JPH04344858A - Method for continuously casting steel utilizing static magnetic field - Google Patents

Method for continuously casting steel utilizing static magnetic field

Info

Publication number
JPH04344858A
JPH04344858A JP14274491A JP14274491A JPH04344858A JP H04344858 A JPH04344858 A JP H04344858A JP 14274491 A JP14274491 A JP 14274491A JP 14274491 A JP14274491 A JP 14274491A JP H04344858 A JPH04344858 A JP H04344858A
Authority
JP
Japan
Prior art keywords
mold
magnetic field
molten steel
flux density
magnetic flux
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14274491A
Other languages
Japanese (ja)
Other versions
JP2930448B2 (en
Inventor
Hideji Takeuchi
秀次 竹内
Satoshi Idokawa
聡 井戸川
Kenichi Tanmachi
反町 健一
Toshikazu Sakuratani
桜谷 敏和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14274491A priority Critical patent/JP2930448B2/en
Publication of JPH04344858A publication Critical patent/JPH04344858A/en
Application granted granted Critical
Publication of JP2930448B2 publication Critical patent/JP2930448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain a cast slab excellent in quality without any product defect by controlling molten steel flowing speed in the transverse direction of a mold so as to always be uniform even in the case casting condition is changed. CONSTITUTION:At the time of executing the continuous casting while impressing the static magnetic field to a whole zone in the transverse direction of a mold 1 in order to control discharged spouting flow of a molten steel 5 supplied into the mold 1 for continuous casting from an immersion nozzle 2, magnetic flux density distribution in the transverse direction of the mold 1 allows to correspond with the flowing speed of the molten steel in the mold 1 and the magnetic flux density in the vicinity of the short side part of the mold is made larger than that at transverse central part and particularly, the molten steel is cast while impressing the magnetic field so as to become 1.2-3.0 of the strength ratio at both sides. By this method, the molten steel flowing speed in the transverse direction of the mold 1 is always made to uniform, and the cast slab excellent in quality without any defect can be stably manufactured.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、静磁場を利用する鋼の
連続鋳造方法、特に鋳造条件を考慮するまでもなく鋳型
幅方向に均一な溶鋼流を得ることができ、しかも、製品
欠陥(スリバー,UT欠陥,ブリスター,フクレ)が多
発することがないように、静磁場の作用を制御しながら
鋳造する方法について提案するものである。
[Industrial Application Field] The present invention is a method for continuous casting of steel using a static magnetic field, in particular, it is possible to obtain a uniform flow of molten steel in the width direction of the mold without considering casting conditions, and it is possible to avoid product defects. This paper proposes a method of casting while controlling the effect of a static magnetic field to prevent frequent occurrence of slivers, UT defects, blisters, and blisters.

【0002】0002

【従来の技術】鋼の連続鋳造において、鋳型内の溶鋼流
動を制御することは、鋳造された鋳片の内部欠陥や表面
欠陥を低減するうえで極めて重要である。
BACKGROUND OF THE INVENTION In continuous steel casting, controlling the flow of molten steel within a mold is extremely important in reducing internal defects and surface defects in the cast slab.

【0003】この鋳型内の溶鋼流動を制御する手段とし
ては、従来、特公平2−20349 号公報や特開平2
−284750号公報に開示されているように、鋳型内
溶鋼に対し静磁場を印加し、いわゆる電磁ブレーキの効
果により鋳型内の強い流れを分散あるいは減速させるこ
とにより、溶鋼流の制御,すなわち鋳型幅方向の溶鋼流
動の均一化を図る方法が提案されている。
Conventionally, means for controlling the flow of molten steel in the mold have been disclosed in Japanese Patent Publication No. 2-20349 and Japanese Patent Application Laid-Open No.
As disclosed in Japanese Patent No. 284750, by applying a static magnetic field to the molten steel in the mold and dispersing or decelerating the strong flow in the mold by the effect of a so-called electromagnetic brake, the molten steel flow can be controlled, that is, the mold width A method has been proposed to equalize the directional flow of molten steel.

