JPH10263762A - Method for continuously casting steel - Google Patents

Method for continuously casting steel

Info

Publication number
JPH10263762A
JPH10263762A JP7316197A JP7316197A JPH10263762A JP H10263762 A JPH10263762 A JP H10263762A JP 7316197 A JP7316197 A JP 7316197A JP 7316197 A JP7316197 A JP 7316197A JP H10263762 A JPH10263762 A JP H10263762A
Authority
JP
Japan
Prior art keywords
mold
magnetic field
molten steel
flow
meniscus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7316197A
Other languages
Japanese (ja)
Inventor
Makoto Suzuki
真 鈴木
Masayuki Nakada
正之 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP7316197A priority Critical patent/JPH10263762A/en
Publication of JPH10263762A publication Critical patent/JPH10263762A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a cast slab having little non-metallic inclusion by making the surface flow speed of molten steel in a mold suitable in a continuous casting of the steel. SOLUTION: In this continuous casting method of the steel, a moving magnetic field generating device 10 divided into at least two parts at the right and left sides in the width direction of the mold 1 while centering an immersion nozzle 7 is arranged on the back surfaces of the long sides 2 of the mold so that the center position of the moving magnetic field generating device 10 in the casting direction becomes the lower end position of spouting hole 8 of the immersion nozzle and the lower end position of the mold. The moving magnetic field is impressed to the molten steel 4 with the moving magnetic field generating device 10, and the average surface flow speed of the molten steel in the mold at the position apart of 1/4 of the mold width from the mold center is controlled to <=0.1 m/sec. The magnetic poles 11 faced by interposing the mold long sides 2 are set to the back surfaces of the mold long sides 2 over the whole widths of the mold at the position containing a meniscus 5, and the static magnetic field is improved to the meniscus 5 with this magnetic poles.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電磁気力にて鋳型
内溶鋼の表面流速を適正化し、非金属介在物の少ない鋳
片を得ることができる鋼の連続鋳造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for continuously casting steel capable of optimizing the surface flow velocity of molten steel in a mold by electromagnetic force and obtaining a slab with less nonmetallic inclusions.

【0002】[0002]

【従来の技術】鋼の連続鋳造では浸漬ノズルを介して溶
鋼を鋳型内に高速度で吐出させるため、この吐出流に起
因して鋳型内で溶鋼流動が発生し、そして、この溶鋼流
動は鋳片の表面及び内部性状に大きな影響を及ぼしてい
る。特に、鋳型内湯面(以下、「メニスカス」と記す)
の表面流速が速すぎる場合や、メニスカスに縦渦が発生
する場合には、モールドパウダーが溶鋼中に巻き込ま
れ、製品における主要な欠陥となるので、メニスカスに
おける溶鋼流動が重要視されている。そのため、鋳片品
質向上の重要な課題として、従来から電磁気力の利用に
よるメニスカスの流動制御方法が数多く提案されてい
る。
2. Description of the Related Art In continuous casting of steel, molten steel is discharged into a mold at a high speed through an immersion nozzle, so that a flow of molten steel is generated in the mold due to the discharge flow. It has a significant effect on the surface and internal properties of the piece. In particular, the mold surface (hereinafter referred to as "meniscus")
When the surface flow velocity is too high, or when a vertical vortex is generated in the meniscus, the mold powder is caught in the molten steel and becomes a major defect in the product, so the flow of the molten steel in the meniscus is regarded as important. Therefore, as an important issue for improving the quality of cast slabs, many methods of controlling the flow of meniscus using electromagnetic force have been proposed.

【0003】例えば、特開平2−284750号公報
(以下、「先行技術1」と記す)には、鋳型の全幅に渡
り1段もしくは2段の直流電源による静磁場を印加し、
浸漬ノズルからの吐出流に制動を加える方法が開示され
ている。先行技術1によれば、操業条件の変動があって
も吐出流には常に均一な磁場が作用し、且つ磁場が吐出
流に対する反射板としての役目を有するので、安定して
溶鋼流動を制御できるとしている。
For example, Japanese Patent Application Laid-Open No. 2-284750 (hereinafter referred to as "prior art 1") discloses that a static magnetic field is applied by a one-stage or two-stage DC power supply over the entire width of a mold.
A method is disclosed in which braking is applied to the discharge flow from an immersion nozzle. According to the prior art 1, a uniform magnetic field always acts on the discharge flow even if the operating conditions fluctuate, and the magnetic field has a role as a reflector for the discharge flow, so that the molten steel flow can be controlled stably. And

【0004】特開昭64−2771号公報(以下、「先
行技術2」と記す)には、複数対の交流電源による移動
磁場発生装置を鋳型長辺背面に対向配置して、移動磁場
による溶鋼流を発生させ、この溶鋼流で吐出流を減速又
は加速して目的の溶鋼流動を得る方法が開示されてい
る。先行技術2によれば、複数対の移動磁場発生装置で
個別に磁場の移動方向及び磁場強度を制御できるので、
非金属介在物の少ない鋳片を得ることができるとしてい
る。
Japanese Unexamined Patent Publication No. 64-2771 (hereinafter referred to as "prior art 2") discloses a method in which a moving magnetic field generator using a plurality of pairs of AC power supplies is arranged opposite to the back side of a long side of a mold, and molten steel is generated by a moving magnetic field. A method is disclosed in which a flow is generated, and a discharge flow is decelerated or accelerated by the molten steel flow to obtain a desired molten steel flow. According to Prior Art 2, since the moving direction and the magnetic field strength of the magnetic field can be individually controlled by a plurality of pairs of moving magnetic field generators,
It is stated that cast pieces with few nonmetallic inclusions can be obtained.

