JPH0435024A - Method of forming barrier metal - Google Patents

Method of forming barrier metal

Info

Publication number
JPH0435024A
JPH0435024A JP13990190A JP13990190A JPH0435024A JP H0435024 A JPH0435024 A JP H0435024A JP 13990190 A JP13990190 A JP 13990190A JP 13990190 A JP13990190 A JP 13990190A JP H0435024 A JPH0435024 A JP H0435024A
Authority
JP
Japan
Prior art keywords
film
barrier metal
wiring
metal
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13990190A
Other languages
Japanese (ja)
Inventor
Hirobumi Sumi
博文 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP13990190A priority Critical patent/JPH0435024A/en
Publication of JPH0435024A publication Critical patent/JPH0435024A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To improve heat resistance by increasing crystal grains of barrier metal and then depositing metal for wiring by depositing barrier metal of TiN in a contact hole and then emitting a pulse laser light having a short wavelength. CONSTITUTION:An SiO2 insulating film 12 is formed on a semiconductor substrate 11, a contact hole 13 is opened, and a TiN film 14 is deposited in the hole 13 by a sputtering method. The film 14 immediately after depositing has about 20nm of crystal grain size, and the film thickness at a bottom corner 13a is thin to the bottom center 13b, but when the film 14 is emitted with an excimer laser light 15 of an XeCl2, the crystal grain size of the film 14 is increased from 20nm to about 5mum. Accordingly, an Al film 16 is deposited as metal for wiring in the same apparatus, and patterned to form a wiring. Since not only the center 13b of the film 14 but also the bottom corner 13a are increased in the crystal grain size, Al penetration scarcely occurs.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、コンタクトホールへの配線に際し、耐熱性を
向上するためのバリヤメタルの形成方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of forming a barrier metal for improving heat resistance when wiring to a contact hole.

〔発明の概要〕[Summary of the invention]

本発明は、コンタクトホールへの配線を形成するに際し
、バリヤメタルとして窒化チタンを堆積し、次にエキシ
マレーザのような短波長のパルスレーザ光を照射し、次
に配線用メタルを堆積して配線を形成するバリヤメタル
の形成方法である。
In the present invention, when forming wiring to a contact hole, titanium nitride is deposited as a barrier metal, then short wavelength pulsed laser light such as an excimer laser is irradiated, and then wiring metal is deposited to form the wiring. This is a method for forming a barrier metal.

バリヤメタルに短波長のパルスレーザ光を照射すれば、
バリヤメタルの結晶粒が大粒径化し、結晶粒界の数が減
少するので、配線メタルのつき抜は度数が減少する。
If the barrier metal is irradiated with short wavelength pulsed laser light,
As the crystal grains of the barrier metal become larger and the number of grain boundaries decreases, the frequency of penetration of the wiring metal decreases.

〔従来の技術〕[Conventional technology]

半導体装置の活性領域にコンタクトホールを開口して、
アルミニウム(以下AIという)、あるいはその合金を
配線用メタルとして形成することが一般的に行われてい
る。この配線形成に先立ち、バリヤメタルを堆積して、
半導体基板であるシリコンとAIの反応を防止して耐熱
性の向上をはかることが行われていた。このバリヤメタ
ルには、遷移金属の窒化物や硅化物等が知られており、
なかでもチタンの窒化物が耐熱性に優れていることが知
られていた。
A contact hole is opened in the active region of the semiconductor device,
It is common practice to use aluminum (hereinafter referred to as AI) or an alloy thereof as a wiring metal. Prior to this wiring formation, a barrier metal is deposited,
Efforts have been made to improve heat resistance by preventing the reaction between silicon, which is a semiconductor substrate, and AI. Nitrides and silicides of transition metals are known as barrier metals.
Among these, titanium nitride was known to have excellent heat resistance.

近年、集積回路の高密度化に伴い、活性領域の拡散領域
はますます小さく、浅くなって来ている。
In recent years, with the increase in the density of integrated circuits, the active region diffusion region has become smaller and shallower.

そのために、コンタクトホールの穴の径に対する深さ、
すなわちアスペクト比が、ますます大きくなってきて、
単にバリヤメタルを堆積したのみでは、上部の配線用メ
タルのつき抜けを防止することが困難になって来ていた
For this purpose, the depth of the contact hole relative to the hole diameter,
In other words, the aspect ratio becomes larger and larger,
By simply depositing barrier metal, it has become difficult to prevent the upper wiring metal from penetrating through.