【0004】特に、特開平2−284750号公報は、
特公平2−20349 号公報に開示された技術が抱え
る課題,すなわち、磁場不均一による鋳型内溶鋼流動を
改良したものである。すなわち、この特開平2−284
750号公報の開示というのは、磁場を鋳型幅方向の一
部に印加しただけでは、磁場の弱い部分に溶鋼流が集中
して、予期せぬ流動パターンとなる。そこで、溶鋼流を
完全に制御するには、鋳型の幅方向全域にわたって磁場
を印加することが必要である。そのために、鋳型の幅方
向の全領域にわたって鋳片の厚み方向と平行に静磁場を
印加することにより、溶鋼表面流速を抑制し、かつ鋳型
下方への強い流れを減速させて、高品質の鋳片が鋳造す
る方法について提案している。
[0004] In particular, Japanese Patent Application Laid-Open No. 2-284750,
This is an improvement on the problem faced by the technique disclosed in Japanese Patent Publication No. 2-20349, that is, the flow of molten steel in the mold due to non-uniformity of the magnetic field. That is, this Japanese Patent Application Laid-Open No. 2-284
The disclosure of Japanese Patent No. 750 is that if a magnetic field is applied only to a part of the width of the mold, the molten steel flow will concentrate in the areas where the magnetic field is weak, resulting in an unexpected flow pattern. Therefore, in order to completely control the flow of molten steel, it is necessary to apply a magnetic field across the entire width of the mold. For this purpose, by applying a static magnetic field parallel to the thickness direction of the slab over the entire width of the mold, the surface flow velocity of the molten steel is suppressed and the strong downward flow of the mold is decelerated, resulting in high quality casting. Suggestions are made on how to cast pieces.

【0005】[0005]

【発明が解決しようとする課題】ところが、このように
改良された従来の連続鋳造方法であっても、本発明者ら
が、水銀を用いたモデル実験により鋳型内溶鋼の流動パ
ターンを検討した結果、必ずしも所望の流動制御効果が
得られていないことが判明した。しかも、実際の連続鋳
造機に適用した場合でも、鋳片の表面および内部品質に
関してはある程度改善されてはいるものの、すべての鋳
造条件で満足すべき結果が得られているところまでは到
達していないのが実情である。
[Problems to be Solved by the Invention] However, even with the conventional continuous casting method improved in this way, the present inventors investigated the flow pattern of molten steel in the mold through a model experiment using mercury. However, it was found that the desired flow control effect was not necessarily obtained. Moreover, even when applied to an actual continuous casting machine, although the surface and internal quality of the slab has been improved to some extent, it has not yet reached the point where satisfactory results are obtained under all casting conditions. The reality is that there is not.

【0006】そこで、本発明は、上記従来技術の問題を
有利に解決することを目的とするものであり、特に溶鋼
供給速度などの鋳造条件が変化しても、鋳型幅方向の溶
鋼流速が常に均一になるように制御することにより、製
品欠陥のない優れた品質の鋳片を得るのに有効な静磁場
を利用する連続鋳造技術を確立することにある。
Therefore, the present invention aims to advantageously solve the above-mentioned problems of the prior art.In particular, even if the casting conditions such as the molten steel supply rate change, the molten steel flow velocity in the mold width direction is always maintained. The objective is to establish a continuous casting technology that utilizes a static magnetic field that is effective in obtaining excellent quality slabs without product defects by controlling the casting to be uniform.