【0005】又、特開平5−177317号公報(以
下、「先行技術3」と記す)には、鋳型の下部もしくは
鋳型直下に静磁場を印加すると共に、メニスカス部に移
動磁場を印加する方法が開示されている。先行技術3に
よれば、静磁場にて吐出流の下降流を減速して非金属介
在物の浮上を促進すると共に、移動磁場にてメニスカス
に一方向の回転流を与えて凝固シェルの洗浄効果を高め
ることができるので、表層も内部も清浄な鋳片を得るこ
とができるとしている。
Japanese Patent Application Laid-Open No. Hei 5-177317 (hereinafter referred to as "prior art 3") discloses a method of applying a static magnetic field to a lower portion of a mold or directly below a mold and applying a moving magnetic field to a meniscus portion. It has been disclosed. According to the prior art 3, the descending flow of the discharge flow is decelerated by the static magnetic field to promote the floating of the nonmetallic inclusions, and the unidirectional rotating flow is given to the meniscus by the moving magnetic field, thereby cleaning the solidified shell. Therefore, it is possible to obtain a cast slab in which both the surface layer and the inside are clean.

【0006】[0006]

【発明が解決しようとする課題】しかし、先行技術1で
は、鋳型内溶鋼全体に制動力が働くため、溶鋼の流れの
方向や流動パターンを制御することは困難であり、鋳造
条件によっては十分な効果を発揮することができない。
又、静磁場の場合には、磁場が印加された領域を通過す
る溶鋼の流速に比例した電磁気力が作用する。従って、
静磁場の印加では溶鋼の流速の何割かが減速することに
なる。通常、磁場強度は0.3テスラ程度のものが使用
されるが、この程度の磁場強度では、高々2割程度の減
速効果しかないことが報告されている(例えば、M.Wash
io et al.:La Revue de Metallurgie -CIT,(1993),50
8)。そのため、最近の効率化を目的とした鋳片引抜き速
度の高速となった鋳造形態においては、鋳型内溶鋼の表
面流速が元々速いため、この程度の減速効果では非金属
介在物の低減に十分な効果を発揮しない。
However, in the prior art 1, since the braking force acts on the entire molten steel in the mold, it is difficult to control the flow direction and the flow pattern of the molten steel. It cannot be effective.
In the case of a static magnetic field, an electromagnetic force acts in proportion to the flow velocity of the molten steel passing through the region where the magnetic field is applied. Therefore,
When a static magnetic field is applied, some of the flow velocity of the molten steel is reduced. Usually, a magnetic field strength of about 0.3 Tesla is used, but it is reported that at this magnetic field strength, there is only a deceleration effect of at most about 20% (for example, M. Wash
io et al .: La Revue de Metallurgie -CIT, (1993), 50
8). Therefore, in the casting mode in which the slab drawing speed was increased recently for the purpose of improving efficiency, the surface flow velocity of the molten steel in the mold was originally high, so this moderating effect was sufficient to reduce nonmetallic inclusions. Does not work.

【0007】先行技術2では、周期的な磁場の移動によ
り誘起される溶鋼流によって吐出流速を制御しているの
で、平均流速を制御することは容易にできるが、溶鋼流
速の変動値の低減効果については不十分で、条件によっ
てはモールドパウダーの巻き込みが発生することがあ
り、流動制御の安定性に欠ける点がある。
In the prior art 2, since the discharge flow velocity is controlled by the molten steel flow induced by the periodic movement of the magnetic field, the average flow velocity can be easily controlled, but the effect of reducing the fluctuation value of the molten steel flow velocity is achieved. Is insufficient, and depending on the conditions, entrapment of the mold powder may occur, and the stability of flow control is lacking.

【0008】又、先行技術3では、メニスカスの溶鋼流
速は必ずしも最適には制御されず、逆に、回転流により
メニスカスの溶鋼流速が加速され、モールドパウダーの
巻き込みを助長することもあり、品質の安定性に欠け
る。
In the prior art 3, the meniscus flow velocity of the molten steel is not always optimally controlled. Conversely, the flow velocity of the molten steel flow of the meniscus is accelerated by the rotational flow, and the entrainment of the mold powder may be promoted. Lack of stability.

【0009】このように、従来の磁場を利用した鋳型内
溶鋼の流動制御の方法は、非金属介在物の低減にその効
果を十分に発揮しているとは言いがたい。
As described above, it cannot be said that the conventional method of controlling the flow of molten steel in a mold using a magnetic field is sufficiently effective in reducing nonmetallic inclusions.

【0010】本発明は、上記事情に鑑みなされたもの
で、その目的とするところは、移動磁場と静磁場とを併
用し、両者の優れた特徴を利用して鋳型内溶鋼の表面流
速を適正化し、非金属介在物の少ない鋳片を得ることが
できる鋼の連続鋳造方法を提供するものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to use a moving magnetic field and a static magnetic field in combination, and to optimize the surface flow velocity of molten steel in a mold by utilizing the excellent characteristics of both. It is intended to provide a continuous casting method of steel capable of obtaining a slab with reduced nonmetallic inclusions.

【0011】[0011]

【課題を解決するための手段】本発明による鋼の連続鋳
造方法は、浸漬ノズルを中心として鋳型幅方向左右で少
なくとも2つに分割された移動磁場発生装置を、移動磁
場発生装置の鋳造方向の中心位置が浸漬ノズルの吐出孔
下端位置と鋳型下端位置との範囲となるように鋳型長辺
の背面に配置し、この移動磁場発生装置にて移動磁場を
溶鋼に印加して、鋳型中央から鋳型幅の1/4隔てた位
置における鋳型内溶鋼の平均表面流速を0.1m/se
c以下に制御すると共に、鋳型長辺を挟み対向する磁極
を、メニスカスを含む位置の鋳型全幅に渡って鋳型長辺
の背面に配置し、この磁極によりメニスカスに静磁場を
印加することを特徴とするものである。
The method for continuously casting steel according to the present invention comprises a moving magnetic field generator divided into at least two parts on the left and right sides in a mold width direction around an immersion nozzle. It is arranged on the back of the long side of the mold so that the center position is in the range between the lower end position of the discharge hole of the immersion nozzle and the lower end position of the mold. The average surface flow velocity of the molten steel in the mold at a position 1/4 of the width is 0.1 m / sec.
c or less, and the magnetic poles opposed to each other across the long side of the mold are arranged on the back of the long side of the mold over the entire width of the mold including the meniscus, and a static magnetic field is applied to the meniscus by the magnetic poles. Is what you do.

