止され、トナー粒子
の飛散も起りにくくなる。しかし、磁性体微粒子の含有
量を多くし過ぎると、磁石体6の磁力の影響を強く受け
過ぎるようになったり、磁性体微粒子がトナー粒子の表
面に現われるようになって摩擦帯電制御が難しくなった
り、キャリヤ粒子との間で凝集し易くなったりして、ト
ナー粒子を〔−ナー搬送担体2に移行させて十分な層厚
のトナ一層を形成することが困難になるし、また、トナ
ー粒子が破損し易くなったり、カラートナーの場合は磁
性体微粒子の色によって鮮明なカラーが得られなくなっ
たりもする。
Furthermore, the toner particles preferably contain magnetic fine particles in an amount not exceeding 50 wt%. If the toner particles contain magnetic fine particles, they will be influenced by the magnetic force of the magnet 6 built into the developer transport carrier 5, so that the developer layer formed on the developer transport carrier 5 will be In addition to improving uniformity, toner charge controllability that selectively transfers toner particles with a large charge amount to the toner transport carrier 2 is improved, and as a result, toner particle controllability during development is also improved, reducing fogging. This prevents the occurrence of toner particles, and scattering of toner particles also becomes less likely to occur. However, if the content of magnetic particles is too large, the magnetic force of the magnet body 6 will be too strong, or the magnetic particles will appear on the surface of the toner particles, making it difficult to control triboelectric charging. The toner particles may easily aggregate with the carrier particles, making it difficult to transfer the toner particles to the toner transport carrier 2 and form a single layer of toner with a sufficient thickness. In the case of color toner, it may become difficult to obtain clear colors due to the color of the magnetic particles.

本発明においては、以上述べたようなキャリヤ粒子とト
ナー粒子とが現像剤槽9で従来の二成分現像−剤と同様
の割合で混合され用いられる。それには、必要に応じて
、現像剤粒子の流動滑りをよくチるための流動化剤や、
トナー搬送担体2や像相持体1の面の清浄化に役立つク
リーニング剤等が混合される。流動化剤としては、コロ
イダルシリカ、シリコンフェス、金属石鹸あるいは非イ
オン表面活性剤等を用いることができ、クリーニング剤
としては、脂肪酸金属塩、有機基置換シリコンやフッ素
等の表面活性剤を用いることができる。
In the present invention, the carrier particles and toner particles as described above are mixed in the developer tank 9 in the same proportion as a conventional two-component developer. For this purpose, if necessary, a fluidizing agent is added to prevent the developer particles from flowing smoothly.
A cleaning agent and the like useful for cleaning the surfaces of the toner transport carrier 2 and the image carrier 1 are mixed. As a fluidizing agent, colloidal silica, silicon face, metal soap, or a nonionic surfactant can be used, and as a cleaning agent, a surfactant such as fatty acid metal salt, organic group-substituted silicon, or fluorine can be used. I can do it.

以上のような現像剤を用いることによって、トナー粒子
は現像剤槽9においてよく摩擦帯電するようにな少、そ
して、キャリヤ粒子はトナー粒子と共に現像剤搬送担体
5上に緻密で均一な現像剤層を形成して、現像剤搬送担
体5やトナー搬送担体2に高圧のバイアス電圧の印加が
可能になるから、トナー粒子のトナー搬送担体2への移
行制御が容易になり、したがってトナー粒子の帯電極性
が揃って帯電量も大きく、層厚が均一で表面状態も均一
なトナ一層を形成することができ、そのトナ一層からト
ナー粒子を飛翔させて像担持体1の静電潜像に付着させ
る現像をかぶりなく高い解像度で行うことができる。
By using the above-mentioned developer, the toner particles are sufficiently triboelectrified in the developer tank 9, and the carrier particles form a dense and uniform developer layer on the developer transport carrier 5 together with the toner particles. Since it is possible to apply a high bias voltage to the developer transport carrier 5 and the toner transport carrier 2 by forming a development process in which a single layer of toner can be formed with a large amount of charge, a uniform layer thickness, and a uniform surface condition, and toner particles are caused to fly from the toner layer and adhere to the electrostatic latent image on the image carrier 1. can be performed at high resolution without fogging.