【0007】[0007]

【課題を解決するための手段】上掲の目的実現のために
鋭意研究した結果、本発明者らは、静磁場を利用する鋼
の連続鋳造において、鋳型幅方向に均一な流速分布をも
つ溶鋼流を得るには、鋳型内溶鋼の流速分布に応じた磁
束密度分布となるように、前記鋳型の幅方向全域に静磁
場を印加することが必要であることを見出し、本発明に
想到した。
[Means for Solving the Problems] As a result of intensive research to achieve the above-mentioned object, the present inventors have developed a method for producing molten steel that has a uniform flow velocity distribution in the width direction of the mold in continuous casting of steel using a static magnetic field. It was discovered that in order to obtain a flow, it is necessary to apply a static magnetic field to the entire width direction of the mold so that the magnetic flux density distribution corresponds to the flow velocity distribution of molten steel in the mold, and the present invention was conceived.

【0008】すなわち、本発明は、浸漬ノズルから連続
鋳造用鋳型内に供給される溶鋼の吐出噴流を制御するた
めに、前記鋳型の幅方向全域に静磁場を印加しながら連
続鋳造を行うに当り、上記鋳型の幅方向全域に印加され
る磁場の磁束密度分布が、鋳型内溶鋼の流速分布に対応
した分布となるように、磁場を印加しながら鋳造するこ
とを特徴とする静磁場を利用する鋼の連続鋳造方法であ
り、ここで本発明は、上記鋳型の短辺部近傍に印加され
る磁場の磁束密度を、鋳型幅中央部に比べて大きくする
ことが好ましく、また、上記鋳型の短辺部近傍と鋳型幅
中央部に印加される磁場の磁束密度の比を、鋳型幅中央
部の磁束密度を1とした場合に1.2 〜3.0 の範
囲内を示すように調整することが好ましい。
That is, the present invention provides continuous casting while applying a static magnetic field to the entire width direction of the mold in order to control the discharge jet of molten steel supplied from the immersion nozzle into the continuous casting mold. , using a static magnetic field characterized in that casting is performed while applying a magnetic field so that the magnetic flux density distribution of the magnetic field applied to the entire width direction of the mold corresponds to the flow velocity distribution of the molten steel in the mold. A continuous casting method for steel, wherein the present invention preferably makes the magnetic flux density of the magnetic field applied near the short side of the mold larger than the center of the width of the mold; Adjust the ratio of the magnetic flux density of the magnetic field applied near the sides and the center of the mold width to be within the range of 1.2 to 3.0, assuming that the magnetic flux density of the center of the mold width is 1. is preferred.

【0009】[0009]

【作用】本発明の連続鋳造方法は、例えば低C−Alキ
ルド鋼などを高速で連続鋳造する場合においても、欠陥
のない鋳片を製造する際に不可欠な鋳型内溶鋼流の均一
制動を実現するものである。
[Operation] The continuous casting method of the present invention achieves uniform braking of the molten steel flow in the mold, which is essential for producing defect-free slabs, even when continuously casting low C-Al killed steel at high speed. It is something to do.

【0010】ところで、本発明者らは、磁石センサーを
用いて水銀流速を測定する水銀モデル実験と数値シミュ
レーションにより、鋳型内の流動パターンおよび電磁力
分布を詳細に検討した。
By the way, the present inventors have investigated in detail the flow pattern and electromagnetic force distribution within the mold through mercury model experiments and numerical simulations in which the mercury flow velocity is measured using a magnetic sensor.

【0011】まず、鋳型内溶鋼に対して静磁場の印加を
全く行わない例では、図4(a) に示すように、浸漬
ノズルからの吐出噴流は、鋳型の短辺部に衝突し、一部
は、上方へ反転して溶鋼表面流となり、また他の一部は
、短辺部に沿って下降する強い流れとなる。これらの溶
鋼流動は、溶鋼プール表面でのスラグの巻き込み、ある
いは脱酸生成物や気泡を溶鋼プールの深部にまで持ち込
む原因をつくり、最終的には製品鋼板の表面欠陥や内部
欠陥となることが判った。
First, in an example in which no static magnetic field is applied to the molten steel in the mold, the jet flow from the immersion nozzle collides with the short side of the mold, as shown in FIG. One part turns upward and becomes a molten steel surface flow, and the other part turns into a strong flow descending along the short side. These molten steel flows can cause slag to be entrained on the surface of the molten steel pool, or deoxidized products and air bubbles can be carried deep into the molten steel pool, ultimately resulting in surface defects or internal defects in product steel sheets. understood.

