JP2016106046A - Producing method of scribing wheel - Google Patents

Producing method of scribing wheel Download PDF

Info

Publication number
JP2016106046A
JP2016106046A JP2015256295A JP2015256295A JP2016106046A JP 2016106046 A JP2016106046 A JP 2016106046A JP 2015256295 A JP2015256295 A JP 2015256295A JP 2015256295 A JP2015256295 A JP 2015256295A JP 2016106046 A JP2016106046 A JP 2016106046A
Authority
JP
Japan
Prior art keywords
scribing wheel
diamond
polishing
diamond film
scribing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015256295A
Other languages
Japanese (ja)
Inventor
留井 直子
Naoko Tomei
直子 留井
充 北市
Mitsuru Kitaichi
充 北市
福西 利夫
Toshio Fukunishi
利夫 福西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsuboshi Diamond Industrial Co Ltd
Original Assignee
Mitsuboshi Diamond Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsuboshi Diamond Industrial Co Ltd filed Critical Mitsuboshi Diamond Industrial Co Ltd
Priority to JP2015256295A priority Critical patent/JP2016106046A/en
Publication of JP2016106046A publication Critical patent/JP2016106046A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a scribing wheel capable of scribing a weak material substrate to enhance reinforcement in an end surface of a separated substrate.SOLUTION: A rotational axis is arranged on the center of a discoidal scribing wheel substrate. A blade having V shape section is formed on a circumference part. Diamond film is formed on the blade. Herein, diamond cores are applied and grown by chemical vapor deposition to form the diamond film. Film thickness is defined as 15 to 30 μm. Particle diameter of diamond is defined as 2 μm or less of average particle diameter. After that, a ridgeline part is polished so that difference between polished blade angle and unpolished blade angle of the diamond film is 5 to 10°.Thereby, roughness in the ridgeline part is improved. When a weak material substrate is subjected to scribing to be divided with a scribing wheel, precision in end surface of the divided substrates are increased, resulting in improvement in end surface strength.SELECTED DRAWING: Figure 3B

Description

本発明は脆性材料基板に圧接・転動させてスクライブするためのスクライビングホイールの製造方法に関するものである。   The present invention relates to a method of manufacturing a scribing wheel for scribing by pressing and rolling on a brittle material substrate.

従来のスクライビングホイールは、超硬合金製又は多結晶焼結ダイヤモンド(以下、PCDという)製の円板を基材としている。PCDはダイヤモンド粒子をコバルトなどと共に焼結させたものである。スクライビングホイールは基材となる円板の両側より円周のエッジを互いに斜めに削り込み、円周面にV字形の刃先を形成したものである。このように
して形成されたスクライビングホイールをスクライブ装置のスクライブヘッド等に回転自在に軸着して脆性材料基板に所定の荷重で押し付け、脆性材料基板の面に沿って移動させることで、転動させながらスクライブすることができる。
Conventional scribing wheels are based on a disc made of cemented carbide or polycrystalline sintered diamond (hereinafter referred to as PCD). PCD is obtained by sintering diamond particles together with cobalt or the like. The scribing wheel is formed by cutting the circumferential edges obliquely from both sides of a disk as a base material to form a V-shaped cutting edge on the circumferential surface. The scribing wheel formed in this way is rotatably attached to a scribing head of a scribing device, pressed against the brittle material substrate with a predetermined load, and moved along the surface of the brittle material substrate to roll it. You can scribe while.

特許文献1にはガラス基板を切断するためのガラス切断用刃に関し、その寿命を長くするために、V字形状の刃先表面をダイヤモンドで被膜したガラス切断用刃が開示されている。このガラス切断用刃は、ダイヤモンドと相性の良いセラミックで形成された刃先表面にダイヤモンド膜を被覆し、このダイヤモンド膜を表面研磨処理して整形される。このようなガラス切断用刃を用いることにより、刃の寿命が長く、また切断面が平滑となるように高硬度ガラスを切断できると示されている。   Patent Document 1 discloses a glass cutting blade in which a V-shaped blade edge surface is coated with diamond in order to increase the life of the glass cutting blade for cutting a glass substrate. This blade for cutting a glass is shaped by coating a diamond film on the surface of a cutting edge formed of a ceramic that is compatible with diamond and then polishing the diamond film. It has been shown that by using such a glass cutting blade, the high-hardness glass can be cut such that the blade has a long life and the cut surface is smooth.

また、特許文献2には、光ファイバやガラス基板等を切断する際に滑りや切断品位の悪化を防止するため、超硬合金等の基材にダイヤモンド層を被覆したダイヤモンド被覆切断刃が開示されている。この文献ではダイヤモンド層の表面は被覆後に平滑化処理をしないことを特徴としている。   Patent Document 2 discloses a diamond-coated cutting blade in which a base material such as cemented carbide is coated with a diamond layer in order to prevent slippage or deterioration of cutting quality when cutting an optical fiber, a glass substrate, or the like. ing. This document is characterized in that the surface of the diamond layer is not smoothed after coating.

