JPH04348876A - Diamond grinding wheel - Google Patents

Diamond grinding wheel

Info

Publication number
JPH04348876A
JPH04348876A JP12090991A JP12090991A JPH04348876A JP H04348876 A JPH04348876 A JP H04348876A JP 12090991 A JP12090991 A JP 12090991A JP 12090991 A JP12090991 A JP 12090991A JP H04348876 A JPH04348876 A JP H04348876A
Authority
JP
Japan
Prior art keywords
diamond
grinding wheel
cutting edge
film
accuracy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12090991A
Other languages
Japanese (ja)
Inventor
Toshio Tamura
利夫 田村
Hideo Yamakura
英雄 山倉
Yuji Ochiai
落合 雄二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12090991A priority Critical patent/JPH04348876A/en
Publication of JPH04348876A publication Critical patent/JPH04348876A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To provide a diamond grinding wheel having the height of diamond knifes with a submicroneous degree of accuracy by coating the outer peripheral surface of an end surface of the grind stone with a diamond film so as to align the tips of the diamond knifes with a high degree of accuracy. CONSTITUTION:A geometric shape 3a corresponding to a diamond knife is beforehand formed before a diamond layer is formed on a metal base 3. A diamond film 8 is formed on the geometric shape 3a so that the diamond knife is formed having a shape identical with the geometric shape 3a in order to form a diamond grinding wheel Thereby, the height of the diamond knife can be ensured with a submicroneous degree of accuracy, and accordingly, the sharpness is easily controlled. Thereby it is possible to obtain a diamond grind stone suitable for mirror-surface finishing.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、ダイヤモンド砥石に係
り、特に、切れ刃の揃ったダイヤモンド砥石に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a diamond grindstone, and more particularly to a diamond grindstone with uniform cutting edges.

【0002】0002

【従来の技術】従来、ダイヤモンド砥石の製造方法は、
たとえば、ダイヤモンド工具マニュアル(ダイヤモンド
工業協会、昭和54年5月発行p186〜p188)に
示されているように、焼結法と電着法とが知られている
。焼結法は、一般には粉末のボンド材料に砥粒のダイヤ
モンド粉末を混合し、型に入れて熱と圧力をかけて固結
させる方法である。従って、ダイヤモンド層は図4に示
すように、ダイヤモンド砥粒1がボンド剤2の中に分散
して存在することになる。一方、電着法は、図5に示す
ように、台金3上にダイヤモンド砥粒1を載せた状態で
電気メッキを行い、ニッケル等のメッキ金属4でダイヤ
モンド砥粒1を台金3上に保持する。従って、電着法で
はダイヤモンド砥粒1は基本的には台金3上に一層だけ
形成される。ここで使用されるダイヤモンド砥粒は平均
砥粒径が数μmから数十μmであり、しかも、砥粒径は
均一でなく平均砥粒径を中心にしてばらついている。た
とえば、平均砥粒径4μmの微細砥粒でも、実際には2
μmから6μmの砥粒径の範囲のものが使用されている
。砥石表面に存在するダイヤモンド砥粒で被削材と干渉
する砥粒を切れ刃と称するが、ダイヤモンド砥石を用い
た研削加工で良い加工表面を得るためには、この砥粒切
れ刃を制御することが重要である。すなわち、図4のa
及び図5のbに示したように、切れ刃の高さ方向の揃い
精度や、面内における砥粒の間隔を管理できることが必
要である。しかし、前述したように、従来の焼結法や電
着法では、使用する砥粒径のばらつきや砥粒の分散の状
態により、切れ刃高さ方向の揃い精度や砥粒間隔が異な
るため、これらの値を制御することは非常にむずかしい
。砥粒径を小さくしていくと、上述した切れ刃高さ方向
の揃い精度や砥粒間隔を小さくすることが原理的には可
能であるが、砥粒径を小さくしていくと、ボンドでの砥
粒保持力が小さくなることや、焼結時の砥粒の分散がむ
ずかしくなるため、実用的にはミクロンオーダの砥粒径
のものが限度であり、サブミクロンの精度で上述の切れ
刃精度を確保することは困難である。
[Prior Art] Conventionally, the manufacturing method of diamond grinding wheels was as follows:
For example, as shown in the Diamond Tool Manual (Diamond Industry Association, published May 1974, pages 186 to 188), the sintering method and the electrodeposition method are known. The sintering method is generally a method in which a powdered bond material is mixed with abrasive diamond powder, placed in a mold, and solidified by applying heat and pressure. Therefore, as shown in FIG. 4, the diamond layer has diamond abrasive grains 1 dispersed in the bonding agent 2. On the other hand, in the electrodeposition method, as shown in FIG. 5, electroplating is performed with diamond abrasive grains 1 placed on a base metal 3, and the diamond abrasive grains 1 are placed on the base metal 3 using a plating metal 4 such as nickel. Hold. Therefore, in the electrodeposition method, diamond abrasive grains 1 are basically formed in only one layer on the base metal 3. The diamond abrasive grains used here have an average abrasive grain diameter of several micrometers to several tens of micrometers, and moreover, the abrasive grain diameters are not uniform but vary around the average abrasive grain diameter. For example, even fine abrasive grains with an average abrasive grain diameter of 4 μm actually have a diameter of 2 μm.
Abrasive grains with a diameter ranging from .mu.m to 6 .mu.m are used. The diamond abrasive grains present on the surface of the grinding wheel that interfere with the workpiece are called cutting edges, and in order to obtain a good machined surface during grinding using a diamond grinding wheel, it is necessary to control this abrasive cutting edge. is important. That is, a in FIG.
As shown in FIG. 5B, it is necessary to be able to control the alignment accuracy of the cutting edges in the height direction and the spacing of the abrasive grains in the plane. However, as mentioned above, with conventional sintering and electrodeposition methods, the alignment accuracy in the height direction of the cutting edge and the abrasive grain spacing vary depending on the variation in the abrasive grain diameter used and the state of abrasive grain dispersion. Controlling these values is very difficult. In principle, by decreasing the abrasive grain size, it is possible to reduce the alignment accuracy in the height direction of the cutting edge and the abrasive grain spacing, but as the abrasive grain size is decreased, the bond Since the abrasive retention force of the abrasive grains becomes small and it becomes difficult to disperse the abrasive grains during sintering, the practical limit is to use abrasive grains with a grain size on the micron order, and the above-mentioned cutting edge with submicron precision It is difficult to ensure accuracy.