【0012】次に、従来技術では、図4(b) や図4
(c) に示すように、上述した溶鋼流の上方への反転
流や下方への強い流れは弱められるものの、その制動が
不十分である。すなわち、図4(b) の例は、鋳型の
幅方向全域に磁場を印加していないために、磁場の相対
的に弱い部分に強い流れが生じ、溶鋼流の制動を十分に
達成できない。一方、鋳型の幅方向全域に磁場を印加す
る図4(c) の例は、浸漬ノズルから噴出した溶鋼流
が一旦鋳型短辺部に衝突したのち、その溶鋼流の方向が
上下,左右に分かれ、そのために鋳型短辺部近傍の流れ
が非常に複雑となる。このことは、鋳型幅方向の中央部
近傍については、溶鋼流の乱れが少なく、比較的小さな
磁場の印加によっても電磁制動の効果が十分発揮される
のに対し、鋳型短辺部近傍では、上述したように溶鋼流
が複雑になる分だけ電磁制動の効果が弱くなることが判
った。
Next, in the prior art, as shown in FIG. 4(b) and FIG.
As shown in (c), although the above-mentioned upward reverse flow and strong downward flow of the molten steel flow are weakened, the damping is insufficient. That is, in the example shown in FIG. 4(b), since the magnetic field is not applied to the entire width of the mold, a strong flow occurs in the portion where the magnetic field is relatively weak, and the molten steel flow cannot be sufficiently damped. On the other hand, in the example shown in Fig. 4(c) in which a magnetic field is applied to the entire width of the mold, the molten steel flow ejected from the immersion nozzle once collides with the short side of the mold, and then the direction of the molten steel flow is divided into vertical and horizontal directions. Therefore, the flow near the short side of the mold becomes very complicated. This means that near the center of the mold in the width direction, there is little turbulence in the molten steel flow, and the effect of electromagnetic braking is sufficiently exerted even with the application of a relatively small magnetic field, whereas near the short sides of the mold, as mentioned above, It was found that the effect of electromagnetic braking becomes weaker as the molten steel flow becomes more complex.

【0013】そこで、本発明では、鋳型内溶鋼の流動を
制御するために連続鋳造用鋳型の幅方向全域に静磁場を
印加することとした場合において、上記鋳型の幅方向全
域に印加される磁場の磁束密度分布が、鋳型内溶鋼の流
速分布に対応した分布となるように、すなわち鋳型短辺
部近傍での磁場が強くなるような磁場分布を与えること
としたのである。この場合、鋳型の短辺部近傍と鋳型幅
中央部に印加される磁場の磁束密度の比が、鋳型幅中央
部の磁束密度を1とした場合に、1.2 〜3.0 の
範囲内とすることが好適である。
Therefore, in the present invention, when a static magnetic field is applied to the entire width direction of a continuous casting mold in order to control the flow of molten steel in the mold, the magnetic field applied to the entire width direction of the mold is It was decided to provide a magnetic field distribution such that the magnetic flux density distribution corresponds to the flow velocity distribution of molten steel in the mold, that is, the magnetic field is strong near the short sides of the mold. In this case, the ratio of the magnetic flux density of the magnetic field applied near the short side of the mold to the center of the mold width is within the range of 1.2 to 3.0, where the magnetic flux density of the center of the mold width is 1. It is preferable that