特開平04−224128号公報Japanese Patent Laid-Open No. 04-224128 特開2011−126754号公報JP 2011-126754 A

特許文献1に記載のガラス切断用刃を用いて実際に脆性材料基板をスクライブする場合には、刃先の欠け、ダイヤモンド被膜の剥離などが起こりやすいという問題が生じることが分かった。特許文献2に記載のダイヤモンド被覆切断刃においても、その表面に平滑化処理がされていないことから、脆性材料基板をスクライブすると基板の端面精度が研磨を行わない場合に比べて悪化し、このために端面強度が劣るという問題点があった。   It has been found that when the brittle material substrate is actually scribed using the glass cutting blade described in Patent Document 1, chipping of the blade edge, peeling of the diamond film, and the like are likely to occur. Even in the diamond-coated cutting blade described in Patent Document 2, since the surface is not smoothed, when the brittle material substrate is scribed, the end face accuracy of the substrate is deteriorated as compared with the case where the polishing is not performed. However, the end face strength is inferior.

本発明はこのような問題点に鑑みてなされたものであって、ダイヤモンド膜を被覆したスクライビングホイールにおいて、脆性材料基板をスクライブし、ブレイクしたときの脆性材料基板の端面強度や端面精度を向上させることができるスクライビングホイールの製造方法を提供することを目的とする。   The present invention has been made in view of such problems, and in a scribing wheel coated with a diamond film, improves the end face strength and end face accuracy of the brittle material substrate when the brittle material substrate is scribed and broken. An object of the present invention is to provide a method for manufacturing a scribing wheel.

この課題を解決するために、本発明のスクライビングホイールの製造方法は、円板の円周部に沿って稜線が形成され、前記稜線と前記稜線の両側の傾斜面からなる刃先を有するスクライビングホイールの製造方法であって、円板状のスクライビングホイール基材の円周に沿って側面の両側より互いに斜めに削り込むよう研磨して円周部分に斜面と稜線からなる刃先部分を形成し、前記スクライビングホイール基材の刃先部分にダイヤモンドの核を生成し、平均粒径2μm以下のダイヤモンド粒子から成るダイヤモンド膜を化学気相成長法によって成長させてダイヤモンド膜を形成し、前記ダイヤモンド膜の稜線から成る円を含む面が前記スクライビングホイール基材の回転軸に垂直となり、かつ、前記ダイヤモンド膜の研磨後の刃先角度と、研磨前の刃先角度の差が5〜10°となるように研磨し、研磨後の稜線付近の膜厚を5〜25μmとするものである。 In order to solve this problem, a method for manufacturing a scribing wheel according to the present invention is a scribing wheel having a ridgeline formed along a circumferential portion of a disk and having a cutting edge composed of the ridgeline and inclined surfaces on both sides of the ridgeline. A method of manufacturing, wherein the scribing is formed by polishing the disk-shaped scribing wheel base material so as to be cut obliquely from both sides of the side surface along the circumference of the disk-shaped scribing wheel substrate, and forming a blade edge portion composed of a slope and a ridge line on the circumferential portion. A diamond nucleus is formed on the edge of the wheel base material, and a diamond film made of diamond particles having an average particle diameter of 2 μm or less is grown by chemical vapor deposition to form a diamond film. plane including becomes perpendicular to the rotation axis of the scribing wheel base, and a cutting edge angle after polishing of the diamond film, Difference in edge angle before grinding is polished so as 5 to 10 °, the film thickness in the vicinity of the ridge line after polishing is to a 5 to 25 [mu] m.

ここでダイヤモンド核の生成とダイヤモンド層の成長を複数回繰り返して前記ダイヤモンド膜を多層構造としてもよい。   Here, the diamond film may have a multilayer structure by repeating the generation of diamond nuclei and the growth of the diamond layer a plurality of times.

ここで前記研磨領域の稜線部分を所定間隔で切り欠いた溝を有し、その間を突起とするようにしてもよい。   Here, a groove in which a ridge line portion of the polishing region is notched at a predetermined interval may be provided, and a portion between the grooves may be formed as a protrusion.

ここで前記ダイヤモンド膜の研磨後の表面の算術平均粗さRaが0.03μm以下とするようにしてもよい。
さらにまた、前記ダイヤモンド膜の研磨後の刃先角度は115〜150°であるようにしてもよい。
Here, the arithmetic average roughness Ra of the surface of the diamond film after polishing may be 0.03 μm or less .
Furthermore, the edge angle after polishing the diamond film may be 115 to 150 °.

このような特徴を有する本発明によれば、ダイヤモンド粒子の粒径の大きいダイヤモンド膜から成るスクライビングホイールと比較すると、研磨によってスクライビングホイールの刃先の面粗さをより小さくすることができるため、脆性材料基板の端面精度が向上し、端面強度も向上させることもできるという効果が得られる。又硬度の高い脆性材料基板をスクライブする場合にも、稜線の部分に微細な凹凸に起因する欠けや剥離が生じ難くなるという効果が得られる。   According to the present invention having such a feature, since the surface roughness of the cutting edge of the scribing wheel can be reduced by polishing as compared with a scribing wheel made of a diamond film having a large diamond particle size, the brittle material The end face accuracy of the substrate is improved, and the end face strength can be improved. In addition, when scribing a brittle material substrate having high hardness, it is possible to obtain an effect that it is difficult to cause chipping or peeling due to fine unevenness in the ridge line portion.