このつき抜は現象は、第3図に示すように、配線用メタ
ルのつき抜は度数が、バリヤメタルの結晶粒界の数に比
例して増加することに起因している。すなわち、つき抜
けは配線用メタルおよび下地のシリコンが、バリヤメタ
ル中を粒界拡散によって、反応を起すにいたるために生
ずる。
This punch-out phenomenon is caused by the fact that the frequency of punch-outs in the wiring metal increases in proportion to the number of crystal grain boundaries in the barrier metal, as shown in FIG. In other words, the penetration occurs because the wiring metal and the underlying silicon undergo a reaction due to grain boundary diffusion in the barrier metal.

この結晶粒界の数を減少させるために、硅化チタンや窒
化チタン(以下TiNという)をバリヤメタルとして用
い、その後ランプアニールによる熱処理によって結晶粒
の大粒径化をはかり、耐熱性を向上した例もあった(1
989年11月プレスジャーナル社発行90年度最新半
導体プロセス技術、267ないし273頁)。
In order to reduce the number of grain boundaries, there are examples of using titanium silicide or titanium nitride (hereinafter referred to as TiN) as a barrier metal, and then heat-treating with lamp annealing to increase the grain size and improve heat resistance. There was (1
1990 Latest Semiconductor Process Technology, published by Press Journal, November 1989, pp. 267-273).

また、本発明者によって、チタンサリサイド構造におい
て、耐AIつき抜は性を向上させるために、AIコンタ
クト部のみにエキシマレーザ照射を行って、結晶粒の大
粒径化をはかったものもあった(1990年3月第37
回応用物理学関係連合講演会講演予稿集第2分冊、59
2頁の下)。
In addition, the inventor of the present invention has developed a titanium salicide structure in which excimer laser irradiation was performed only on the AI contact area to increase the crystal grain size in order to improve the resistance to AI penetration. (No. 37, March 1990)
Proceedings of the Joint Conference on Applied Physics, Vol. 2, 59
bottom of page 2).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかるに、ランプアニールのような可視光ないし赤外線
を用いてバリヤメタルを加熱すれば、必然的に下地の半
導体基板も加熱されて、活性領域へのメタルの侵入や合
金化が起こり、リーク電流の増大等、特性劣化を生じる
。また、チタンサリサイド構造でのエキシマレーザ照射
は、極く表面のみの局所加熱であるため、下地に影響を
与えることなく、耐AIつき抜は性に有効であるが、コ
ンタクトホール内へのTiNの堆積は、選択性をよくす
るため、スパッタリング法を用いて行っている。
However, if the barrier metal is heated using visible light or infrared rays such as lamp annealing, the underlying semiconductor substrate will also be heated, causing the metal to invade the active region and become alloyed, resulting in an increase in leakage current, etc. , resulting in characteristic deterioration. In addition, since excimer laser irradiation on a titanium salicide structure only locally heats the surface, it does not affect the underlying layer and is effective in improving resistance to AI penetration, but it is effective in improving resistance to AI punching, but it is difficult to irradiate TiN into contact holes. The deposition is performed using a sputtering method to improve selectivity.

そのため、第2図に示すように、半導体基板1上の絶縁
膜2にコンタクトホール3を開口して、バリヤメタルと
してTiN膜4を形成したとき、底部コーナー3aにお
けるTiN膜の形状は、底部中央3bに比して膜厚が薄
く、つき抜は性に対して望ましくない。
Therefore, as shown in FIG. 2, when a contact hole 3 is opened in the insulating film 2 on the semiconductor substrate 1 and a TiN film 4 is formed as a barrier metal, the shape of the TiN film at the bottom corner 3a is the same as that at the bottom center 3b. The film thickness is thinner than that of the conventional method, and penetration is undesirable in terms of quality.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記課題を解決するために、コンタクトホール
内へTiNのバリヤメタルを堆積し、続いて短波長のパ
ルスレーザ光を照射することによって、バリヤメタルの
みを直接加熱して結晶粒の大粒化をはかり、しかる後配
線用メタルを堆積すれば、耐熱性の向上をはかることが
出来る。
In order to solve the above problems, the present invention deposits a TiN barrier metal inside the contact hole, and then irradiates it with a short wavelength pulsed laser beam to directly heat only the barrier metal and enlarge the crystal grains. If a wiring metal is then deposited, heat resistance can be improved.