【0014】このような磁束密度分布調整を行う理由は
、鋳型幅中央部の磁束密度を1とした場合の鋳型短辺部
近傍における磁束密度を種々変化させて、鋳型幅中央部
の下降流速を1とした場合の鋳型短辺部近傍の下降流速
の大きさを調査した結果に基づくものである。すなわち
、図8に示すように、鋳型短辺部近傍にのみ静磁場を与
えた場合(図中A点)や、短辺部近傍と中央部との磁束
密度の比が3.0 を超える場合(図中Bの範囲)では
、却って流れが幅中央部に集中する傾向が現れ、所望の
効果が得られず、また上記磁束密度の比が1.2 未満
の場合は下降流の制動が十分されず、鋳片内への介在物
の巻き込みを防止できないからである。
The reason for performing such magnetic flux density distribution adjustment is to variously change the magnetic flux density near the short sides of the mold, assuming that the magnetic flux density at the center of the mold width is 1, so that the downward flow velocity at the center of the mold width can be adjusted. This is based on the results of investigating the magnitude of the downward flow velocity near the short side of the mold when the value is 1. That is, as shown in Figure 8, when a static magnetic field is applied only near the short side of the mold (point A in the figure), or when the ratio of the magnetic flux density near the short side and the center exceeds 3.0. (range B in the figure), the flow tends to concentrate in the center of the width, and the desired effect cannot be obtained. Also, if the ratio of magnetic flux densities is less than 1.2, the downward flow is not sufficiently damped. This is because it is not possible to prevent inclusions from being drawn into the slab.

【0015】このように本発明の連続鋳造方法によれば
、図5(a) に示すように、鋳型短辺部に沿う強い下
降流が弱められ、鋳型幅方向にほぼ均一な下降流を得る
ことができる。なお、図5は、磁石センサーを用いて水
銀流速を測定する水銀モデル実験を行い、鋳型幅方向に
一様な磁場分布を与える従来法による場合(図5(b)
 )と、鋳型短辺部近傍の磁束密度が大きくなるように
磁場を印加することとした本発明法による場合(図5(
a) )とを比較したものである。ここで、図中の矢印
は、センサーで測定した水銀流速の大きさとその方向を
示している。
As described above, according to the continuous casting method of the present invention, as shown in FIG. 5(a), the strong downward flow along the short side of the mold is weakened, and a substantially uniform downward flow is obtained in the width direction of the mold. be able to. Figure 5 shows a mercury model experiment in which the mercury flow velocity is measured using a magnetic sensor, and a conventional method that provides a uniform magnetic field distribution in the width direction of the mold is used (Figure 5 (b)).
), and in the case of the method of the present invention in which a magnetic field is applied so that the magnetic flux density near the short side of the mold becomes large (Fig. 5 (
a)). Here, the arrows in the figure indicate the magnitude and direction of the mercury flow velocity measured by the sensor.

【0016】[0016]

【実施例】【Example】

(実施例1)磁場印加用電磁石を、厚み260mm ,
幅1200mmの連続鋳造用鋳型に図1(a),(b)
に示すように取付け、鋳型内溶鋼表面と鋳型の下部領域
に対向して、鋳片厚み方向に平行な静磁場を印加しなが
ら、低炭素鋼を4.0t/minの溶鋼供給速度で鋳造
した。
(Example 1) An electromagnet for applying a magnetic field was made with a thickness of 260 mm,
Figures 1 (a) and (b) are placed in a continuous casting mold with a width of 1200 mm.
The low carbon steel was cast at a molten steel supply rate of 4.0 t/min while applying a static magnetic field parallel to the thickness direction of the slab, facing the molten steel surface in the mold and the lower area of the mold. .