【0003】0003

【発明が解決しようとする課題】現在、ダイヤモンド砥
石を用いた研削加工において、主にセラミック等の硬脆
材料に対しても、従来の脆性破壊から延性破壊を主とし
た鏡面研削加工の実現が強く要望されている。このため
には、被削材と砥粒切れ刃との干渉量をサブミクロン以
下に高精度に制御する必要がある。このためにはダイヤ
モンド砥石の砥粒切れ刃を多くすることが重要であり、
前述したように切れ刃高さ精度をサブミクロンで揃える
とともに切れ刃の間隔を密にする。すなわち、均一でか
つ、小さくすることが必要であり、これらに適したダイ
ヤモンド砥石の製造方法が強く望まれている。
[Problem to be solved by the invention] Currently, in grinding using a diamond grinding wheel, it is difficult to realize mirror grinding that mainly produces ductile fracture instead of conventional brittle fracture, even for hard and brittle materials such as ceramics. It is strongly requested. For this purpose, it is necessary to control the amount of interference between the workpiece and the abrasive cutting edge with high precision to submicron or less. For this purpose, it is important to increase the number of abrasive cutting edges of the diamond whetstone.
As mentioned above, the height accuracy of the cutting edges is adjusted to submicron levels, and the intervals between the cutting edges are made close. That is, it is necessary to make the diamond grindstone uniform and small, and a method for manufacturing a diamond grindstone suitable for these needs is strongly desired.

【0004】0004

【課題を解決するための手段】ダイヤモンド砥石の砥粒
切れ刃を制御するため、従来ダイヤモンド層を形成した
台金の部分に、あらかじめ、砥粒切れ刃となる所定の幾
何学的形状を高精度に形成した後、ダイヤモンド薄膜を
形成することにより、幾何学的形状で形成した通りにダ
イヤモンド切れ刃を形成する手段を用いた。
[Means for solving the problem] In order to control the abrasive cutting edge of a diamond grinding wheel, a predetermined geometric shape that will become the abrasive cutting edge is formed with high precision on the part of the base metal on which a conventional diamond layer has been formed. A method was used to form a diamond cutting edge as formed in the geometrical shape by forming a diamond thin film after forming the diamond.