【0012】発明者等は、連続鋳造機における諸測定値
やモデル実験により、鋳型内溶鋼の流動と鋳片品質との
関係について検討し、鋳片の品質は鋳型内溶鋼の表面流
速と表面流速の変動幅との関連が大きいことが判明し
た。以下に詳述する。
The present inventors have examined the relationship between the flow of molten steel in a mold and the quality of a slab by various measured values and model experiments in a continuous casting machine, and the quality of the slab was determined by the surface velocity and the surface velocity of the molten steel in the mold. It was found that the relationship with the fluctuation range was large. Details will be described below.

【0013】先ず、鋳型内溶鋼の表面流速と薄鋼板製品
でのモールドパウダー性欠陥の発生率との関係を調査し
た。鋳型中央から鋳型幅の1/4隔てた位置(以下、
「1/4鋳型幅位置」と記す)において、鋳型内溶鋼の
表面流速を鋳片単位で測定し、鋳片単位で測定した表面
流速の最大流速をその鋳片を代表する表面流速とする。
そして、その鋳片を薄鋼板製品に圧延して製品における
モールドパウダー性欠陥の発生率を測定し、この欠陥発
生率と前記の表面流速との関係を調査した。図4にその
結果を示す。尚、図4の横軸は、鋳型短辺側から鋳型中
央側へ向かう表面流と、鋳型中央側から鋳型短辺側へ向
かう表面流とを分離して示しているが、図4に示すよう
に、1/4鋳型幅位置における表面流速の最大流速が略
0の場合にモールドパウダー性欠陥の発生率が最も少な
くなり、そして、1/4鋳型幅位置における最大流速
が、その流れの向きには左右されずに、0.1m/se
c以下の場合に、欠陥発生指数は0.1以下となり、安
定して欠陥発生率が低いことが分かった。
First, the relationship between the surface flow rate of molten steel in a mold and the incidence of mold powder defects in a thin steel sheet product was investigated. A position 1/4 of the width of the mold from the center of the mold
In the "1/4 mold width position"), the surface flow velocity of the molten steel in the mold is measured in slab units, and the maximum flow velocity of the surface velocities measured in slab units is defined as the surface flow velocity representative of the slab.
Then, the slab was rolled into a thin steel sheet product, and the occurrence rate of mold powder defects in the product was measured, and the relationship between the occurrence rate of the defects and the above-mentioned surface flow velocity was investigated. FIG. 4 shows the result. The horizontal axis in FIG. 4 shows the surface flow from the short side of the mold to the center of the mold and the surface flow from the center of the mold to the short side of the mold separately, as shown in FIG. In addition, when the maximum surface flow velocity at the 1/4 mold width position is substantially zero, the occurrence rate of mold powder defects is minimized, and the maximum flow velocity at the 1/4 mold width position is 0.1m / sec
In the case of c or less, the defect occurrence index was 0.1 or less, and it was found that the defect occurrence rate was stably low.

【0014】この理由を低融点合金を用いたモデル実験
にて確認したところ、1/4鋳型幅位置における表面流
速の最大流速が0.1m/sec以下の場合には、メニ
スカスにおいて渦の発生や、強い表面流の出現がなく、
モールドパウダーの巻き込みが発生しにくい流動状況に
なっていることが分かった。
The reason for this was confirmed by a model experiment using a low melting point alloy. When the maximum surface flow velocity at the 1/4 mold width position was 0.1 m / sec or less, the generation of vortices in the meniscus and Without the appearance of strong surface currents,
It was found that the flow state was such that mold powder was not easily entrained.

【0015】鋳片引抜き速度が高速の場合においても、
このような遅い鋳型内溶鋼の表面流速を磁場により実現
するためには、すでに述べたように静磁場を吐出流や表
面流に印加する方法では、現在工業的に適用されている
0.3テスラ程度の磁場強度では不足で、これを大幅に
上回る、例えば1テスラ以上の静磁場を印加する必要が
ある。しかし、これは設備的に難しく、又、可能であっ
ても設備投資金額が高くなる。本発明では、移動磁場
を、移動磁場発生装置の鋳造方向の中心位置が浸漬ノズ
ルの吐出孔下端位置と鋳型下端位置との範囲となるよう
に、鋳型長辺の背面に配置することによってこれを可能
にした。即ち、移動磁場を、溶鋼が浸漬ノズルから鋳型
内へ吐出される範囲の溶鋼に印加することにより、磁場
が原理的に有する吐出流の制動作用の他に、移動磁場で
誘起された溶鋼流を浸漬ノズルからの吐出流に対向させ
て吐出流を減速させることで、例えば最大磁場強度が
0.3テスラ以下の工業的に適用可能な移動磁場発生装
置で、鋳型内溶鋼の表面流速を任意の速度、例えば0.
1m/min以下に低減することができるためである。
尚、移動磁場発生装置を浸漬ノズルを中心として鋳型幅
方向左右で少なくとも2つに分割する理由は、移動磁場
の移動方向を鋳型幅左右で逆方向にするためである。
Even when the slab drawing speed is high,
In order to realize such a slow surface velocity of molten steel in a mold by a magnetic field, as described above, the method of applying a static magnetic field to a discharge flow or a surface flow requires 0.3 Tesla, which is currently applied industrially. A magnetic field strength of the order is insufficient, and it is necessary to apply a static magnetic field that greatly exceeds this, for example, 1 tesla or more. However, this is difficult in terms of equipment, and even if possible, the capital investment amount is high. In the present invention, the moving magnetic field is arranged on the back of the long side of the mold such that the center position of the moving magnetic field generator in the casting direction is in the range between the lower end position of the discharge hole of the immersion nozzle and the lower end position of the mold. Made it possible. That is, by applying the moving magnetic field to the molten steel in a range where the molten steel is discharged from the immersion nozzle into the mold, in addition to the braking action of the discharge flow that the magnetic field has in principle, the molten steel flow induced by the moving magnetic field can be generated. By slowing the discharge flow in opposition to the discharge flow from the immersion nozzle, for example, with an industrially applicable moving magnetic field generator having a maximum magnetic field strength of 0.3 Tesla or less, the surface velocity of the molten steel in the mold can be set to an arbitrary value. Speed, e.g.
This is because it can be reduced to 1 m / min or less.
The reason why the moving magnetic field generator is divided into at least two on the left and right sides in the mold width direction around the immersion nozzle is to reverse the moving direction of the moving magnetic field on the left and right sides of the mold width.