【0017】なお、本発明例の実施に当たっては、図2
(a) に示すような形状の電磁石用鉄芯を用い、図3
(a) に示すような鋳型幅方向の磁束密度分布になる
ように、磁場を印加した(鋳造時に印加した磁束密度は
、幅中央部で1200ガウス,短辺部近傍で1800ガ
ウスとした。)。 一方、比較例の実施に当たっては、図2(b) に示す
ような形状の電磁石用鉄芯を用い、図3(b) に示す
ような鋳型幅方向全域(1200mmの範囲)に均一な
磁束密度分布になるように、磁場を印加した(鋳造時に
印加した磁束密度は、幅方向全域1200ガウスとした
。)。
In carrying out the embodiment of the present invention, FIG.
Using an electromagnet iron core with the shape shown in (a),
A magnetic field was applied so that the magnetic flux density distribution in the mold width direction was as shown in (a) (The magnetic flux density applied during casting was 1200 Gauss at the center of the width and 1800 Gauss near the short sides.) . On the other hand, in implementing the comparative example, an electromagnet iron core with a shape as shown in Fig. 2(b) was used, and a magnetic flux density was uniform across the entire mold width direction (range of 1200 mm) as shown in Fig. 3(b). A magnetic field was applied so as to have a distribution (the magnetic flux density applied during casting was 1200 Gauss over the entire width direction).

【0018】このようにして、上記実施例および比較例
で鋳造したスラブについて、そのスラブ表面のノロカミ
個数およびスラブ内の全酸素分析値(1/4 厚み部)
を比較した結果を、それぞれ図6および図7に示す。こ
れらの図から明らかなように、本発明の方法によれば、
スラブ表面および内部の品質が大幅に改善できることが
判る。
In this way, for the slabs cast in the above examples and comparative examples, the number of slags on the slab surface and the total oxygen analysis value in the slab (1/4 thickness part)
The results of the comparison are shown in FIGS. 6 and 7, respectively. As is clear from these figures, according to the method of the present invention,
It can be seen that the quality of the slab surface and interior can be significantly improved.

【0019】(実施例2)磁場印加用電磁石の鉄芯形状
により、鋳型短辺部近傍と幅中央部との磁束密度の比を
変化させて、上記実施例1と同一の鋳型および鋳造条件
で鋳造した。このようにして得られたスラブ内の介在物
量を比較した結果を図9に示す。この図から明らかなよ
うに、鋳型短辺部近傍と幅中央部との磁束密度の比を1
.2 〜3.0 の範囲とすることにより、スラブ内の
介在物量を著しく低減することができる。
(Example 2) Using the same mold and casting conditions as in Example 1, the ratio of the magnetic flux density near the short side of the mold and the center of the width was changed by changing the shape of the iron core of the electromagnet for applying a magnetic field. Cast. FIG. 9 shows the results of comparing the amounts of inclusions in the slabs thus obtained. As is clear from this figure, the ratio of magnetic flux density near the short side of the mold to the center of the width is set to 1.
.. By setting it in the range of 2 to 3.0, the amount of inclusions in the slab can be significantly reduced.

【0020】[0020]

【発明の効果】以上説明したように、本発明によれば、
鋳型幅方向の磁束密度の大きさに差を設け、鋳型短辺部
近傍を幅中央部より大きくし、特に、その強度比を1.
2 〜3.0の範囲とすることにより、鋳型短辺部近傍
に沿う強い下降流を制動し、鋳型幅方向に均一な溶鋼流
を得ることができ、ひいては鋳片や最終製品の品質を著
しく向上させることができる。
[Effects of the Invention] As explained above, according to the present invention,
The magnitude of the magnetic flux density in the width direction of the mold is made different, and the vicinity of the short side of the mold is made larger than the center of the width, and in particular, the strength ratio is set to 1.
By setting it in the range of 2 to 3.0, it is possible to dampen the strong downward flow along the short side of the mold and obtain a uniform flow of molten steel in the width direction of the mold, which in turn significantly improves the quality of slabs and final products. can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明法の実施における電磁石の鋳型への配置
状態を示す(a) 正面図,(b) 側面図である。
FIG. 1 is a front view (a) and a side view (b) showing the arrangement of electromagnets in a mold in the implementation of the method of the present invention.

【図2】(a) 本発明法にかかる磁石用鉄芯,(b)
 従来法にかかる磁石用鉄芯、の構造を示す図である。
[Figure 2] (a) Iron core for magnet according to the method of the present invention, (b)
It is a figure showing the structure of the iron core for magnets concerning the conventional method.