この場合、現像剤搬送担体5からトナー粒子をトナー搬
送担体2に移行させるのは、現像剤層をトナー搬送担体
2に接触させる条件としてもよいが、逆極性に帯電した
トナー粒子の移行を防止するためには現像剤層を接触さ
せない条件とすることが好ましい。それはにトナー搬送
担体2と現像剤搬送担体5の間隙を数10〜2000μ
mとし、現像剤層の層厚を層厚規制ブレード11によっ
てトナー搬送担体2に接触しない範囲で厚く規制して、
トナー搬送担体2と現像剤搬送担体5の間に電源7と3
によって50〜100OVの直流成分と100 Hz 
〜10 kHz 1好ましくは1〜5kzの300〜4
000Vの交流成分から成るバイアス電圧を印加し、そ
の結果、トナー搬送担体2上にトナー粒子が数層の厚さ
に堆積するトナ一層の得られる条件である。
In this case, the toner particles may be transferred from the developer transport carrier 5 to the toner transport carrier 2 under the condition that the developer layer is brought into contact with the toner transport carrier 2, but the transfer of toner particles charged to the opposite polarity is prevented. In order to achieve this, it is preferable to use conditions that do not allow the developer layer to come into contact with each other. That is, the gap between the toner transport carrier 2 and the developer transport carrier 5 is several tens to 2,000 μm.
m, and the layer thickness of the developer layer is regulated to be thick enough to not come into contact with the toner transport carrier 2 by the layer thickness regulating blade 11,
Power supplies 7 and 3 are connected between the toner transport carrier 2 and the developer transport carrier 5.
DC component of 50-100OV and 100Hz by
~10 kHz 1 preferably 1-5kHz 300-4
This is a condition in which a bias voltage consisting of an alternating current component of 000 V is applied, and as a result, toner particles are deposited on the toner transport carrier 2 to a thickness of several layers to form a single layer of toner.

こ−で、トナー搬送担体2と現像剤搬送担体5の間隙が
5000μmよりも広くなると、両者の間にバイアス電
圧を印加してもその効果が現われなくなって、トナー粒
子の移行が行われなくなるし、逆に、間隙を狭くし過ぎ
ると、接触させないための現像剤層の厚さが薄くなり過
ぎて均一性が得られなくなり、したがって均一で十分な
層厚の士ナ一層も形成されなくなるし、また、トナー搬
送担体2と現像剤搬送担体5の間で放電し易くなって、
現像剤を損傷したり、トナー粒子を飛散させたシし易く
なる。なお、放電し易くなると云う問題に対しては、現
像剤搬送担体5やトナー搬送担体2の表面に樹脂や酸化
被膜の絶縁乃至は半絶縁表層を設けるようにしてもよい
。また、トナー搬送担体2と現像剤搬送担体5の間のバ
イアス電圧の直流成分は、帯電したトナー粒子のトナー
搬送担体2への移行を促進させる極性で与えられ、その
電圧値を高くすると、トナ一層の厚さが厚くなり画像濃
度が高くなるから、これを画像濃度調整に用いることが
できる。なお、トナー粒子が磁性粒子の場合は、この電
圧値を高くするようになる。
If the gap between the toner transport carrier 2 and the developer transport carrier 5 becomes wider than 5000 μm, even if a bias voltage is applied between them, the effect will no longer appear, and toner particles will no longer be transferred. On the other hand, if the gap is made too narrow, the thickness of the developer layer to prevent contact will become too thin and uniformity will not be obtained, and therefore even a single layer of uniform and sufficient thickness will not be formed. In addition, it becomes easy to discharge between the toner transport carrier 2 and the developer transport carrier 5,
This can easily damage the developer or cause toner particles to scatter. In order to solve the problem of easy discharge, an insulating or semi-insulating surface layer of resin or oxide film may be provided on the surfaces of the developer transport carrier 5 and the toner transport carrier 2. Further, the DC component of the bias voltage between the toner transport carrier 2 and the developer transport carrier 5 is given with a polarity that promotes the transfer of charged toner particles to the toner transport carrier 2, and when the voltage value is increased, the toner Since the thickness of each layer becomes thicker and the image density becomes higher, this can be used for adjusting the image density. Note that when the toner particles are magnetic particles, this voltage value is increased.

バイアス電圧の交流成分は、現像剤層に振動を与えてト
ナー粒子を飛翔し易くすると共にトナー搬送担体2上に
均一なトナ一層の形成を行われ易くするものであるが、
周波数が小さ過ぎればトナ一層の移動に周波数によるム
ラを生じるようになり、大き過ぎても現像剤層がそれに
追随できずに振動の効果が減少する。そして、交流成分
の電圧値は、周波数にも関係するが、高い程現像剤層を
振動させる。しかし、高過ぎると、帯電量の小さ ・い
トナー粒子もトナー搬送担体2に移行し易く々つたり、
放電が起シ易くなったり、キャリヤ粒子までもトナー搬
送担体2に移行し易くなる。
The alternating current component of the bias voltage vibrates the developer layer, making it easier for toner particles to fly, and making it easier to form a uniform layer of toner on the toner transport carrier 2.
If the frequency is too small, the movement of the toner layer will be uneven due to the frequency, and if it is too large, the developer layer will not be able to follow it and the effect of vibration will be reduced. Although the voltage value of the AC component is also related to the frequency, the higher the voltage value, the more the developer layer is vibrated. However, if the charge is too high, toner particles with a small amount of charge also tend to transfer to the toner transport carrier 2, causing splatter.
Discharge becomes more likely to occur, and even carrier particles become more likely to transfer to the toner transport carrier 2.