〔作用〕[Effect]

バリヤメタルを堆積して後短波長のパルスレーザ光を照
射すれば、コンタクトホールの底部コーナーを含めてバ
リヤメタルの結晶粒の大粒径化が均一に生じ、しかる後
配線用メタルを堆積すればつき抜は防止の効果を高める
ことができる。
If the barrier metal is deposited and then irradiated with short wavelength pulsed laser light, the crystal grains of the barrier metal will uniformly increase in size, including the bottom corner of the contact hole, and if the wiring metal is then deposited, the crystal grains will be penetrated. can increase the effectiveness of prevention.

〔実施例〕〔Example〕

本発明の実施例を第1図aおよびbを用いて説明する。 An embodiment of the present invention will be explained using FIGS. 1a and 1b.

まず、第1図aに示すように、半導体基板11上にSi
O□のような絶縁膜12を形成し、コンタクトホール1
3を開口する。このコンタクトホール13内に、スパッ
タリング法を用いてTiN膜14を堆積する。
First, as shown in FIG. 1a, Si is placed on the semiconductor substrate 11.
An insulating film 12 like O□ is formed, and a contact hole 1 is formed.
Open 3. A TiN film 14 is deposited in this contact hole 13 using a sputtering method.

堆積した直後のTiN膜14は、結晶粒径が20r+n
+程度で、底部コーナー1’3aの膜厚が底部中央13
bに対して薄い。
The TiN film 14 immediately after being deposited has a crystal grain size of 20r+n.
+, the film thickness at the bottom corner 1'3a is at the bottom center 13
Thin compared to b.

引き続いてXeC1zのエキシマレーザ光15(波長3
08nm )を照射窓を通してTiN膜14に照射する
Next, XeC1z excimer laser light 15 (wavelength 3
08 nm) is irradiated onto the TiN film 14 through the irradiation window.

このレーザ光照射によって、TiN膜14の結晶粒径は
20nmから5μm程度に大粒径化する。その後、第1
図すに示すように、同一装置内で配線用メタルとしてA
1膜16を堆積させて、パターニングを行うことによっ
て配線を形成する。TiN膜14の底部中央13bはも
とより底部コーナー13aにおいても結晶粒径が大きく
なっているので、^lのつき抜けが生じにくい。
By this laser beam irradiation, the crystal grain size of the TiN film 14 is increased from 20 nm to about 5 μm. Then the first
As shown in the figure, A is used as wiring metal in the same device.
1 film 16 is deposited and patterned to form wiring. Since the crystal grain size is large not only at the bottom center 13b of the TiN film 14 but also at the bottom corners 13a, penetration of ^l is less likely to occur.

本発明において、下地材料の半導体基板はシリコンに限
定することなく、配線用メタルとの反応が生じ易い化合
物半導体材料であっても適用可能である。また、パリA
・メタルとして、高融点の遷移金属の窒化物や硅化物等
を用いて、配線用メタルと下地制料の粒界拡散を阻止す
る、窒化タングステンのような材料を用いても、同様に
適用可能である。
In the present invention, the underlying material of the semiconductor substrate is not limited to silicon, but may also be a compound semiconductor material that easily reacts with wiring metal. Also, Paris A
・It is also possible to use a material such as tungsten nitride, which uses a nitride or silicide of a transition metal with a high melting point as the metal to prevent grain boundary diffusion between the wiring metal and the underlying material. It is.

〔発明の効果〕〔Effect of the invention〕

本発明の実施例を用いて、バリヤメタルを堆積すれば、
コンタクトホールの底部コーナーを含めてバリヤメタル
の結晶粒の大粒径化を生じさせることが出来るので、上
部の配線用メタルと下地の半導体基板の粒界拡散による
反応を防止することが出来る。したがって、配線用メタ
ルのつき抜けが発生せず、耐熱性の向上に寄与する。ま
た、短波長のパルスレーザ光を用いて照射するので、下
地の半導体基板への損傷を与えることが少なく、リーク
電流も小さい。
If a barrier metal is deposited using embodiments of the present invention,
Since the grain size of the barrier metal can be increased including the bottom corner of the contact hole, it is possible to prevent a reaction between the upper wiring metal and the underlying semiconductor substrate due to grain boundary diffusion. Therefore, penetration of the wiring metal does not occur, contributing to improved heat resistance. Furthermore, since the irradiation is performed using a short wavelength pulsed laser beam, there is little damage to the underlying semiconductor substrate, and leakage current is also small.