【図3】図2(a),(b) の磁石用鉄芯を用いた場
合の鋳型幅方向の磁束密度分布を示す図である。
FIG. 3 is a diagram showing the magnetic flux density distribution in the mold width direction when the magnet iron core shown in FIGS. 2(a) and 2(b) is used.

【図4】(a) 本発明法による鋳型幅全域への磁場印
加の場合,(b)従来法による鋳型への磁場印加の場合
,(c) 鋳型への磁場印加を行わない場合、の溶鋼流
動パターンを示す図である。
[Fig. 4] Molten steel in the following cases: (a) when a magnetic field is applied to the entire width of the mold by the method of the present invention, (b) when a magnetic field is applied to the mold by the conventional method, (c) when no magnetic field is applied to the mold. It is a figure showing a flow pattern.

【図5】(a) 本発明法の場合,(b) 従来法の場
合、の水銀モデル実験による流速測定結果を示す図であ
る。
FIG. 5 is a diagram showing flow velocity measurement results from mercury model experiments (a) for the method of the present invention and (b) for the conventional method.

【図6】本発明法と従来法によって得られたスラブ表面
のノロカミ個数を比較した図である。
FIG. 6 is a diagram comparing the number of grooves on the slab surface obtained by the method of the present invention and the conventional method.

【図7】本発明法と従来法によって得られたスラブ内全
酸素分析値を比較した図である。
FIG. 7 is a diagram comparing the total oxygen analysis values in the slab obtained by the method of the present invention and the conventional method.

【図8】水銀モデル実験における鋳型短辺部と中央部の
磁束密度比と短辺部の下降流速の関係を示す図である。
FIG. 8 is a diagram showing the relationship between the magnetic flux density ratio of the short side and the center of the mold and the downward flow velocity of the short side in a mercury model experiment.

【図9】鋳型短辺部と中央部の磁束密度比とスラブ内の
介在物量の関係を示す図である。
FIG. 9 is a diagram showing the relationship between the magnetic flux density ratio of the short side part of the mold and the center part and the amount of inclusions in the slab.

【符号の説明】[Explanation of symbols]

1  連続鋳造用鋳型 2  浸漬ノズル 2a  吐出口 3  電磁石用鉄芯 4  鋳片 5  溶鋼 6  磁場発生用コイル 1 Continuous casting mold 2 Immersion nozzle 2a Discharge port 3 Iron core for electromagnet 4 Slab 5 Molten steel 6 Coil for magnetic field generation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  浸漬ノズルから連続鋳造用鋳型内に供
給される溶鋼の吐出噴流を制御するために、前記鋳型の
幅方向全域に静磁場を印加しながら連続鋳造を行うに当
り、上記鋳型の幅方向全域に印加される磁場の磁束密度
分布が、鋳型内溶鋼の流速分布に対応した分布となるよ
うに、磁場を印加しながら鋳造することを特徴とする静
磁場を利用する鋼の連続鋳造方法。
1. In order to control the discharge jet of molten steel supplied into the continuous casting mold from the immersion nozzle, when performing continuous casting while applying a static magnetic field to the entire width direction of the mold, Continuous casting of steel using a static magnetic field characterized by casting while applying a magnetic field so that the magnetic flux density distribution of the magnetic field applied throughout the width direction corresponds to the flow velocity distribution of molten steel in the mold. Method.
【請求項2】  上記鋳型の短辺部近傍に印加される磁
場の磁束密度を、鋳型幅中央部に比べて大きくすること
を特徴とする請求項1に記載の方法。
2. The method according to claim 1, wherein the magnetic flux density of the magnetic field applied near the short side of the mold is made larger than that at the center of the width of the mold.
【請求項3】  上記鋳型の短辺部近傍と鋳型幅中央部
に印加される磁場の磁束密度の比が、鋳型幅中央部の磁
束密度を1とした場合に、1.2 〜3.0の範囲内で
あることを特徴とする請求項1に記載の方法。
3. The ratio of the magnetic flux density of the magnetic field applied near the short side of the mold to the center of the width of the mold is 1.2 to 3.0, assuming that the magnetic flux density of the center of the width of the mold is 1. A method according to claim 1, characterized in that the method is within the range of.
JP14274491A 1991-05-20 1991-05-20 Continuous casting method of steel using static magnetic field Expired - Lifetime JP2930448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14274491A JP2930448B2 (en) 1991-05-20 1991-05-20 Continuous casting method of steel using static magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14274491A JP2930448B2 (en) 1991-05-20 1991-05-20 Continuous casting method of steel using static magnetic field