以上のような条件で形成されたトナー搬送担体2上のト
ナ一層からトナー粒子を飛翔させて像形成体lの静電潜
像を現像するのは、トナー搬送担体2と像形成体1の表
面間隙を数10〜1000μmとし、トナー搬送担体2
には¥#L源3によって、かぶりを防ぐために、ポジ現
像では像形成体1の非画像部電位以上の50〜500■
の直流電圧と、トナ一層やさらには飛翔しているトナー
粒子に振動を与えてトナー粒子の静電潜像への移行をし
易くするために、100 Hz 〜10 kHz 、好
ましくは1〜5 kHzの300〜1000 Vの交流
電圧との重畳から成るバイアス電圧を印加する条件が好
ましい。
The electrostatic latent image on the image forming body 1 is developed by flying toner particles from the toner layer on the toner conveying body 2 formed under the above conditions, on the surfaces of the toner conveying body 2 and the image forming body 1. The gap is several tens to 1000 μm, and the toner transport carrier 2
In order to prevent fogging, the electric potential of the non-image area of the image forming member 1 is higher than the potential of 50 to 500 cm by the L source 3.
DC voltage of 100 Hz to 10 kHz, preferably 1 to 5 kHz, in order to give vibration to the toner layer and even the flying toner particles to facilitate the transition of the toner particles to an electrostatic latent image. It is preferable to apply a bias voltage of 300 to 1000 V superimposed on an alternating voltage of 300 to 1000 V.

ここで、像形成体1とトナー搬送担体2の表面間隙が狭
過ぎると、かぶりが発生し易くなったシ、バイアス電圧
の放電が起り易くなって像形成体1を痛め易くなる。反
対に表面間隙を2000μmよりも広げると、バイアス
電圧印加の効果が得られなくなって、トナー粒子の移行
が減少し、十分な現像濃度が得られずに、エツジ効果が
目立つようになる。まだ、かぶりを防止するだめのバイ
アス電圧の直流電圧は、トナー粒子の像形成体1への移
ろを抑制するものであるから、高過ぎれば十分な現像濃
度が得られなくなることは勿論である。
Here, if the surface gap between the image forming member 1 and the toner transport carrier 2 is too narrow, fogging is likely to occur, and bias voltage discharge is likely to occur, making the image forming member 1 more likely to be damaged. On the other hand, if the surface gap is made larger than 2000 μm, the effect of applying a bias voltage is no longer obtained, the transfer of toner particles is reduced, a sufficient developed density is not obtained, and the edge effect becomes noticeable. However, since the DC voltage of the bias voltage used to prevent fogging is to suppress the transfer of toner particles to the image forming member 1, it goes without saying that if it is too high, a sufficient developed density cannot be obtained.

トナー粒子が磁性粒子の場合は、トナー搬送担体2の内
部に現像域Aに対向して磁石を設けることにより、この
直流電圧を低くすることができる。
When the toner particles are magnetic particles, this DC voltage can be lowered by providing a magnet inside the toner transport carrier 2 facing the development area A.

バイアス電圧の交流電圧は、先に述べた1、像剤搬送担
体5かもトナー搬送担体2へのトナー粒子の移行の場合
と同様、周波幹が小さ過ぎても大き過ぎてもトナー粒子
が移行しにくくなって、現像濃度及び鮮明度が低下して
画質力;低下するようになシ、電圧値が高過ぎるとかぶ
シや放電を生じさせアス電圧は、以上のようにトナ一層
から像形成体1に移行するトナー粒子の制御を行うと共
に、現像剤搬送担体5の現像剤層からトナー搬送担体2
へ移行するトナー粒子の制御も行うものであるから、先
に述べた現像剤層からトナー搬送担体2にトナー粒子を
移行させるだめのバイアス電、圧は、このトナー搬送担
体2に印加するバイアス電圧を含むものである。それに
対して、像形成体1とトナー搬送担体2の間隙の間に、
トナー粒子の像形成体1への飛翔を妨げないグリッド電
極やワイヤー電極の如き制御電極を設けて、この制御′
磁極にトナー粒子の移行を制御するバイアス電圧を印加
するようにすれば、このバイアス電圧は現像剤層からト
ナー搬送担体2へのトナー粒子の移行には殆んど影響し
ないから、現像剤層からトナー搬送い得るようになる。
The alternating current voltage of the bias voltage is similar to the case of the transfer of toner particles from the developer transport carrier 5 to the toner transport carrier 2 as described above. If the voltage value is too high, fogging or discharge will occur. 1, and the toner particles are transferred from the developer layer of the developer transport carrier 5 to the toner transport carrier 2.
Since the purpose is to control the toner particles that migrate to the toner transport carrier 2, the bias voltage and pressure for transferring the toner particles from the developer layer to the toner transport carrier 2 are determined by the bias voltage applied to the toner transport carrier 2. This includes: On the other hand, between the image forming body 1 and the toner transport carrier 2,
This control '
If a bias voltage is applied to the magnetic pole to control the transfer of toner particles, this bias voltage will have almost no effect on the transfer of toner particles from the developer layer to the toner transport carrier 2. Toner transportation becomes possible.