【0016】しかし、実機において移動磁場により表面
流速を制御する場合には、1/4鋳型幅位置における表
面流速を0.1m/sec以下に制御していても、後述
するように表面流速の変動により瞬間的には0.1m/
secを超える表面流が発生しうるため、鋳造条件によ
っては数時間に渡る連続鋳造工程の全範囲を0.1m/
sec以下に制御することは困難である。従って本願で
は、移動磁場により1/4鋳型幅位置における鋳型内溶
鋼の平均表面流速を0.1m/sec以下に制御するこ
ととした。尚、平均表面流速とは、3分間以上測定した
鋳型内溶鋼の表面流速の平均値である。
However, when the surface flow velocity is controlled by the moving magnetic field in the actual machine, even if the surface flow velocity at the 1/4 mold width position is controlled to 0.1 m / sec or less, the fluctuation of the surface flow velocity will be described later. 0.1m /
Since a surface flow exceeding sec may occur, the entire range of the continuous casting process over several hours may be 0.1 m /
It is difficult to control it in seconds or less. Therefore, in the present application, the average surface flow velocity of the molten steel in the mold at the 1/4 mold width position is controlled to 0.1 m / sec or less by the moving magnetic field. The average surface flow velocity is an average value of the surface flow velocity of the molten steel in the mold measured for 3 minutes or more.

【0017】ところで、1/4鋳型幅位置における平均
表面流速が0.1m/sec以下となる場合でも、鋳型
内溶鋼の流動パターンは、図5に示すように幾つかのケ
ースが考えられる。尚、図5は、発明者等の検討結果に
より鋳型内溶鋼の流動パターンをA〜Cの3つのパター
ンに大別して模式的に示したものである。
By the way, even when the average surface flow velocity at the 1/4 mold width position is 0.1 m / sec or less, several cases can be considered for the flow pattern of the molten steel in the mold as shown in FIG. FIG. 5 schematically shows the flow pattern of the molten steel in the mold roughly classified into three patterns A to C based on the results of studies by the inventors.

【0018】例えば、パターンAの場合には、浸漬ノズ
ルからの吐出流が、鋳型短辺側の凝固シェルに到達・衝
突した後、鋳型短辺側の凝固シェルに沿ってメニスカス
まで上昇して、更にメニスカスを鋳型短辺側から鋳型中
央側に向かって流れる流れと、鋳型短辺側の凝固シェル
への衝突点から鋳型下方に下降する流れとに分離する流
動パターンで、表面流は鋳型短辺側から鋳型中央側への
1方向の流れとなるが、吐出流自体の速度が遅い時には
表面流速も遅くなり、1/4鋳型幅位置における平均表
面流速が0.1m/sec以下となる。
For example, in the case of pattern A, the discharge flow from the immersion nozzle reaches and collides with the solidified shell on the short side of the mold, and then rises to the meniscus along the solidified shell on the short side of the mold. Furthermore, the surface flow is such that the meniscus is separated into a flow flowing from the short side of the mold toward the center of the mold and a flow descending downward from the point of collision with the solidified shell on the short side of the mold. The flow is in one direction from the side to the center of the mold, but when the speed of the discharge flow itself is low, the surface flow velocity is also low, and the average surface flow velocity at the 1/4 mold width position is 0.1 m / sec or less.

【0019】パターンBの場合には、Arガス気泡の浮
上、あるいは吐出流への磁場印加の影響により、浸漬ノ
ズルからの吐出流が鋳型短辺側の凝固シェルに到達せ
ず、吐出孔から鋳型短辺側の凝固シェルまでの間で分散
して、上昇流と下降流とを形成する流動パターンで、メ
ニスカスは、図5に示すように、鋳型中央側では鋳型短
辺側から鋳型中央側への流れ、鋳型短辺側では鋳型中央
側から鋳型短辺側への流れとなるなど、一部に鋳型中央
側から鋳型短辺側への流れが形成されるため、1/4鋳
型幅位置における平均表面流速は0.1m/sec以下
となりやすい。
In the case of pattern B, the discharge flow from the immersion nozzle does not reach the solidified shell on the short side of the mold due to the floating of the Ar gas bubbles or the influence of the application of a magnetic field to the discharge flow. In a flow pattern that is dispersed between the solidified shell on the short side and forms an ascending flow and a descending flow, the meniscus moves from the mold short side to the mold center at the center of the mold as shown in FIG. Flow from the center of the mold to the short side of the mold on the short side of the mold, and the flow from the center of the mold to the short side of the mold is partially formed. The average surface flow velocity tends to be 0.1 m / sec or less.

【0020】又、パターンCの場合には、主に粗大なA
rガス気泡の浮上の影響で浸漬ノズル近傍に上昇流が出
現し、メニスカスでは鋳型中央側から鋳型短辺側に向か
う流れが主流になる。この流れが弱い場合には、鋳型短
辺側から鋳型中央側に向かう流れが共存し、両者が浸漬
ノズルと鋳型短辺との間で衝突する。この場合も、これ
ら流れの衝突により、1/4鋳型幅位置における平均表
面流速は0.1m/sec以下となることがある。
In the case of the pattern C, the coarse A
Ascending flow appears near the immersion nozzle due to the floating of the r gas bubbles, and the flow from the center of the mold toward the short side of the mold becomes the main flow in the meniscus. When this flow is weak, a flow from the short side of the mold toward the center of the mold coexists, and both collide between the immersion nozzle and the short side of the mold. Also in this case, due to the collision of these flows, the average surface flow velocity at the 1/4 mold width position may be 0.1 m / sec or less.