図1Aは本発明の第1の実施の形態によるスクライビングホイールの正面図である。FIG. 1A is a front view of a scribing wheel according to a first embodiment of the present invention. 図1Bは第1の実施の形態によるスクライビングホイールの側面図である。FIG. 1B is a side view of the scribing wheel according to the first embodiment. 図2は本発明の第1の実施の形態によるスクライビングホイール基材上にダイヤモンドの多層膜を生成させる状態を示す概念図である。FIG. 2 is a conceptual diagram showing a state in which a diamond multilayer film is formed on a scribing wheel substrate according to the first embodiment of the present invention. 図3Aは第1の実施の形態による刃先の研磨前の稜線部分の拡大断面図である。FIG. 3A is an enlarged cross-sectional view of a ridge line portion before polishing of the blade edge according to the first embodiment. 図3Bは第1の実施の形態による研磨後の稜線部分の拡大断面図である。FIG. 3B is an enlarged cross-sectional view of a ridge line portion after polishing according to the first embodiment. 図4Aは本発明の第2の実施の形態によるスクライビングホイールの正面図である。FIG. 4A is a front view of a scribing wheel according to the second embodiment of the present invention. 図4Bは第2の実施の形態による研磨後の稜線部分の拡大断面図である。FIG. 4B is an enlarged cross-sectional view of a ridge line portion after polishing according to the second embodiment. 図4Cは図4Aに示す円形部分の拡大図である。FIG. 4C is an enlarged view of the circular portion shown in FIG. 4A. 図5Aは実施例1と比較例1によるスクライビングホイールの研磨前後の刃先角度と算術平均粗さを示す図である。FIG. 5A is a diagram showing the edge angle and arithmetic average roughness of the scribing wheel before and after polishing according to Example 1 and Comparative Example 1. 図5Bは実施例2と比較例2によるスクライビングホイールの研磨前後の刃先角度と算術平均粗さを示す図である。FIG. 5B is a diagram showing the edge angle and arithmetic average roughness of the scribing wheel before and after polishing according to Example 2 and Comparative Example 2. 図5Cは実施例3と比較例3によるスクライビングホイールの研磨前後の刃先角度と算術平均粗さを示す図である。FIG. 5C is a diagram showing the edge angle and arithmetic average roughness of the scribing wheel before and after polishing according to Example 3 and Comparative Example 3.

図1Aは本発明の第1の実施の形態によるスクライビングホイールの正面図、図1Bはその側面図である。スクライビングホイールを製造する際には、例えば、超硬合金、又はセラミック製のスクライビングホイール基材となる円板11の中央にまず図1Aに示すように軸穴となる貫通孔12を形成する。次にこの貫通孔12に図示しないモータ等のシャフトを連通して貫通孔12の中心軸を回転軸12aとして回転させつつ、円板11の全円周を円板の表裏両側より回転軸12aに対して斜めに研磨して図1Bに示すように垂直断面V字形に形成する。こうして形成したV字形の斜面を研磨面13とする。   FIG. 1A is a front view of a scribing wheel according to the first embodiment of the present invention, and FIG. 1B is a side view thereof. When manufacturing a scribing wheel, for example, a through-hole 12 serving as an axial hole is first formed in the center of a disc 11 serving as a cemented carbide or ceramic scribing wheel base as shown in FIG. 1A. Next, a shaft such as a motor (not shown) is connected to the through hole 12 to rotate the central axis of the through hole 12 as the rotation shaft 12a, and the entire circumference of the disk 11 is connected to the rotation shaft 12a from both sides of the disk. On the other hand, it is slanted and formed into a vertical V-shape as shown in FIG. 1B. The V-shaped slope formed in this way is defined as a polishing surface 13.

次に研磨面13に形成するダイヤモンド薄膜の形成について説明する。まずV字形の研磨面13をダイヤモンド膜の付着が容易になるようにあらかじめ粗面にしておく。次にスクライビングホイール基材11を所定の温度、圧力、雰囲気等に保ち、図2(a)に刃先の稜線付近の拡大断面図を示すように研磨面の表面にダイヤモンドの核20を生成する。この核は単結晶ダイヤモンドや単結晶ダイヤモンドを凝集したものから成っており、その外径が例えば数nm〜数十nmである。そしてダイヤモンド核20を化学気相成長法(CVD法)によって成長させ、図2(b)に示すようにダイヤモンド薄膜とする。この成長ではダイヤモンドの平均粒径を2μm以下、好ましくは1μm以下とする。膜厚は例えば10〜30μmとする。ダイヤモンド膜は膜厚が30μmを超えると成膜時に剥離し易くなり、10μm未満であれば研磨後の膜厚が薄くなりすぎる。   Next, formation of the diamond thin film formed on the polished surface 13 will be described. First, the V-shaped polished surface 13 is roughened in advance so that the diamond film can be easily attached. Next, the scribing wheel base material 11 is maintained at a predetermined temperature, pressure, atmosphere, etc., and a diamond nucleus 20 is generated on the surface of the polished surface as shown in an enlarged cross-sectional view in the vicinity of the edge line of the blade edge in FIG. This nucleus is made of single crystal diamond or agglomerated single crystal diamond, and has an outer diameter of, for example, several nm to several tens of nm. Then, the diamond nuclei 20 are grown by chemical vapor deposition (CVD) to form a diamond thin film as shown in FIG. In this growth, the average particle diameter of diamond is 2 μm or less, preferably 1 μm or less. The film thickness is, for example, 10 to 30 μm. When the film thickness exceeds 30 μm, the diamond film is easily peeled off during film formation, and when it is less than 10 μm, the film thickness after polishing becomes too thin.