尤も、トナー搬送担体2に印加するバイアス電圧の直流
電圧は、かぶシを防止すると共に現像剤層からトナー搬
送担体2へのトナー粒子の移行を促進するものであり、
また交流電圧′も振動を与えてトナー粒子を移行し易く
するものであるから、別に制御電極を設けなくても、現
像剤搬送担体5とトナー搬送担体2に印加する電圧によ
って十分にトナー粒子の移行制御を行うことはできる。
Of course, the DC voltage of the bias voltage applied to the toner transport carrier 2 prevents fogging and promotes the transfer of toner particles from the developer layer to the toner transport carrier 2,
In addition, since the AC voltage ' also gives vibration and makes it easier for the toner particles to migrate, the voltage applied to the developer transport carrier 5 and the toner transport carrier 2 can sufficiently move the toner particles without providing a separate control electrode. Migration control can be performed.

本発明はまた、トナー搬送担体2や現像剤搬送担体5に
印加する電圧を適当に変えることによって、像担持体1
の非画像部にトナー粒子を付着させる反転現像にも利用
できる。その場合は、トナー搬送担体2には、像担持体
1の非画像部における受容電位と略等しい直流電圧成分
を持つバイアス電圧が印加される。
The present invention also allows the image carrier to be
It can also be used for reversal development in which toner particles are attached to non-image areas of the image. In that case, a bias voltage having a DC voltage component substantially equal to the potential accepted in the non-image area of the image carrier 1 is applied to the toner transport carrier 2 .

さらに本発明は、トナー粒子に磁性粒子を用いることに
よって磁気潜像の現像に本適用することができる。
Furthermore, the present invention can be applied to the development of magnetic latent images by using magnetic particles as toner particles.

〔実施例〕〔Example〕

以下、本発明をさらに具体的実施例によって説明する。 Hereinafter, the present invention will be further explained with reference to specific examples.

実施例1゜ キャリヤに平均粒径が30μm1磁化が50emu、 
/ ?、抵抗率が1014 Ω儂以上の樹脂コーティン
グされた球状フェライト粒子からなるものを用い、トナ
ーにスチレン・アクリル樹脂(三洋化成製ハイマーup
 110) 100重量部、カーボンブラック(三菱化
成MA−100110重量部、ニグロシン5重量部から
成る平均粒径が10μmの粉砕造粒法によって得られた
非磁性粒子からなるものを用いて、第1図に示した装置
により現像剤槽9における現像剤りのトナー粒子比率が
キャリヤ粒子に対して20wt%になる条件で現像を行
った。
Example 1゜Carrier with average particle size of 30 μm1 magnetization of 50 emu,
/ ? The toner is made of resin-coated spherical ferrite particles with a resistivity of 1014 Ω or more, and the toner is made of styrene-acrylic resin (Sanyo Kasei Hymer UP).
110) Using non-magnetic particles obtained by a pulverization granulation method with an average particle size of 10 μm, consisting of 100 parts by weight, carbon black (110 parts by weight of Mitsubishi Kasei MA-100, and 5 parts by weight of nigrosine), Development was carried out using the apparatus shown in 1 under conditions such that the ratio of toner particles in the developer tank 9 to the carrier particles was 20 wt %.

トナーの平均帯電量は15μC/7であった。The average charge amount of the toner was 15 μC/7.

この場合、像担持体1はCdS感光体、その周速は1s
 o trm/ sea 、像担持体1に形成された静
電像の最高電位−500■、トナー搬送担体2の外径2
゜鴎、その回転数17Orpm、像担持体1とトナー搬
送担体2の間90.31111Iすなわち300 p 
m %現像剤搬送担体5の外径30鴎、その回転数10
100rp磁石体6のN、S磁極の磁束密度は900ガ
ウス、その回転数は1’OOOrpm %現像剤搬送担
体5上の現像剤層の厚さ0.6.M、 トナー搬送担体
2と現像剤搬送担体5の間隙0.5mm、トナー搬送担
体2上のトナ一層の厚さ50μm、)ナー搬送担体2に
印加するバイアス電圧は直流電圧−250■と交流電圧
1.5 kHz 、 500 Vの重畳電圧、現像剤搬
送担体5に印加するバイアス電圧は+200■の直流電
圧としだ。すなわち、この場合は現像剤搬送担体5上の
現像剤層はトナー搬送担体2の表面に接触する条件にな
っている。
In this case, the image carrier 1 is a CdS photoreceptor, and its peripheral speed is 1 s.
o trm/sea, the highest potential of the electrostatic image formed on the image carrier 1 -500■, the outer diameter 2 of the toner transport carrier 2
゜Rotation speed: 17 Orpm, 90.31111I between the image bearing member 1 and the toner transport carrier 2, that is, 300 p.
m % The outer diameter of the developer transport carrier 5 is 30, and its rotation speed is 10.
The magnetic flux density of the N and S magnetic poles of the 100 rpm magnet body 6 is 900 Gauss, and its rotation speed is 1'OOOrpm.The thickness of the developer layer on the developer transport carrier 5 is 0.6. M, the gap between the toner transport carrier 2 and the developer transport carrier 5 is 0.5 mm, the thickness of one layer of toner on the toner transport carrier 2 is 50 μm,) the bias voltage applied to the toner transport carrier 2 is a DC voltage of −250μ and an AC voltage. The frequency was 1.5 kHz, the superimposed voltage was 500 V, and the bias voltage applied to the developer transport carrier 5 was a DC voltage of +200 V. That is, in this case, the condition is such that the developer layer on the developer transport carrier 5 comes into contact with the surface of the toner transport carrier 2.