【0005】[0005]

【作用】台金に形成にする所定の幾何学的形状は、機械
加工や被電加工等の手段によりサブミクロンの精度で形
成でき、しかも、この幾何学的形状の上に形成するダイ
ヤモンド薄膜は5μm厚程度に形成できるため、幾何学
的形状の精度を維持したままダイヤモンド膜を形成でき
るので、ダイヤモンド切れ刃がサブミクロンの精度で容
易に得ることが可能となる。
[Function] The predetermined geometric shape to be formed on the base metal can be formed with submicron precision by means such as machining or electrical processing, and the diamond thin film formed on this geometric shape is Since the diamond film can be formed to a thickness of about 5 μm, the diamond film can be formed while maintaining the precision of the geometric shape, so it becomes possible to easily obtain a diamond cutting edge with submicron precision.

【0006】[0006]

【実施例】本発明の一実施例を図1ないし図3を用いて
説明する。図1は、本発明の一実施例を示すダイヤモン
ド砥石の断面図であり、取付穴7をもった台金3のダイ
ヤモンド膜形成面にあらかじめ所定の幾何学的形状3a
を施し、ダイヤモンド膜8を形成しダイヤモンド砥石を
作成した。以下、本発明のダイヤモンド砥石の製造方法
について詳細に述べる。
[Embodiment] An embodiment of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a sectional view of a diamond grinding wheel showing an embodiment of the present invention, in which a predetermined geometrical shape 3a is formed on the diamond film forming surface of a base metal 3 having a mounting hole 7.
was applied to form a diamond film 8, and a diamond grindstone was produced. Hereinafter, the method for manufacturing a diamond grindstone of the present invention will be described in detail.

【0007】外径100mm,ダイヤモンド層の幅5m
mのカップ型ダイヤモンド砥石を製造する場合について
説明する。たとえば、超硬鋼の材質からなる台金3の外
形をこの寸法に仕上げるとともに、取付穴7を加工して
おく。 その後、ダイヤモンド層を形成するカップ型砥石の上面
にダイヤモンド切れ刃となる微細な幾何学的形状3aを
創成する。この幾何学的形状は、例えば、図2に示すよ
うに、先端が120゜のV溝形状をした周方向のスパイ
ラル溝5を深さ10μm,山の高さのピッチ35μmで
のこ歯形状に機械研削、もしくは、放電加工等により形
成する。 一方、カップ型砥石の中心に向けた先端が平らな深さ1
0μm,幅30μmの放射溝6を一度ごとに同様に形成
する。これによりカップ型砥石の基準面9に対し、台金
3上の表面形状3aの高さ精度をサブミクロンの精度で
形成する。その後、台金3上の表面形状3aの上にダイ
ヤモンド薄膜8を、たとえば厚み5μm程コーティング
する。 ダイヤモンド薄膜のコーティング方法は、大別して化学
蒸着法と物理蒸着法とがあるが、低温で膜形成が可能な
ことや台金3との付着力を強くとれる物理蒸着法が望ま
しいが、基本的には膜の形成法は問題でない。従って、
台金3上に形成された微細な凹凸形状3aの形状が、そ
のままダイヤモンド膜8を形成した上面に形成されるた
め、台金3の基準面9に対してサブミクロンの精度でダ
イヤモンド膜の切れ刃が形成されたカップ型のダイヤモ
ンド砥石を製造することが可能になる。
[0007] Outer diameter 100mm, diamond layer width 5m
A case will be described in which a cup-shaped diamond grindstone of size m is manufactured. For example, the outer shape of the base metal 3 made of cemented carbide is finished to these dimensions, and the mounting holes 7 are machined. Thereafter, a fine geometrical shape 3a that will become a diamond cutting edge is created on the upper surface of the cup-shaped grindstone that forms the diamond layer. For example, as shown in FIG. 2, this geometrical shape includes a circumferential spiral groove 5 having a V-shaped groove with a tip of 120°, and a sawtooth shape with a depth of 10 μm and a pitch of 35 μm. It is formed by mechanical grinding, electric discharge machining, etc. On the other hand, the depth of the cup-shaped whetstone with its flat tip toward the center is 1.
A radial groove 6 having a width of 0 μm and a width of 30 μm is formed in the same manner every time. Thereby, the height accuracy of the surface shape 3a on the base metal 3 is formed with submicron accuracy with respect to the reference surface 9 of the cup-shaped grindstone. Thereafter, a diamond thin film 8 is coated on the surface shape 3a of the base metal 3 to a thickness of, for example, about 5 μm. Coating methods for diamond thin films can be roughly divided into chemical vapor deposition and physical vapor deposition, but physical vapor deposition is preferable because it allows film formation at low temperatures and has strong adhesion to the base metal 3, but basically The method of forming the film does not matter. Therefore,
Since the shape of the fine unevenness 3a formed on the base metal 3 is directly formed on the upper surface on which the diamond film 8 is formed, the diamond film can be cut with submicron precision with respect to the reference surface 9 of the base metal 3. It becomes possible to manufacture a cup-shaped diamond grindstone with a blade formed thereon.