なお、上記の成膜を複数回繰り返すことにより、必要な膜厚を得るようにしてもよい。具体的には、まずダイヤモンド核20を化学気相成長法(CVD法)によって成長させ、図2(b)に示すように例えば2μmの厚さのダイヤモンド薄膜を形成する。そして再び同一の温度、圧力、雰囲気等により図2(c)に示すようにダイヤモンド薄膜の表面にダイヤモンドの核20を生成する。そして図2(d)に示すように同じ条件でダイヤモンドの平均粒径を2μm以下、好ましくは1μm以下までダイヤモンドの核を成長させる。このようにダイヤモンドの核の付着と結晶成長を複数回繰り返すことによって、図2(e)に示すように2層以上の複数の膜、例えば10層の多層膜を形成することができる。   Note that a necessary film thickness may be obtained by repeating the above film formation a plurality of times. Specifically, the diamond nucleus 20 is first grown by chemical vapor deposition (CVD) to form a diamond thin film having a thickness of 2 μm, for example, as shown in FIG. Then, again with the same temperature, pressure, atmosphere, etc., as shown in FIG. 2C, diamond nuclei 20 are generated on the surface of the diamond thin film. Then, as shown in FIG. 2 (d), diamond nuclei are grown under the same conditions until the average grain size of the diamond is 2 μm or less, preferably 1 μm or less. Thus, by repeating the deposition of the diamond nuclei and the crystal growth a plurality of times, a plurality of films of two or more layers, for example, a multilayer film of ten layers can be formed as shown in FIG.

このようにして図3Aに示すように研磨面13の上に平均粒径を2μm以下、好ましくは1μm以下のダイヤモンド膜14を形成することができる。   In this manner, as shown in FIG. 3A, a diamond film 14 having an average particle diameter of 2 μm or less, preferably 1 μm or less can be formed on the polished surface 13.

この後、少なくとも先端部分を先端が鋭くなるように研磨する。図3Bはこの研磨した後の状態を示す部分拡大断面図である。ここで研磨は粗研磨と仕上げ研磨の2段階としてもよく、元のダイヤモンド膜14よりも例えば5°程度鈍角になるようにしてもよい。そして研磨した後の稜線から成る円が含まれる面を回転軸12aに対し垂直となるようにする。ここで研磨する領域は稜線を中央に含む帯状の部分のみであってもよい。図3Bの研磨の幅wの領域はこの先端部分、すなわち稜線の両側のダイヤモンド膜の研磨領域を示しており、例えば幅wの値は10〜30μmとする。こうして前述した膜厚のダイヤモンド膜を研磨すると、ダイヤモンド膜14の稜線付近の最も薄い部分の厚さdは例えば5μm〜25μmとなる。厚さdは小さければスクライブ中にダイヤモンド膜が剥離する可能性があり、大きすぎれば内部応力で割れ易いという問題がある。また、ダイヤモンド膜を複数回形成して多層構造のダイヤモンド膜とした場合には、研磨量が多いと層の不連続性により研磨後の刃先の表面が不均一となる場合がある。このため、多層構造のダイヤモンド膜を研磨する場合には研磨量を少なくするなどして、刃先の表面を均一にするように研磨を行うとよい。   Thereafter, at least the tip portion is polished so that the tip is sharp. FIG. 3B is a partially enlarged sectional view showing the state after the polishing. Here, the polishing may be performed in two stages of rough polishing and final polishing, and may have an obtuse angle of, for example, about 5 ° with respect to the original diamond film 14. Then, the surface including the circle composed of the ridge line after polishing is set to be perpendicular to the rotation axis 12a. Here, the region to be polished may be only a belt-like portion including the ridge line in the center. The region of the width w of polishing in FIG. 3B shows this tip portion, that is, the polishing region of the diamond film on both sides of the ridgeline. For example, the value of the width w is 10 to 30 μm. When the diamond film having the above-described film thickness is polished in this way, the thickness d of the thinnest portion near the ridge line of the diamond film 14 becomes, for example, 5 μm to 25 μm. If the thickness d is small, the diamond film may be peeled off during scribing, and if it is too large, there is a problem that it is easily cracked by internal stress. Further, when a diamond film is formed a plurality of times to form a multi-layered diamond film, if the polishing amount is large, the surface of the blade edge after polishing may be non-uniform due to the discontinuity of the layer. For this reason, when polishing a diamond film having a multilayer structure, it is preferable to perform polishing so that the surface of the blade edge is uniform, for example, by reducing the polishing amount.