Publications (2)

Publication Number Publication Date
JPH04344858A true JPH04344858A (en) 1992-12-01
JP2930448B2 JP2930448B2 (en) 1999-08-03

Family

ID=15322568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14274491A Expired - Lifetime JP2930448B2 (en) 1991-05-20 1991-05-20 Continuous casting method of steel using static magnetic field

Country Status (1)

Country Link
JP (1) JP2930448B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347697A (en) * 1998-06-09 1999-12-21 Sumitomo Metal Ind Ltd Device for braking molten metal and continuous casting method
JP2010221276A (en) * 2009-03-24 2010-10-07 Jfe Steel Corp Continuous casting apparatus and continuous casting method
JP2010221275A (en) * 2009-03-24 2010-10-07 Jfe Steel Corp Apparatus and method of continuous casting

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11347697A (en) * 1998-06-09 1999-12-21 Sumitomo Metal Ind Ltd Device for braking molten metal and continuous casting method
JP2010221276A (en) * 2009-03-24 2010-10-07 Jfe Steel Corp Continuous casting apparatus and continuous casting method
JP2010221275A (en) * 2009-03-24 2010-10-07 Jfe Steel Corp Apparatus and method of continuous casting

Also Published As

Publication number Publication date
JP2930448B2 (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP3692253B2 (en) Continuous casting method of steel
JP3188273B2 (en) Control method of flow in mold by DC magnetic field
JPH03142049A (en) Method and apparatus for continuously casting steel using static magnetic field
JPH04344858A (en) Method for continuously casting steel utilizing static magnetic field
JP3593328B2 (en) Method for controlling flow of molten steel in mold and apparatus for forming electromagnetic field therefor
KR20000029610A (en) Electromagnetic braking device for continuous casting mold and method of continuous casting by using the same
US5570736A (en) Process of continuously casting steel using electromagnetic field
JP2006281218A (en) Method for continuously casting steel
CA2266085C (en) Continuous casting machine
JP5369808B2 (en) Continuous casting apparatus and continuous casting method
JP5375242B2 (en) Continuous casting apparatus and continuous casting method
JPS63154246A (en) Continuous casting method for steel using static magnetic field
JP3253012B2 (en) Electromagnetic brake device for continuous casting mold and continuous casting method using the same
JP3240927B2 (en) Method for controlling molten steel flow in continuous casting mold
JP6036144B2 (en) Continuous casting method
JP3491099B2 (en) Continuous casting method of steel using static magnetic field
JPH09108797A (en) Method for continuously casting steel
JPH07136747A (en) Continuous casting method for bloom and its device
JPH04333353A (en) Method for continuously casting steel utilizing static magnetic field
JPH0289544A (en) Method for controlling molten steel flow in mold in continuous casting
JPH10328791A (en) Electromagnetic braking device of mold for continuous casting and continuous casting method using this braking device
JPS63260652A (en) Method for preventing involvement of mold powder in continuous casting
JPH10263762A (en) Method for continuously casting steel
JPH0584551A (en) Method for continuously casting steel using static magnetic field
JPH02235554A (en) Apparatus for controlling flow of molten metal in mold

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 12

EXPY Cancellation because of completion of term