【0021】このように、1/4鋳型幅位置における平
均表面流速が0.1m/sec以下であったとしても、
表面流速の変動幅は、鋳型内溶鋼の流動パターンにより
異なった様相を呈する。即ち、パターンCの場合を例に
すれば、鋳型中央側から鋳型短辺側に向かう流れと、鋳
型短辺側から鋳型中央側に向かう流れとの衝突位置が、
両方の流れの強さのバランスにより変化すると、1/4
鋳型幅位置における表面流は、鋳型短辺に向かう流れと
鋳型中央に向かう流れとが交互に出現し、表面流速の変
動幅は大きくなる。尚、本願で示す表面流速の変動幅と
は、表面流速の微分値、又は単位時間内の表面流速の最
大流速と最小流速との差である。
As described above, even if the average surface flow velocity at the 1/4 mold width position is 0.1 m / sec or less,
The fluctuation range of the surface flow velocity has different aspects depending on the flow pattern of the molten steel in the mold. That is, taking the case of the pattern C as an example, the collision position between the flow from the mold center side to the mold short side and the flow from the mold short side to the mold center side is
Depending on the balance of the strengths of both flows, 1/4
In the surface flow at the mold width position, a flow toward the short side of the mold and a flow toward the center of the mold alternately appear, and the fluctuation width of the surface flow velocity increases. The fluctuation range of the surface flow velocity described in the present application is a differential value of the surface flow velocity or a difference between the maximum flow velocity and the minimum flow velocity of the surface flow velocity within a unit time.

【0022】図6は、1/4鋳型幅位置における平均表
面流速を0.1m/sec以下に制御した時の、表面流
速の変動幅と薄鋼板製品でのモールドパウダー性欠陥の
発生率との関係を調査した結果を示したものである。図
より表面流速の変動幅を小さくして、0.15m/se
c以下とすると、欠陥発生率が低いことが分かる。尚、
図6は、表面流速の変動幅を、1分を単位時間として、
単位時間内の最大流速と最小流速の差で示したもので、
計算では鋳型短辺側から鋳型中央側に向かう流れに
「正」の符号、その逆方向の流れに「負」の符号をつけ
て求めた。
FIG. 6 shows the relationship between the fluctuation width of the surface flow velocity and the occurrence rate of mold powder defects in a thin steel sheet product when the average surface flow velocity at the 1/4 mold width position is controlled to 0.1 m / sec or less. It shows the result of investigating the relationship. As shown in the figure, the fluctuation range of the surface velocity is reduced to 0.15 m / sec.
It can be seen that when the value is c or less, the defect occurrence rate is low. still,
FIG. 6 shows that the fluctuation range of the surface flow velocity is 1 minute as a unit time.
It is the difference between the maximum flow rate and the minimum flow rate within a unit time,
In the calculation, the flow from the short side of the mold toward the center of the mold was given a "positive" sign, and the flow in the opposite direction was given a "negative" sign.

【0023】これは、1/4鋳型幅位置における平均表
面流速が0.1m/sec以下であっても、表面流速の
変動幅が大きいときには、メニスカスが鎮静化してはお
らず、左右からの強い流れが混在しているために、メニ
スカスに渦が発生したり、流速が0.1m/secを超
える瞬間的な流れが発生して、モールドパウダーの巻き
込みが起こるためである。
This is because even when the average surface flow velocity at the 1/4 mold width position is 0.1 m / sec or less, when the fluctuation width of the surface flow velocity is large, the meniscus is not calmed down and the strong flow from the left and right Is mixed, and a vortex is generated in the meniscus or an instantaneous flow having a flow velocity of more than 0.1 m / sec is generated, so that entrainment of the mold powder occurs.

【0024】本発明では、移動磁場にて吐出流速を制御
して、1/4鋳型幅位置におけるメニスカスの平均表面
流速を0.1m/sec以下とした上で、更にメニスカ
ス全域に静磁場を印加するので、表面流速に応じて静磁
場による磁気制動力が表面流に作用して、表面流速の変
動幅が小さく抑えられ、メニスカスに渦や瞬間的な流速
の速い表面流の発生を防止することができる。
In the present invention, the average flow velocity of the meniscus at the 1/4 mold width position is controlled to 0.1 m / sec or less by controlling the discharge flow velocity by the moving magnetic field, and further, a static magnetic field is applied to the entire meniscus. Therefore, the magnetic braking force due to the static magnetic field acts on the surface flow according to the surface flow velocity, the fluctuation width of the surface flow velocity is suppressed small, and the occurrence of vortices and instantaneous high-speed flow on the meniscus is prevented. Can be.

【0025】[0025]

【発明の実施の形態】本発明を図面に基づき説明する。
図1は本発明を適用した鋳片断面が矩形型の連続鋳造機
の鋳型部の正面断面の概要図で、図2は図1のX−X断
面、又、図3は図1のY−Y断面の概要図を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described with reference to the drawings.
FIG. 1 is a schematic view of a front section of a mold section of a continuous casting machine having a rectangular cast slab to which the present invention is applied, FIG. 2 is a section taken along line XX of FIG. 1, and FIG. 1 shows a schematic view of a Y section.

【0026】図において、相対する鋳型長辺2と、鋳型
長辺2内に内装された相対する鋳型短辺3とから構成さ
れた鋳型1の上方に、タンディッシュ16が配置されて
いる。タンディッシュ16の底部には固定盤17と摺動
盤18とから成るスライディングノズルが配置され、更
に摺動盤18の下面側には整流ノズル19と浸漬ノズル
7とが順に配置されて、タンディッシュ16から鋳型1
への流出孔21が形成される。図示せぬ取鍋からタンデ
ィッシュ16内に注入された溶鋼4は、流出孔21を経
由して、浸漬ノズル7の下部に設けられ、且つ鋳型1内
の溶鋼4に浸漬された吐出孔8より、吐出流9を鋳型短
辺3に向けて鋳型1内に注入される。そして、溶鋼4は
鋳型1内で冷却されて凝固シェル6を形成し、鋳型1の
下方に引き抜かれ鋳片となる。
In the figure, a tundish 16 is disposed above a mold 1 composed of opposed mold long sides 2 and opposed mold short sides 3 provided inside the mold long sides 2. A sliding nozzle composed of a fixed plate 17 and a sliding plate 18 is arranged at the bottom of the tundish 16, and a rectifying nozzle 19 and a dipping nozzle 7 are arranged in order on the lower surface side of the sliding plate 18, and 16 to mold 1
Outflow holes 21 are formed. The molten steel 4 injected into the tundish 16 from a ladle (not shown) is provided at the lower part of the immersion nozzle 7 through the outflow hole 21 and is discharged from the discharge hole 8 immersed in the molten steel 4 in the mold 1. The discharge stream 9 is injected into the mold 1 toward the short side 3 of the mold. Then, the molten steel 4 is cooled in the mold 1 to form a solidified shell 6, and is drawn out below the mold 1 to become a cast slab.