スクライビングホイールは、砥石などの研磨材によって研磨される。スクライビングホイールの刃先に形成されたダイヤモンド膜の一方の傾斜面を砥石によって粗研磨又は仕上げ研磨を行う。砥石によって加工することにより、傾斜面をスクライビングホイールの全周にわたって同一の角度で研磨することが容易となる。研磨工程では研磨後の表面の算術平均粗さRaが0.03μm以下、好ましくは0.015μm以下となるまで研磨する。また、稜線の算術平均粗さRaが0.03μm以下、好ましくは0.015μm以下となるまで研磨することが好ましい。本発明ではダイヤモンド膜14の粒径を2μm以下とすることにより、研磨後の表面の算術平均粗さRaが0.03μm以下、好ましくは0.015μm以下となるように研磨することが容易にできる。   The scribing wheel is polished by an abrasive such as a grindstone. One inclined surface of the diamond film formed on the cutting edge of the scribing wheel is subjected to rough polishing or finish polishing with a grindstone. By processing with a grindstone, it becomes easy to grind the inclined surface at the same angle over the entire circumference of the scribing wheel. In the polishing step, polishing is performed until the arithmetic average roughness Ra of the surface after polishing becomes 0.03 μm or less, preferably 0.015 μm or less. Further, it is preferable to polish until the arithmetic average roughness Ra of the ridge line is 0.03 μm or less, preferably 0.015 μm or less. In the present invention, by setting the particle diameter of the diamond film 14 to 2 μm or less, polishing can be easily performed so that the arithmetic average roughness Ra of the surface after polishing is 0.03 μm or less, preferably 0.015 μm or less. .

このように研磨することによって従来の焼結ダイヤモンドによるスクライビングホイールに比べ、脆性材料基板に接するダイヤモンド膜の平均粗さが小さくなるため、刃先部分及び稜線の粗さを細かくすることができる。従ってこのスクライビングホイールを用いて脆性材料基板、例えばセラミックス基板をスクライブし、分断すると、脆性材料基板の切断面の端面精度が向上し、これに伴い端面強度も向上させることができるという効果が得られる。刃先及び稜線の粗さを細かくすることにより、ダイヤモンド膜が剥離し難くなるという効果が得られる。そのため本発明のスクライビングホイールはセラミックス基板をスクライブするのに好適である。   By polishing in this way, the average roughness of the diamond film in contact with the brittle material substrate is smaller than that of a conventional scribing wheel made of sintered diamond, so that the roughness of the edge portion and the edge line can be made fine. Therefore, by scribing and dividing a brittle material substrate, for example, a ceramic substrate, using this scribing wheel, the accuracy of the end face of the cut surface of the brittle material substrate is improved, and the end face strength can be improved accordingly. . By reducing the roughness of the cutting edge and the ridgeline, an effect that the diamond film is difficult to peel can be obtained. Therefore, the scribing wheel of the present invention is suitable for scribing a ceramic substrate.

次に本発明の第2の実施の形態について説明する。日本国特許第3074143号にはスクライビングホイールの円周面に所定間隔を隔てて多数の溝を形成し、その間を突起として高浸透型としたスクライビングホイールが提案されている。本発明はこのようなスクライビングホイールにも適用することができる。図4Aはこの実施の形態のスクライビングホイールの正面図、図4Bは先の稜線部分の拡大断面図、図4Cは図4Aに一点鎖線で示した円形部分の拡大図である。スクライビングホイールを製造する際には、超硬合金、又はセラミック製等のスクライビングホイール基材となる円板41の中央にまず図4Aに示すように軸穴となる貫通孔42を形成する。次にこの貫通孔42にモータ等のシャフトを連通して中心軸を中心に回転させつつ、円板41の全円周を両側より研磨してV字形に形成する。こうして形成したV字形の斜面を研磨面43とする。この場合も第1の実施の形態と同様にスクライビングホイールの刃先部分にCVD法を繰り返すことによって多層のダイヤモンド膜44をコーティングし、前述した方法で研磨する。ダイヤモンド膜44を20μmとすると、図4Cに示すようにダイヤモンド膜44の厚みの範囲内で溝45を形成する。高浸透型とするためのスクライビングホイールの溝の深さは例えば10μm程度であるため、ダイヤモンド膜44に溝45を形成することで高浸透型のスクライビングホイールとすることができる。   Next, a second embodiment of the present invention will be described. Japanese Patent No. 3074143 proposes a scribing wheel in which a large number of grooves are formed at predetermined intervals on the circumferential surface of the scribing wheel, and a high penetration type is formed with protrusions therebetween. The present invention can also be applied to such a scribing wheel. 4A is a front view of the scribing wheel of this embodiment, FIG. 4B is an enlarged cross-sectional view of the previous ridge line portion, and FIG. 4C is an enlarged view of the circular portion indicated by the one-dot chain line in FIG. 4A. When manufacturing a scribing wheel, first, a through hole 42 serving as a shaft hole is formed in the center of a disc 41 serving as a scribing wheel base material made of cemented carbide or ceramic as shown in FIG. 4A. Next, a shaft such as a motor is communicated with the through hole 42 and rotated around the central axis, and the entire circumference of the disc 41 is polished from both sides to form a V shape. The V-shaped slope formed in this way is defined as a polishing surface 43. Also in this case, the multi-layer diamond film 44 is coated by repeating the CVD method on the cutting edge portion of the scribing wheel as in the first embodiment, and polished by the method described above. When the diamond film 44 is 20 μm, the groove 45 is formed within the thickness range of the diamond film 44 as shown in FIG. 4C. Since the depth of the groove of the scribing wheel for achieving the high penetration type is, for example, about 10 μm, the groove 45 is formed in the diamond film 44 to obtain a high penetration type scribing wheel.