以上の条件で現像を行って、千紅を普通紙にコロナ放電
転写器を用いて転写し、表面温度140℃の熱ローラ定
着装置に通して定着した結果、得られた記録紙の画像は
エツジ効果やかぶりの少ない、そして、濃度が高いきわ
めて鮮明なものであり゛、引続いて5万枚の記録紙を得
たが最初から最後まで安定して変らない画像を得ること
ができた。
Development was performed under the above conditions, Senku was transferred onto plain paper using a corona discharge transfer device, and the resulting image was fixed through a hot roller fixing device with a surface temperature of 140°C. It was extremely clear with little effect or fog, and had a high density.I subsequently produced 50,000 sheets of recording paper and was able to obtain a stable and unchanging image from beginning to end.

これに対して、上記キャリヤ粒子が樹脂コートのない平
均粒径が30μmのジェライト粒子を用いた場合は、抵
抗率が107Ωcm(あり、トナー搬送担体2や現像剤
搬送担体5に印加し得るバイアス電圧の直流電圧や交流
電圧の電圧値が低くなって、現像濃度も低くなり、得ら
れた画像には荒れが認められた。
On the other hand, when gelite particles with an average particle diameter of 30 μm and no resin coating are used as the carrier particles, the resistivity is 107 Ωcm (there is a bias voltage that can be applied to the toner transport carrier 2 and the developer transport carrier 5). The voltage values of the DC voltage and AC voltage became low, and the developed density also became low, and roughness was observed in the obtained image.

実施例2゜ キャリヤ粒子に微粒フェライトを樹脂中に50wt%分
散した平均粒径が20μm1磁化が30emu/f1抵
抗率が1014Ωい以上の熱による球形化処理を行った
磁性粒子を用い、トナー粒子に平均粒径が5μmの非磁
性粒子を用いて、第2図に示した装置により現像剤槽9
における現像剤りのトナー粒子比率がキャリヤ粒子に対
して10wt%になる条件で現像を行った。トナーの平
均帯電量は30μaltであった。
Example 2 As carrier particles, toner particles were made into toner particles using thermally spheronized magnetic particles with an average particle diameter of 20 μm, magnetization of 30 emu/f, resistivity of 1014 Ω or more, in which 50 wt% of fine ferrite was dispersed in a resin. Using non-magnetic particles with an average particle size of 5 μm, the developer tank 9 is
Development was carried out under conditions such that the ratio of toner particles in the developer was 10 wt % relative to the carrier particles. The average charge amount of the toner was 30 μalt.

この場合の像担持体1及びトナー搬送c体2の条件は実
施例1と同じ、現像剤搬送担体5の外径も30訪である
が、その回転数は150rpms磁石体6のトナー搬送
担体2に対向した磁極の磁束密度は1200ガウス、現
像剤層の厚さ0.5111fi、トナー搬送担体2と現
像剤搬送担体5の間隙0.7 M、トナー搬送担体2上
のトナ一層厚40μm1トナー搬送担体2に印加するバ
イアス電圧は一200vの直流電圧と2 kHz 、 
1000 Vの交流電圧の重畳電圧、現像剤搬送担体5
に印加するバイアス電圧は+400■の直流電圧とした
。この実施例では現像剤搬送担体5上の現像剤層はトナ
ー搬送担体2に接触しない。
In this case, the conditions of the image carrier 1 and the toner transport body 2 are the same as in Example 1, and the outer diameter of the developer transport carrier 5 is also 30 mm, but the rotation speed of the toner transport carrier 2 of the magnet body 6 is 150 rpm. The magnetic flux density of the magnetic pole facing the toner is 1200 Gauss, the thickness of the developer layer is 0.5111fi, the gap between the toner transport carrier 2 and the developer transport carrier 5 is 0.7 M, and the thickness of the toner layer on the toner transport carrier 2 is 40 μm1.Toner transport The bias voltage applied to the carrier 2 is a DC voltage of -200 V and a frequency of 2 kHz,
Superimposed voltage of 1000 V AC voltage, developer transport carrier 5
The bias voltage applied was a DC voltage of +400 cm. In this embodiment, the developer layer on the developer transport carrier 5 does not contact the toner transport carrier 2.

以上の条件で現像を行って、それを普通紙にコロナ放電
して転写し、表面温度140℃のヒートローラ定着装置
に通して定着した結果、得られた記録紙の画像はエツジ
効果がなく、実施例1での画像よりかぶりのない、そし
て濃度が高いきわめて鮮明なものであり、引続いて5万
枚の記録紙を得たが最初から最後まで安定して変らない
画像を得ることができた。
The image was developed under the above conditions, transferred to plain paper by corona discharge, and fixed through a heat roller fixing device with a surface temperature of 140°C. The resulting image on the recording paper had no edge effect. The image was clearer with no fog and higher density than the image in Example 1, and even though 50,000 sheets of recording paper were subsequently obtained, it was not possible to obtain an image that remained stable from beginning to end. Ta.