【0027】固定盤17にはArガス導入管22が接続
され、Arガス導入管22から導入されたArガスは、
固定盤17に設けたポーラス煉瓦20から流出孔21内
に吹き込まれる。吹き込まれたArガスは、溶鋼4と共
に浸漬ノズル7を通り吐出孔8を介して鋳型1内に流入
し、鋳型1内の溶鋼4を通ってメニスカス5に浮上し、
メニスカス5上に添加したモールドパウダー15を貫通
して大気に至る。
An Ar gas introduction pipe 22 is connected to the fixed board 17. Ar gas introduced from the Ar gas introduction pipe 22 is
It is blown into the outflow hole 21 from the porous brick 20 provided on the fixed board 17. The blown Ar gas flows into the mold 1 through the discharge hole 8 through the immersion nozzle 7 together with the molten steel 4, and floats on the meniscus 5 through the molten steel 4 in the mold 1,
It penetrates the mold powder 15 added on the meniscus 5 and reaches the atmosphere.

【0028】鋳型1の厚みの中心で、且つ鋳型1の幅方
向左右の1/4鋳型幅位置には、他端をロードセル14
に接続された耐火物製棒13がメニスカス5に浸漬され
て配置され、溶鋼4の表面流により耐火物製棒13に作
用する力をロードセル14で測定して、メニスカス5の
表面流の速度と方向とを測定している。
The other end of the load cell 14 is located at the center of the thickness of the mold 1 and at the left and right 1/4 mold width positions in the width direction of the mold 1.
The refractory rod 13 connected to the refractory rod 13 is immersed in the meniscus 5 and arranged, and the force acting on the refractory rod 13 due to the surface flow of the molten steel 4 is measured by the load cell 14 to determine the speed of the surface flow of the meniscus 5. The direction is measured.

【0029】鋳型長辺2の背面には、磁場の移動方向が
鋳型1の幅方向である移動磁場発生装置10が、移動磁
場発生装置10の鋳造方向の中心位置を吐出孔8の下端
位置と鋳型1の下端位置との範囲として、鋳型長辺2を
挟んで対向して配置されている。そして、移動磁場発生
装置10は、浸漬ノズル7を中心として鋳型1の幅方向
で左右に分割されており、磁場の移動方向が鋳型1の幅
方向左右で逆向きとなるように、図示せぬ交流電源装置
に結線されている。左右の移動磁場発生装置10から発
生する磁場の移動方向を、鋳型短辺3側から鋳型長辺2
の中央側とすることで、吐出流9が減速され、逆に、左
右の磁場移動方向を鋳型長辺2の中央側から鋳型短辺3
側とすることで、吐出流9が加速される。移動磁場発生
装置10の磁場強度は、最大磁場強度が0.2テスラ〜
0.3テスラ程度の工業的に通常使用されているもので
よい。
On the back side of the long side 2 of the mold, a moving magnetic field generator 10 in which the moving direction of the magnetic field is the width direction of the mold 1 is located at the center of the moving magnetic field generator 10 in the casting direction with the lower end position of the discharge hole 8. As a range from the lower end position of the mold 1, the mold 1 is disposed to face the mold long side 2. The moving magnetic field generator 10 is divided into left and right parts in the width direction of the mold 1 around the immersion nozzle 7, and is not shown so that the moving direction of the magnetic field is opposite in the left and right directions in the width direction of the mold 1. Connected to AC power supply. The moving direction of the magnetic field generated from the left and right moving magnetic field generators 10 is changed from the short side 3 of the mold to the long side 2 of the mold.
, The discharge flow 9 is decelerated, and conversely, the moving direction of the left and right magnetic fields is changed from the center of the mold long side 2 to the mold short side 3.
The discharge flow 9 is accelerated by being set to the side. The maximum magnetic field strength of the moving magnetic field generator 10 is 0.2 Tesla or more.
An industrially used one of about 0.3 Tesla may be used.

【0030】メニスカス5の表面流速を耐火物製棒13
にて測定しながら、平均表面流速が0.1m/sec以
下になるように、移動磁場の強度と磁場の移動方向とを
調整した後、その調整値に固定する。移動磁場の強度は
移動磁場発生装置10に印加する電流又は電圧を変更す
ることで調整し、移動磁場の移動方向は移動磁場発生装
置10に印加する交流電源の結線を変更して行なう。
The surface velocity of the meniscus 5 is adjusted by the refractory rod 13.
After the measurement, the intensity of the moving magnetic field and the moving direction of the magnetic field are adjusted so that the average surface flow velocity is 0.1 m / sec or less, and then the adjustment values are fixed. The strength of the moving magnetic field is adjusted by changing the current or voltage applied to the moving magnetic field generator 10, and the moving direction of the moving magnetic field is changed by changing the connection of the AC power supply applied to the moving magnetic field generator 10.