【0008】なお台金3上に形成した表面形状3aの幾
何学的形状は、実施例以外にも任意の形状が考えられ、
その形状がそのままダイヤモンド膜をコーティングした
後のダイヤモンド切れ刃になるので、ダイヤモンド切れ
刃の間隔や高さ方向の揃い精度をあらかじめ任意に決定
することができる。
It should be noted that the geometrical shape of the surface shape 3a formed on the base metal 3 may be any shape other than those in the embodiments.
Since the shape becomes the diamond cutting edge after being coated with the diamond film, the spacing and alignment accuracy of the diamond cutting edge in the height direction can be arbitrarily determined in advance.

【0009】上記実施例1では台金3上に表面形状3a
を、直接、形成し、ダイヤモンド膜を台金3上に直接コ
ーティングする例を述べたが、図3に示すように、台金
3とダイヤモンド膜8との間に下地材9を介在させ、下
地材9の上面に任意の幾何学的形状をもつ表面形状9a
を形成し、この上にダイヤモンド膜8を形成しても良い
。 なお、下地材9の材質は、たとえばSUS材やSi板,
SiC板等が考えられるが、ダイヤモンド膜との付着性
や、表面形状9aの創成の容易さから最適な材質を選ぶ
ことが有効である。
In the first embodiment, the surface shape 3a is formed on the base metal 3.
We have described an example in which a diamond film is directly formed on the base metal 3, but as shown in FIG. 3, a base material 9 is interposed between the base metal 3 and the diamond film 8. A surface shape 9a having an arbitrary geometric shape on the upper surface of the material 9
, and then the diamond film 8 may be formed thereon. The material of the base material 9 is, for example, SUS material, Si plate,
A SiC plate or the like may be considered, but it is effective to select the most suitable material in terms of adhesion to the diamond film and ease of creating the surface shape 9a.

【0010】また、実施例では、カップ型のダイヤモン
ド砥石の場合について説明したが、外周にダイヤモンド
層をもった外周砥石についても同様に製造できることは
明らかである。
Further, in the embodiment, a case of a cup-shaped diamond grindstone has been described, but it is clear that a peripheral grindstone having a diamond layer on the outer periphery can also be manufactured in the same manner.

【0011】[0011]

【発明の効果】本発明によれば、ダイヤモンドの切れ刃
高さ精度をサブミクロンで製造することが可能となり、
切れ刃間隔を任意に制御することが可能となるため、従
来のダイヤモンド砥石のようなツルーイングやドレッシ
ングを必要とせず、しかも加工面粗さの良い研削加工を
行うのに好適なダイヤモンド砥石を得ることができる。
[Effects of the Invention] According to the present invention, it is possible to manufacture diamonds with submicron cutting edge height accuracy.
To obtain a diamond grinding wheel that does not require truing or dressing unlike conventional diamond grinding wheels, and is suitable for grinding with good surface roughness, since the cutting edge interval can be arbitrarily controlled. Can be done.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例を示すダイヤモンド砥石の断
面図、
FIG. 1 is a cross-sectional view of a diamond grinding wheel showing one embodiment of the present invention;

【図2】本発明のダイヤモンド砥石の製造過程における
部分平面図、
FIG. 2 is a partial plan view of the manufacturing process of the diamond grindstone of the present invention;

【図3】本発明の他の実施例を示すダイヤモンド砥石の
断面図、
FIG. 3 is a cross-sectional view of a diamond grindstone showing another embodiment of the present invention;

【図4】従来の焼結法によるダイヤモンド砥石の部分断
面図、
[Fig. 4] Partial cross-sectional view of a diamond grinding wheel produced by the conventional sintering method.