又これに代えてあらかじめスクライビングホイールのV字形の刃先部に溝を形成しておき、このスクライビングホイールにCVD法でダイヤモンド膜をコーティングし研磨することでスクライビングホイールを構成するようにしてもよい。   Alternatively, a scribing wheel may be formed by forming a groove in a V-shaped cutting edge portion of the scribing wheel in advance, and coating and polishing this scribing wheel with a diamond film by a CVD method.

実施例によるスクライビングホイールの研磨前の状態と研磨後の状態について比較例と比較しつつ説明する。この実施例及び比較例はいずれも外径2mmの超硬合金のスクライビングホイール基材を用いている。実施例1,2,3のスクライビングホイールはいずれも第1の実施の形態により化学気相成長法で粒径が2μm以下のダイヤモンド膜を形成したものであり、比較例1,2,3は粒径が5μm程度のより大きなダイヤモンド膜を形成したものである。実施例1と比較例1はいずれも研磨前の刃先角度が110°であり、粗研磨では8000番の研磨材を用いて粗研磨終了後に刃先角度が115°となるように研磨し、仕上げ研磨では15000番の研磨材を用いて仕上げ研磨の終了後に120°となるように研磨したものである。ダイヤモンド膜14の稜線付近の最も薄い部分の厚さdは例えば20μmとする。この2つの例について稜線部分及びそこから一定距離離れた稜線に平行なライン上の傾斜面における算術平均粗さRaは図5Aに示すものであった。   The state before polishing of the scribing wheel according to the example and the state after polishing will be described in comparison with a comparative example. In both the examples and comparative examples, a cemented carbide scribing wheel substrate having an outer diameter of 2 mm is used. The scribing wheels of Examples 1, 2, and 3 are formed by forming a diamond film having a particle size of 2 μm or less by the chemical vapor deposition method according to the first embodiment. A larger diamond film having a diameter of about 5 μm is formed. In both Example 1 and Comparative Example 1, the cutting edge angle before polishing was 110 °, and in rough polishing, polishing was performed using a No. 8000 abrasive so that the cutting edge angle became 115 ° after completion of rough polishing. Then, polishing was performed using a No. 15000 abrasive so as to be 120 ° after finishing polishing. The thickness d of the thinnest part near the ridgeline of the diamond film 14 is set to 20 μm, for example. For these two examples, the arithmetic average roughness Ra on the inclined surface on the ridge line portion and on the line parallel to the ridge line a certain distance from the ridge line portion is shown in FIG. 5A.

実施例2及び比較例2は研磨前の刃先角度が125°であり、8000番の研磨材を用いて粗研磨後に130°、15000番の研磨材を用いて仕上げ研磨後に135°となるように研磨したものである。この2つの例について稜線部分及びそこから一定距離離れた稜線に平行なライン上の傾斜面における算術平均粗さRaは図5Bに示すものであった。   In Example 2 and Comparative Example 2, the blade edge angle before polishing is 125 °, so that it is 130 ° after rough polishing using No. 8000 abrasive and 135 ° after final polishing using No. 15000 abrasive. Polished. For these two examples, the arithmetic average roughness Ra on the inclined surface on the ridge line portion and the line parallel to the ridge line a certain distance from the ridge line portion is shown in FIG. 5B.

実施例3及び比較例3はいずれも刃先角度が研磨前に140°であり、8000番の研磨材を用いて粗研磨後に145°、15000番の研磨材を用いて仕上げ研磨後に150°となるように研磨したものである。この2つの例について稜線部分及びそこから一定距離離れた稜線に平行なライン上の傾斜面における算術平均粗さRaは図5Cに示すものであった。   In each of Example 3 and Comparative Example 3, the blade edge angle is 140 ° before polishing, and is 145 ° after rough polishing using No. 8000 abrasive and 150 ° after final polishing using No. 15000 abrasive. So that it is polished. For these two examples, the arithmetic average roughness Ra on the inclined surface on the ridge line portion and the line parallel to the ridge line a certain distance from the ridge line portion was as shown in FIG. 5C.

実施例1〜3,比較例1〜3は、いずれも研磨時には表面が欠けることなく研磨加工が可能であった。実施例1〜3は比較例より1〜3よりも算術平均粗さが小さくなる。これはダイヤモンドの成長によって粒径が大きくなり、そのため平均粗さも大きくなってしまうからであると考えられる。そして粗研磨、仕上げ研磨を行っても実施例1〜3はいずれも粗粒の比較例よりも仕上げ状態が良く、実施例1〜3の算術平均粗さは最大でも実施例1の傾斜面の0.015μmであった。また、実施例1〜3のスクライビングホイールにおいては、粗研磨の段階で算術平均粗さが0.015μm以下となるものもあった。従って、粒径が2μm以下のダイヤモンド膜を研磨してスクライビングホイールを製造する場合には、研磨工程を簡略化することができる。また、粒径の大きなダイヤモンド膜と同様の仕上げ研磨を行った場合には、表面の算術平均粗さをより小さくすることができるため、このスクライビングホイールを用いてスクライブ後に切断した脆性材料基板の端面精度をさらに向上させることができる。   In Examples 1 to 3 and Comparative Examples 1 to 3, the polishing process was possible without chipping the surface during polishing. In Examples 1 to 3, the arithmetic average roughness is smaller than in Examples 1 to 3. This is considered to be because the grain size increases due to the growth of diamond, and therefore the average roughness also increases. And even if rough polishing and finish polishing are performed, all of Examples 1 to 3 have a better finished state than the comparative example of coarse grains, and the arithmetic average roughness of Examples 1 to 3 is the maximum of the inclined surface of Example 1. It was 0.015 μm. Further, in the scribing wheels of Examples 1 to 3, there were some scribing wheels having an arithmetic average roughness of 0.015 μm or less at the stage of rough polishing. Therefore, when a scribing wheel is manufactured by polishing a diamond film having a particle size of 2 μm or less, the polishing process can be simplified. In addition, when finishing polishing similar to that of a diamond film having a large particle size, the arithmetic average roughness of the surface can be made smaller, so the end face of the brittle material substrate cut after scribing using this scribing wheel The accuracy can be further improved.