【0031】尚、移動磁場発生装置10に印加する交流
電源装置を左右の磁場発生装置10で個別に配置すれ
ば、左右独自に移動磁場の強度及び移動方向を制御で
き、鋳型内溶鋼の流動制御がより一層容易となるので好
ましい。又、移動磁場発生装置10は鋳型長辺2を挟ん
で対向する必要はなく、片側の鋳型長辺2の背面に配置
するだけでも、吐出流9の制御はできる。但し、片側の
背面にのみ配置する場合には、溶鋼に作用する電磁気力
を確保するために、両側に配置した時に比べ磁場強度の
高い移動磁場発生装置10を配置する必要がある。
If the AC power supply applied to the moving magnetic field generator 10 is separately arranged in the left and right magnetic field generators 10, the strength and the moving direction of the moving magnetic field can be independently controlled on the left and right sides, and the flow control of the molten steel in the mold can be performed. Is preferred because it becomes even easier. Further, the moving magnetic field generator 10 does not need to be opposed to each other with the mold long side 2 interposed therebetween, and the discharge flow 9 can be controlled only by disposing the moving magnetic field generator 10 on the back surface of the mold long side 2. However, when it is arranged only on the back surface on one side, it is necessary to arrange the moving magnetic field generator 10 having a higher magnetic field strength than when it is arranged on both sides in order to secure the electromagnetic force acting on the molten steel.

【0032】更に、メニスカス5を含む位置の鋳型1の
全幅に渡る鋳型長辺2の背面に、鋳型長辺2を挟み対向
する磁極11を配置する。磁極11にはコイル12が巻
かれており、コイル12に図示せぬ直流電源を印加し
て、磁極11にてメニスカス5付近の溶鋼4に鋳型長辺
2を貫く静磁場を印加する。静磁場の印加は、移動磁場
によりメニスカス5の平均表面流速を0.1m/sec
以下に制御した後とする。そして、静磁場の磁場強度は
0.2テスラ〜0.3テスラ程度の工業的に通常使用さ
れているものでよい。0.2テスラ以上の磁場強度であ
れば、表面流速の変動幅を0.15m/sec以下とす
ることができるからである。
Further, on the back of the mold long side 2 over the entire width of the mold 1 at the position including the meniscus 5, the magnetic poles 11 facing the mold long side 2 are arranged. A coil 12 is wound around the magnetic pole 11, and a DC power supply (not shown) is applied to the coil 12 to apply a static magnetic field through the long side 2 of the mold to the molten steel 4 near the meniscus 5 at the magnetic pole 11. The application of the static magnetic field causes the average surface flow velocity of the meniscus 5 to be 0.1 m / sec by the moving magnetic field.
It is after the following control. The static magnetic field may have a magnetic field intensity of about 0.2 Tesla to about 0.3 Tesla, which is generally used in industry. If the magnetic field strength is 0.2 Tesla or more, the fluctuation width of the surface flow velocity can be 0.15 m / sec or less.

【0033】尚、浸漬ノズル7内へのArガス吹き込み
位置は上記に限るものではなく、浸漬ノズル7の本体や
上ノズル、又、ストッパー方式の開閉装置の場合には、
ストッパー先端であっても、本発明の実施に全く支障と
ならない。又、メニスカス5の表面流速を測定する手段
は上記に限るものでなく、電磁気力を利用した測定装置
であっても、本発明の実施に全く支障とならない。
Incidentally, the Ar gas blowing position into the immersion nozzle 7 is not limited to the above, and in the case of the main body and upper nozzle of the immersion nozzle 7 or a stopper type opening / closing device,
Even the tip of the stopper does not hinder the implementation of the present invention. The means for measuring the surface flow velocity of the meniscus 5 is not limited to the above, and a measuring device using an electromagnetic force does not hinder the implementation of the present invention at all.

【0034】[0034]

【実施例】図1に示す構成の連続鋳造機を用いた本発明
の実施例を以下に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention using a continuous casting machine having the structure shown in FIG. 1 will be described below.

【0035】鋳片断面寸法が厚み250mm、幅160
0mmであるスラブ連続鋳造機にて、極低炭素Alキル
ド鋼を鋳片引抜き速度2.2m/minで鋳造した。鋳
型長辺の背面には、鋳型幅方向で浸漬ノズルを挟んで左
右に2分割された移動磁場発生装置を、移動磁場発生装
置の鋳造方向の中心位置を浸漬ノズル吐出孔の下端から
150mm下方の位置として配置した。この移動磁場発
生装置により吐出流に対して最大0.2テスラの移動磁
場を印加することができる。
The cross section of the slab has a thickness of 250 mm and a width of 160
An extremely low carbon Al killed steel was cast at a slab continuous casting machine of 0 mm at a slab drawing speed of 2.2 m / min. On the back side of the long side of the mold, the moving magnetic field generator divided into two parts on the left and right sides of the immersion nozzle in the width direction of the mold, the center position in the casting direction of the moving magnetic field generator is set 150 mm below the lower end of the immersion nozzle discharge hole. Placed as a position. With this moving magnetic field generator, a moving magnetic field of 0.2 Tesla at the maximum can be applied to the discharge flow.

【0036】更に、鋳型長辺の背面には、磁極の鋳造方
向の中心がメニスカス位置となるように磁極を配置し、
この磁極から常時0.2テスラの静磁場を印加した。そ
して、浸漬ノズル内にArガスを9Nl/min吹き込
んだ。
Further, a magnetic pole is arranged on the back side of the long side of the mold so that the center of the magnetic pole in the casting direction is the meniscus position.
A static magnetic field of 0.2 Tesla was constantly applied from this magnetic pole. Then, 9 Nl / min of Ar gas was blown into the immersion nozzle.

【0037】この鋳造条件では、移動磁場の移動方向を
鋳型短辺側から鋳型中央側とし、その移動磁場の強度が
0.1テスラ(磁場強度50%)で、鋳型幅左右の1/
4鋳型幅位置における平均表面流速が0.1m/sec
以下となったので、移動磁場の移動方向を鋳型短辺側か
ら鋳型中央側とし、移動磁場の強度を0.1テスラの一
定値で鋳造した。
Under these casting conditions, the moving direction of the moving magnetic field is from the short side of the mold to the center of the mold, the strength of the moving magnetic field is 0.1 Tesla (magnetic field strength 50%), and 1 / (1/4) of the left and right of the mold width.
Average surface flow velocity at 4 mold width position is 0.1m / sec
Therefore, the moving direction of the moving magnetic field was from the shorter side of the mold to the center of the mold, and the strength of the moving magnetic field was cast at a constant value of 0.1 Tesla.