これに対して、キャリヤ粒子に抵抗率が106Ω傭のも
のを用いた場合は、印加し得るバイアス電圧の直流電圧
や交流電圧が低くなって、画像は濃度が低く、荒れが認
められた。
On the other hand, when carrier particles having a resistivity of 10<6 >[Omega] were used, the bias voltage that could be applied, such as DC voltage or AC voltage, became low, resulting in images with low density and roughness.

実施例3゜ キャリヤ粒子に微粒フェライトを樹脂中に50wt%分
散した、平均粒径が20μm1磁化が30emu / 
f 、抵抗率が1014Ωa以上の熱による球形化処理
を行った磁性粒子を用い、トナー粒子に平均粒径が5μ
mの非磁性粒子を用いて、第1図示と同じ現像装置にょ
シ、現像剤槽9における現像剤りのトナー粒子比率がキ
ャリヤ粒子に対して10 wt%になる条件で現像を行
った。トナーの平均帯電量は30μa/yであった。
Example 3: 50 wt% of fine ferrite particles were dispersed in the resin as carrier particles, the average particle size was 20 μm, the magnetization was 30 emu/
f, using thermally spheroidized magnetic particles with a resistivity of 1014 Ωa or more, and toner particles with an average particle size of 5 μm.
Using the same non-magnetic particles as shown in FIG. 1, development was carried out using the same developing apparatus as shown in FIG. 1 under conditions such that the ratio of toner particles in the developer tank 9 was 10 wt % with respect to the carrier particles. The average charge amount of the toner was 30 μa/y.

この場合の像担持体1及びトナー搬送体2の条件は実施
例1と同じ、現像剤搬送担体5の外径も30■、但しそ
の回転数は100 rpm、 N 、 S極の磁束密度
は700ガウス、その回転数は500rpm。
In this case, the conditions of the image carrier 1 and the toner transport member 2 are the same as in Example 1, the outer diameter of the developer transport carrier 5 is also 30 cm, however, its rotation speed is 100 rpm, and the magnetic flux density of the N and S poles is 700 mm. Gauss, its rotation speed is 500 rpm.

現像剤層の厚さ0.6鰭、トナー搬送担体2と現像剤搬
送担体5の間[Q、7m+++、トナー搬送担体2上の
トナ一層厚30μms トナー搬送担体2に印加するバ
イアス電圧は一1oo vの直流電圧と1kHz。
The thickness of the developer layer is 0.6 fins, between the toner transport carrier 2 and the developer transport carrier 5 [Q, 7 m+++, the thickness of the toner layer on the toner transport carrier 2 is 30 μms, the bias voltage applied to the toner transport carrier 2 is -1oo DC voltage of v and 1kHz.

500vの交流電圧の重畳電圧、現像剤搬送担体5に印
加するバイアス電圧は+300vの直流電圧と3.5 
kHz 、 1500 Vの交流電圧の重畳電圧とした
The superimposed voltage of 500v AC voltage and the bias voltage applied to the developer transport carrier 5 are +300v DC voltage and 3.5V.
The voltage was a superimposed voltage of AC voltage of 1500 V at kHz.

以上の条件で現像を行つ′て、それを普通紙にコロナ放
電して転写し、表面温度140℃のヒートローラ定着装
置に通して定着した結果、得られた記録紙の画像はエツ
ジ効果やかぶシのない、そして濃度が高いきわめて鮮明
なものであり実施例1での画像より、解像力が高い点、
濃度が高い点で優れていた。引続いて5万枚の記録紙を
得たが最初から最後まで安定して変らない画像を得るこ
とができた。
After developing under the above conditions, the image was transferred to plain paper by corona discharge and fixed by a heat roller fixing device with a surface temperature of 140°C. The image has no blemishes, is very clear with high density, and has higher resolution than the image in Example 1.
It was excellent in terms of high concentration. Subsequently, we obtained 50,000 sheets of recording paper, but were able to obtain stable and unchanging images from beginning to end.

これに対して、キャリヤ粒子に抵抗率が105Ωすのも
のを用いた場合は、印加し得るバイアス電圧の直流電圧
や交流電圧が低くなって、画像は濃度が低くなり、荒れ
が認められた。
On the other hand, when carrier particles having a resistivity of 10 5 Ω were used, the bias voltage that could be applied, such as DC voltage or AC voltage, became lower, resulting in a lower density image and roughness.

なお、以上の実施例において、トナー搬送担体2や現像
剤搬送担体5に印加されるバイアス電圧の交流電圧成分
の波形は、正弦波に限らず、矩形波や三角波等であって
もよい。
In the above embodiments, the waveform of the AC voltage component of the bias voltage applied to the toner transport carrier 2 and the developer transport carrier 5 is not limited to a sine wave, but may be a rectangular wave, a triangular wave, or the like.

また、画像濃度の調整には、トナー搬送担体2と現像剤
搬送担体5に印加するバイアス電圧を変化させる方法が
簡便に利用できる・。
Further, to adjust the image density, a method of changing the bias voltage applied to the toner transport carrier 2 and the developer transport carrier 5 can be easily used.