本発明のスクライビングホイールは耐摩耗性、耐剥離性が高く、端面強度の高い脆性材料基板を切り出せるスクライビングホイールを提供することができ、スクライブ装置に好適に用いることができる。   The scribing wheel of the present invention can provide a scribing wheel that can cut a brittle material substrate having high wear resistance and peeling resistance and high end face strength, and can be suitably used for a scribing apparatus.

10,40 スクライビングホイール
11,41 円板
12,42 貫通孔
13,43 研磨面
14,44 ダイヤモンド膜
16 円周面
20 ダイヤモンド核
45 溝
DESCRIPTION OF SYMBOLS 10,40 Scribing wheel 11,41 Disk 12,42 Through-hole 13,43 Polishing surface 14,44 Diamond film 16 Circumferential surface 20 Diamond nucleus 45 Groove

Claims (5)

円板の円周部に沿って稜線が形成され、前記稜線と前記稜線の両側の傾斜面からなる刃先を有するスクライビングホイールの製造方法であって、
円板状のスクライビングホイール基材の円周に沿って側面の両側より互いに斜めに削り込むよう研磨して円周部分に斜面と稜線からなる刃先部分を形成し、
前記スクライビングホイール基材の刃先部分にダイヤモンドの核を生成し、平均粒径2μm以下のダイヤモンド粒子から成るダイヤモンド膜を化学気相成長法によって成長させてダイヤモンド膜を形成し、
前記ダイヤモンド膜の稜線から成る円を含む面が前記スクライビングホイール基材の回転軸に垂直となり、かつ、前記ダイヤモンド膜の研磨後の刃先角度と、研磨前の刃先角度の差が5〜10°となるように研磨し、研磨後の稜線付近の膜厚を5〜25μmとしたスクライビングホイールの製造方法。
A method of manufacturing a scribing wheel, in which a ridge line is formed along a circumferential portion of a disc, and the ridge line has a cutting edge made of inclined surfaces on both sides of the ridge line,
A blade-shaped scribing wheel base material is formed by cutting and grinding from both sides along the circumference of the disc-shaped scribing wheel base material to form a cutting edge portion composed of a slope and a ridgeline.
Diamond nuclei are generated at the cutting edge portion of the scribing wheel base material, and a diamond film made of diamond particles having an average particle size of 2 μm or less is grown by chemical vapor deposition to form a diamond film,
The surface including the circle formed by the ridgeline of the diamond film is perpendicular to the rotation axis of the scribing wheel base material , and the difference between the blade edge angle after polishing the diamond film and the blade edge angle before polishing is 5 to 10 °. The manufacturing method of the scribing wheel which grind | polished so that it might become and set the film thickness of the edge line vicinity after grinding | polishing to 5-25 micrometers.
前記スクライビングホイール基材の刃先部分にダイヤモンドの核を生成し、ダイヤモンド層を化学気相成長法によって成長させ、前記ダイヤモンド層の表面に新たなダイヤモンドの核を生成し、新たなダイヤモンド層を化学気相成長法によって成長させることを複数回繰り返して、前記ダイヤモンド膜を形成する請求項1記載のスクライビングホイールの製造方法。   Diamond nuclei are generated at the cutting edge portion of the scribing wheel base material, a diamond layer is grown by chemical vapor deposition, new diamond nuclei are generated on the surface of the diamond layer, and the new diamond layer is chemically vaporized. The method of manufacturing a scribing wheel according to claim 1, wherein the diamond film is formed by repeating the growth by a phase growth method a plurality of times. 前記研磨領域の稜線部分に所定間隔で切り欠かれた溝を形成し、その間を突起とした請求項1記載のスクライビングホイールの製造方法。   The manufacturing method of the scribing wheel of Claim 1 which formed the groove | channel notched by the predetermined interval in the ridgeline part of the said grinding | polishing area | region, and made the space | interval between it. 前記ダイヤモンド膜の研磨後の表面の算術平均粗さRaが0.03μm以下である請求項1記載のスクライビングホイールの製造方法。The method of manufacturing a scribing wheel according to claim 1, wherein the arithmetic average roughness Ra of the surface of the diamond film after polishing is 0.03 µm or less. 前記ダイヤモンド膜の研磨後の刃先角度は115〜150°である請求項1記載のスクライビングホイールの製造方法。The method of manufacturing a scribing wheel according to claim 1, wherein the edge angle after polishing the diamond film is 115 to 150 °.
JP2015256295A 2015-12-28 2015-12-28 Producing method of scribing wheel Pending JP2016106046A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015256295A JP2016106046A (en) 2015-12-28 2015-12-28 Producing method of scribing wheel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015256295A JP2016106046A (en) 2015-12-28 2015-12-28 Producing method of scribing wheel