【図5】従来の電着法により製造されたダイヤモンド砥
石の部分断面図。
FIG. 5 is a partial cross-sectional view of a diamond grindstone manufactured by a conventional electrodeposition method.

【符号の説明】[Explanation of symbols]

1…ダイヤモンド砥粒、2…ボンド剤、3…台金、4…
メッキ金属、5…スパイラル溝、6…放射溝、7…取付
穴、8…ダイヤモンド膜、9…下地材。
1... Diamond abrasive grain, 2... Bond agent, 3... Base metal, 4...
Plated metal, 5... Spiral groove, 6... Radial groove, 7... Mounting hole, 8... Diamond film, 9... Base material.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】超硬等の台金の一部、すなわち、従来のダ
イヤモンド砥石のダイヤモンド層を形成する外周部もし
くは端面部に、あらかじめ、従来のダイヤモンド砥石の
砥粒切れ刃に相当する所定の幾何学的形状を創成してお
き、前記外周部もしくは前記端面部にダイヤモンド膜を
コーティングすることにより、ダイヤモンド切れ刃の先
端を高精度に揃えたことを特徴とするダイヤモンド砥石
Claim 1: A predetermined cutting edge corresponding to the abrasive cutting edge of a conventional diamond grinding wheel is preliminarily attached to a part of the base metal such as carbide, that is, the outer periphery or end face where the diamond layer of a conventional diamond grinding wheel is formed. A diamond whetstone characterized in that the tips of the diamond cutting blades are aligned with high precision by creating a geometric shape and coating the outer circumferential portion or the end face portion with a diamond film.
JP12090991A 1991-05-27 1991-05-27 Diamond grinding wheel Pending JPH04348876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12090991A JPH04348876A (en) 1991-05-27 1991-05-27 Diamond grinding wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12090991A JPH04348876A (en) 1991-05-27 1991-05-27 Diamond grinding wheel

Publications (1)

Publication Number Publication Date
JPH04348876A true JPH04348876A (en) 1992-12-03

Family

ID=14798002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12090991A Pending JPH04348876A (en) 1991-05-27 1991-05-27 Diamond grinding wheel

Country Status (1)

Country Link
JP (1) JPH04348876A (en)

Similar Documents

Publication Publication Date Title
US20190091832A1 (en) Composite conditioner and associated methods
JP3286941B2 (en) Truing method of diamond grinding wheel
US4787362A (en) Abrasive blade having a polycrystalline ceramic core
TW200940258A (en) CMP pad dressers
EP0945222B1 (en) Ultra fine groove chip and ultra fine groove tool
JPH0543462B2 (en)
KR100413371B1 (en) A diamond grid cmp pad dresser
JPH06155283A (en) Honing device of edge contact type
JPH09254042A (en) Grinding wheel for cutting groove and manufacture thereof
US6361412B1 (en) Process and rotary point crush truer for dressing grinding wheels with profiled working surfaces
US9956665B2 (en) Form dressing roller
JPH04348876A (en) Diamond grinding wheel
EP1201367B1 (en) Dresser for polishing cloth and manufacturing method therefor
JPS6176273A (en) Grinding wheel
JP2010269414A (en) Thin-edged blade
JP2001038506A (en) Single crystal diamond tool and manufacture thereof
JP2016106046A (en) Producing method of scribing wheel
JP7336864B2 (en) cutting blade
JP3663279B2 (en) Small diameter superabrasive grinding wheel manufacturing method
KR20050051014A (en) Manufacturing method for grinding and cutting tool
JPH08216021A (en) Truing method for and manufacture of grinding wheel
JP6255467B2 (en) Manufacturing method of scribing wheel
JP2002028865A (en) Diamond dresser and manufacturing method
JPS63216676A (en) Abrasive grain body
JPH1044048A (en) Grinding wheel for grinding