例えば、高い画像濃度を実現するには、(1)トナー搬
送担体2に高いAC電圧を印加する(2)トナー搬送担
体2に低いAC周波数を印加する (3)トナー搬送担体2に低いDO電圧を印加する(4
)現像剤搬送担体5に高いDC電圧(トナーと同極性)
を印加する (5) 現像剤搬送担体5に高いAC電圧を印加する(
6)現像剤搬送担体5に低いAC周波数を印加する ようにすればよい。
For example, to achieve high image density, (1) apply a high AC voltage to the toner transport carrier 2, (2) apply a low AC frequency to the toner transport carrier 2, and (3) apply a low DO voltage to the toner transport carrier 2. (4
) High DC voltage on developer transport carrier 5 (same polarity as toner)
(5) Apply a high AC voltage to the developer transport carrier 5 (
6) A low AC frequency may be applied to the developer transport carrier 5.

以上と逆にバイアス電圧を変化させれば低い画像濃度を
得ることができる。
If the bias voltage is changed in the opposite way to the above, a low image density can be obtained.

このバイアス電圧を変化させる方法は、ポジ現像に関し
てのものであるが、反転現像や表面に絶縁層を有する感
光体を用いた方法でも同様の方法を適用し得る。すなわ
ち、上記(1) 、 (2) 、 (5) 、 (6)
は、(4)については、現像剤搬送担体5からトナーが
移°行し易い電界が生ずるように1さらに高いDC電圧
(トナーと同極性)を印加することが行われる。
This method of changing the bias voltage is related to positive development, but the same method can also be applied to reverse development or a method using a photoreceptor having an insulating layer on the surface. That is, the above (1), (2), (5), (6)
Regarding (4), an even higher DC voltage (same polarity as the toner) is applied so as to generate an electric field that facilitates the transfer of toner from the developer transport carrier 5.

画像濃度を変化させるのは、以上の方法以外に1トナ一
搬送担体2や現像剤搬送担体5の移動速度を上げること
によっても高濃度化を図シ得る。
In addition to the method described above, the image density can be increased by increasing the moving speed of the toner transport carrier 2 or the developer transport carrier 5.

また、現像を行わないときには、トナー搬送担体2をフ
ローティング状態にするとか、AC成分の印加を止める
とか、あるいは現像剤搬送担体5をフローティング状態
にするとか、トナー搬1担体2ヘトナー粒子が移行しな
いようにDC成分を切換える七かの方法によって、簡単
にトナー搬送担体2にトナ一層の形成が行われないよう
にしたり、トナ一層が形成されても余分な現像が行われ
ないようにすることができる。
In addition, when developing is not performed, the toner particles are not transferred to the toner transport carrier 2 by setting the toner transport carrier 2 in a floating state, stopping the application of the AC component, or setting the developer transport carrier 5 in a floating state. By using the seven methods of switching the DC component as described above, it is possible to easily prevent a single layer of toner from being formed on the toner transport carrier 2, or to prevent unnecessary development from being performed even if a single layer of toner is formed. can.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、平均粒径が50μm以下特に好ましく
は30μm以下の絶縁性キャリヤや平均粒径が10μm
以下のトナーを用いて支障なく、鮮明なかぶりのない記
録画像4得ることができると云う優れた効果が得られる
。゛ なお、本発明は、接散のカラートナーを用いて色重ねす
る特願昭58−183152号、同58−184381
号、同58−187000号、同58−187001号
各明細書に記載しているようなカラー現像にも利用し得
る。
According to the invention, the insulating carrier has an average particle size of 50 μm or less, particularly preferably 30 μm or less, or an insulating carrier with an average particle size of 10 μm or less.
An excellent effect can be obtained in that a clear, fog-free recorded image 4 can be obtained without any trouble using the following toners.゛The present invention is based on Japanese Patent Application No. 58-183152 and No. 58-184381, in which colors are overlapped using dispersed color toner.
It can also be used for color development as described in the specifications of No. 58-187000 and No. 58-187001.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図はそれぞれ本発明現像方法の実施に用
いられる現像装置の一例を示す概要構成図である。 1・・・像担持体、 2・・・トナー搬送担体、3.7
・・・電源、 4,8・・・保護抵抗、5・・・現像剤
搬送担体、 6・・・磁石体、9・・・現像剤槽、 j
O−°′攪拌翼・11・・・層厚規制ブレード、 12 、13・・・クリーニングブレード、14・・・
トナーホッパー、15・・・トナー補給ローラ。 特許出願人 小西六写真工業株式会社
FIGS. 1 and 2 are schematic diagrams each showing an example of a developing device used to carry out the developing method of the present invention. 1... Image carrier, 2... Toner transport carrier, 3.7
...Power source, 4,8...Protection resistor, 5...Developer transport carrier, 6...Magnet, 9...Developer tank, j
O-°' Stirring blade 11...Layer thickness regulating blade, 12, 13...Cleaning blade, 14...
Toner hopper, 15... Toner supply roller. Patent applicant Konishiroku Photo Industry Co., Ltd.