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2012092166A Division JP5915346B2 (en) 2012-03-08 2012-04-13 Scribing wheel

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016232798A Division JP6255467B2 (en) 2016-11-30 2016-11-30 Manufacturing method of scribing wheel

Publications (1)

Publication Number Publication Date
JP2016106046A true JP2016106046A (en) 2016-06-16

Family

ID=56120185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015256295A Pending JP2016106046A (en) 2015-12-28 2015-12-28 Producing method of scribing wheel

Country Status (1)

Country Link
JP (1) JP2016106046A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116377416A (en) * 2023-03-08 2023-07-04 北京爱克瑞特金刚石工具有限公司 Scribing cutter and manufacturing method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224128A (en) * 1990-12-20 1992-08-13 Idemitsu Petrochem Co Ltd Glass cutting blade
JPH05254865A (en) * 1992-03-11 1993-10-05 Ookubo Seisakusho:Kk Wheel cutter for cutting glass and method for grinding the same
JPH06219762A (en) * 1993-01-27 1994-08-09 Goei Seisakusho:Kk Glass cutter coated with diamond and its production
JP3074143B2 (en) * 1995-11-06 2000-08-07 三星ダイヤモンド工業株式会社 Glass cutter wheel
WO2005072926A1 (en) * 2004-02-02 2005-08-11 Mitsuboshi Diamond Industrial Co., Ltd. Cutter wheel, scribing method and cutting method for fragile material substrate using the cutter wheel, and method of manufacturing cutter wheel
JP2007307673A (en) * 2006-05-19 2007-11-29 Osg Corp Diamond-coated cutting member and its manufacturing method
JP2011031484A (en) * 2009-07-31 2011-02-17 Mitsuboshi Diamond Industrial Co Ltd Cutter wheel
JP2011126754A (en) * 2009-12-21 2011-06-30 Sumitomo Electric Hardmetal Corp Diamond covered cutting edge
JP2012011475A (en) * 2010-06-29 2012-01-19 Tokyo Univ Of Science Diamond-coated tool, and method for manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224128A (en) * 1990-12-20 1992-08-13 Idemitsu Petrochem Co Ltd Glass cutting blade
JPH05254865A (en) * 1992-03-11 1993-10-05 Ookubo Seisakusho:Kk Wheel cutter for cutting glass and method for grinding the same
JPH06219762A (en) * 1993-01-27 1994-08-09 Goei Seisakusho:Kk Glass cutter coated with diamond and its production
JP3074143B2 (en) * 1995-11-06 2000-08-07 三星ダイヤモンド工業株式会社 Glass cutter wheel
WO2005072926A1 (en) * 2004-02-02 2005-08-11 Mitsuboshi Diamond Industrial Co., Ltd. Cutter wheel, scribing method and cutting method for fragile material substrate using the cutter wheel, and method of manufacturing cutter wheel
JP2007307673A (en) * 2006-05-19 2007-11-29 Osg Corp Diamond-coated cutting member and its manufacturing method
JP2011031484A (en) * 2009-07-31 2011-02-17 Mitsuboshi Diamond Industrial Co Ltd Cutter wheel
JP2011126754A (en) * 2009-12-21 2011-06-30 Sumitomo Electric Hardmetal Corp Diamond covered cutting edge
JP2012011475A (en) * 2010-06-29 2012-01-19 Tokyo Univ Of Science Diamond-coated tool, and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116377416A (en) * 2023-03-08 2023-07-04 北京爱克瑞特金刚石工具有限公司 Scribing cutter and manufacturing method thereof
CN116377416B (en) * 2023-03-08 2023-12-12 北京爱克瑞特金刚石工具有限公司 Scribing cutter and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US9149953B2 (en) Scribing wheel, method for manufacturing the scribing wheel, and scribing method
KR101642863B1 (en) Scribing wheel and method for manufacturing same
JP5998574B2 (en) Manufacturing method of scribing wheel
JP5915346B2 (en) Scribing wheel
JP6293856B2 (en) Scribing wheel
TWI674169B (en) Scoring wheel and manufacturing method thereof
JP2016106046A (en) Producing method of scribing wheel
JP6255467B2 (en) Manufacturing method of scribing wheel
JP5942783B2 (en) Scribing wheel and manufacturing method thereof
JP6088687B2 (en) Scribing wheel and manufacturing method thereof
JP6234534B2 (en) Scribing wheel
JP6234418B2 (en) Scribing wheel
CN107443592B (en) Scribing wheel and manufacturing method thereof
JP2019022994A (en) Scribing wheel and method for producing the same
JP5942602B2 (en) Scribing wheel and manufacturing method thereof
JP2013184388A (en) Scribing wheel and method for manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161229

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170517