【図面の簡単な説明】[Brief explanation of drawings]

第1図aおよびbは本発明のバリヤメタルの形成工程断
面図、第2図は従来のバリヤメタルの断面図、第3図は
結晶粒界の数とつき抜は度数の関係を示す図である。 1、L L−−−−−半導体基板 2、l 2’−−−−−−絶縁膜 3.13−−−−−−−コンタクトホール3a、13a
−底部コーナー 3b、13b−底部中央 4.1 t−−−−−−−TjN膜 15−−−−−−−−−一エキシマレーザ光16−−−
−−−−へI膜 尿
1A and 1B are cross-sectional views of the process of forming the barrier metal of the present invention, FIG. 2 is a cross-sectional view of a conventional barrier metal, and FIG. 3 is a diagram showing the relationship between the number of grain boundaries and the degree of perforation. 1, L L------Semiconductor substrate 2, l 2'------Insulating film 3.13---Contact holes 3a, 13a
-Bottom corners 3b, 13b -Bottom center 4.1 t---------TjN film 15------- Eximer laser beam 16---
---I membrane urine

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上のコンタクトホール内に、窒化チタンを
堆積する工程と、前記窒化チタンに短波長のパルスレー
ザ光を照射する工程と、配線用メタルを堆積して配線を
形成する工程からなるバリヤメタルの形成。
Formation of barrier metal consisting of a step of depositing titanium nitride in a contact hole on a semiconductor substrate, a step of irradiating the titanium nitride with short wavelength pulsed laser light, and a step of depositing wiring metal to form a wiring. .
JP13990190A 1990-05-31 1990-05-31 Method of forming barrier metal Pending JPH0435024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13990190A JPH0435024A (en) 1990-05-31 1990-05-31 Method of forming barrier metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13990190A JPH0435024A (en) 1990-05-31 1990-05-31 Method of forming barrier metal

Publications (1)

Publication Number Publication Date
JPH0435024A true JPH0435024A (en) 1992-02-05

Family

ID=15256261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13990190A Pending JPH0435024A (en) 1990-05-31 1990-05-31 Method of forming barrier metal

Country Status (1)

Country Link
JP (1) JPH0435024A (en)

Similar Documents

Publication Publication Date Title
JP4295922B2 (en) Gas immersion laser annealing method suitable for application in the fabrication of small integrated circuits
JP3704427B2 (en) Method for forming copper metal wiring of semiconductor device
JP3277533B2 (en) Method for manufacturing semiconductor device
US5780908A (en) Semiconductor apparatus with tungstein nitride
JPH03203322A (en) Manufacture of semiconductor device
JPH0964034A (en) Semiconductor device and manufacture thereof
US6287927B1 (en) Methods of thermal processing and rapid thermal processing
JPS61179578A (en) Making of field effect transistor
TWI693642B (en) Method for controlling the amount of radiation having a predetermined wavelength to be absorbed by a structure disposed on a semiconductor
JPH0435024A (en) Method of forming barrier metal
US7521277B2 (en) Method for manufacturing semiconductor device with low temperature dopant activation
JPS63181422A (en) Formation of titanium nitride film
JPS6312132A (en) Manufacture of semiconductor device
JPS58101466A (en) Manufacture of semiconductor device
JP3398543B2 (en) Method for manufacturing semiconductor device
JP2871262B2 (en) Method for manufacturing thin film transistor
US20030022489A1 (en) Method of fabricating high melting point metal wiring layer, method of fabricating semiconductor device and semiconductor device
JP2853143B2 (en) Method for manufacturing semiconductor device
US6294435B1 (en) Method of reducing word line resistance and contact resistance
JPH03129724A (en) Formation of wiring of semiconductor device
JPH04271125A (en) Semiconductor device and its manufacture
JPH02154421A (en) Selective nucleation
JPH04298029A (en) Method of manufacturing semiconductor device
JPS6163016A (en) Method for forming soi
KR940001256B1 (en) Method of forming metal wiring film