Claims (1)

【特許請求の範囲】 (1) キャリヤ粒子とトナー粒子とから成る二成分現
像剤を現像剤搬送担体面に供給して現像剤層を形成させ
、該現像剤搬送担体面上の現像剤層からトナー粒子をト
ナー搬送担体面に移行させてトナ一層を形成させ、トナ
ー搬送担体面上のトナ一層から像担持体面にトナー粒子
を飛翔させて像担持体の潜像にトナー粒子を付着させる
方法において、前記キャリヤ粒子を平均粒径が5〜50
μmの絶縁性粒子とし、前記トナー粒子の平均粒径を2
0μm以下としたことを特徴とする現像方法。 (2) 前−記現像剤搬送拒体とトナー搬送担体との間
に振動電界を形成するよう圧した特許請求の範囲第1項
記載の現像方法。 (5)前記現像剤搬送担体か6トナ一搬送担体へのトナ
ー粒子の移行が飛翔によって行われる特許請求の範M第
1項また線第2項記載の現像方法。
[Scope of Claims] (1) A two-component developer consisting of carrier particles and toner particles is supplied to a developer transporting carrier surface to form a developer layer, and a developer layer is formed on the developer transporting carrier surface. In a method in which toner particles are transferred to a toner transport carrier surface to form a single layer of toner, and toner particles are caused to fly from the toner layer on the toner transport carrier surface to an image carrier surface to adhere to a latent image on the image carrier. , the carrier particles have an average particle size of 5 to 50
The average particle diameter of the toner particles is 2 μm.
A developing method characterized in that the particle size is 0 μm or less. (2) The developing method according to claim 1, wherein pressure is applied to form an oscillating electric field between the developer conveyance rejecting body and the toner conveyance carrier. (5) The developing method according to claim M1 or 2, wherein the toner particles are transferred from the developer transport carrier to the toner transport carrier by flying.
JP58231434A 1983-12-09 1983-12-09 Developing method Pending JPS60123859A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58231434A JPS60123859A (en) 1983-12-09 1983-12-09 Developing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58231434A JPS60123859A (en) 1983-12-09 1983-12-09 Developing method

Publications (1)

Publication Number Publication Date
JPS60123859A true JPS60123859A (en) 1985-07-02

Family

ID=16923491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58231434A Pending JPS60123859A (en) 1983-12-09 1983-12-09 Developing method

Country Status (1)

Country Link
JP (1) JPS60123859A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126658A (en) * 1983-12-13 1985-07-06 Fujitsu Ltd Developing method
JPS61239266A (en) * 1985-04-16 1986-10-24 Fuji Xerox Co Ltd Developing method
JPS6252567A (en) * 1985-08-30 1987-03-07 Konishiroku Photo Ind Co Ltd Developing method
JPS62284365A (en) * 1986-06-03 1987-12-10 Fuji Xerox Co Ltd Image forming method
JPS63225262A (en) * 1987-03-16 1988-09-20 Canon Inc Developing method
JPH02221978A (en) * 1989-02-22 1990-09-04 Ricoh Co Ltd Developing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184158A (en) * 1982-04-21 1983-10-27 Konishiroku Photo Ind Co Ltd Developing method of electrostatic image

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184158A (en) * 1982-04-21 1983-10-27 Konishiroku Photo Ind Co Ltd Developing method of electrostatic image

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60126658A (en) * 1983-12-13 1985-07-06 Fujitsu Ltd Developing method
JPH0514909B2 (en) * 1983-12-13 1993-02-26 Fujitsu Ltd
JPS61239266A (en) * 1985-04-16 1986-10-24 Fuji Xerox Co Ltd Developing method
JPS6252567A (en) * 1985-08-30 1987-03-07 Konishiroku Photo Ind Co Ltd Developing method
JPS62284365A (en) * 1986-06-03 1987-12-10 Fuji Xerox Co Ltd Image forming method
JPS63225262A (en) * 1987-03-16 1988-09-20 Canon Inc Developing method
JPH02221978A (en) * 1989-02-22 1990-09-04 Ricoh Co Ltd Developing device

Similar Documents

Publication Publication Date Title
JPS58184158A (en) Developing method of electrostatic image
JPH0126057B2 (en)
JPS59181362A (en) Developing method
JPH0690543B2 (en) Development method
JPS60123859A (en) Developing method
JPS60131549A (en) Developing method
JPH0414793B2 (en)
JPS59222847A (en) Developing method
JPH047505B2 (en)
JPH07140730A (en) High-speed developing method for electrostatic charge image
JPS60131547A (en) Developing method
JPS60131545A (en) Developing method
JPH0256670B2 (en)
JPS59222853A (en) Developing method
JPS6122355A (en) Developing device
JPS59222852A (en) Developing method
JPS62234175A (en) Developing device
JP2607405B2 (en) Development method
JP2614817B2 (en) Development method
JPS61166571A (en) Developing device
JPH04350875A (en) Developing device
JPS60154261A (en) Reversal developing method
JPS60131546A (en) Developing method
JPH05210301A (en) Developing method
JPS62173479A (en) Developing method