【0038】鋳造中、メニスカスの平均表面流速は0.
1m/sec以下に制御され、更に表面流速の変動幅も
殆ど発生しなかった。
During casting, the average surface flow velocity of the meniscus is between 0.
It was controlled to 1 m / sec or less, and the fluctuation width of the surface flow velocity hardly occurred.

【0039】これに対し比較例として、同一の鋳造条件
でメニスカスに静磁場を印加せず、移動磁場の制御のみ
実施して鋳造した。この場合、平均表面流速は0.1m
/sec以下であったが、瞬間的には0.3m/sec
程度の表面流が観察され、又、逆流が時々発生して、表
面流速の時間変化は激しかった。
On the other hand, as a comparative example, casting was performed under the same casting conditions without applying a static magnetic field to the meniscus and only controlling the moving magnetic field. In this case, the average surface velocity is 0.1 m
/ Sec or less, but 0.3 m / sec
A slight surface flow was observed, and a back flow sometimes occurred, and the time change of the surface flow velocity was severe.

【0040】得られた鋳片の断面を検査して、介在物の
個数と大きさ分布とを指数関数近似で統計的に処理して
求めた鋳片介在物指数において、本発明の実施例は比較
例のおよそ1/3となった。又、これら鋳片を薄板製品
に圧延して、薄板製品を超音波探傷試験して介在物に起
因する欠陥を調査したところ、比較例での欠陥発生率が
1.3%であるのに対し、本発明の実施例では0.5%
であり、極めて良好であった。
According to the slab inclusion index obtained by inspecting the cross section of the obtained slab and statistically processing the number and size distribution of inclusions by exponential function approximation, the embodiment of the present invention It was about 1/3 of the comparative example. In addition, when these slabs were rolled into sheet products, and the sheet products were subjected to ultrasonic flaw testing to investigate defects caused by inclusions, the defect occurrence rate in the comparative example was 1.3%. , 0.5% in the embodiment of the present invention.
And it was extremely good.

【0041】[0041]

【発明の効果】本発明によれば、移動磁場と静磁場とを
併用し、両者の優れた特徴を利用して鋳型内溶鋼の表面
流速を常に適正化できるので、品質の優れた連続鋳造鋳
片を安定して製造することができる。
According to the present invention, the moving magnetic field and the static magnetic field are used in combination, and the surface flow velocity of the molten steel in the mold can be always optimized by utilizing the excellent characteristics of both. Pieces can be manufactured stably.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した鋳片断面が矩形型の連続鋳造
機の鋳型部の正面断面の概要図である。
FIG. 1 is a schematic view of a front section of a mold portion of a continuous casting machine having a rectangular cast slab to which the present invention is applied.

【図2】図1のX−X断面の概要図である。FIG. 2 is a schematic view of a section taken along line XX of FIG.

【図3】図1のY−Y断面の概要図である。FIG. 3 is a schematic diagram of a YY cross section of FIG. 1;

【図4】鋳型内溶鋼の表面流速と薄鋼板製品におけるモ
ールドパウダー性欠陥の発生率との関係を示した図であ
る。
FIG. 4 is a diagram showing the relationship between the surface flow velocity of molten steel in a mold and the incidence of mold powder defects in a thin steel sheet product.

【図5】鋳型内溶鋼の流動パターンをA〜Cの3つのパ
ターンに大別して模式的に示した図である。
FIG. 5 is a view schematically showing a flow pattern of molten steel in a mold roughly divided into three patterns A to C.

【図6】表面流速の変動幅と薄鋼板製品でのモールドパ
ウダー性欠陥の発生率との関係を示した図である。
FIG. 6 is a graph showing the relationship between the fluctuation width of the surface flow velocity and the occurrence rate of mold powder defects in a thin steel sheet product.

【符号の説明】[Explanation of symbols]

1 鋳型 2 鋳型長辺 3 鋳型短辺 4 溶鋼 5 メニスカス 6 凝固シェル 7 浸漬ノズル 8 吐出孔 9 吐出流 10 移動磁場発生装置 11 磁極 12 コイル 13 耐火物製棒 14 ロードセル 15 モールドパウダー 16 タンディッシュ Reference Signs List 1 mold 2 mold long side 3 mold short side 4 molten steel 5 meniscus 6 solidified shell 7 immersion nozzle 8 discharge hole 9 discharge flow 10 moving magnetic field generator 11 magnetic pole 12 coil 13 refractory rod 14 load cell 15 mold powder 16 tundish

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 浸漬ノズルを中心として鋳型幅方向左右
で少なくとも2つに分割された移動磁場発生装置を、移
動磁場発生装置の鋳造方向の中心位置が浸漬ノズルの吐
出孔下端位置と鋳型下端位置との範囲となるように鋳型
長辺の背面に配置し、この移動磁場発生装置にて移動磁
場を溶鋼に印加して、鋳型中央から鋳型幅の1/4隔て
た位置における鋳型内溶鋼の平均表面流速を0.1m/
sec以下に制御すると共に、鋳型長辺を挟み対向する
磁極を、メニスカスを含む位置の鋳型全幅に渡って鋳型
長辺の背面に配置し、この磁極によりメニスカスに静磁
場を印加することを特徴とする鋼の連続鋳造方法。
1. A moving magnetic field generator divided into at least two parts on the left and right sides in a mold width direction around an immersion nozzle. The moving magnetic field is applied to the molten steel by this moving magnetic field generator, and the average of the molten steel in the mold at a position 1/4 of the width of the mold from the center of the mold is arranged. 0.1 m /
In addition to controlling the length of the mold to less than or equal to sec, the opposite magnetic poles sandwiching the long side of the mold are arranged on the back side of the long side of the mold over the entire width of the mold including the meniscus, and a static magnetic field is applied to the meniscus by this magnetic pole. Steel continuous casting method.
JP7316197A 1997-03-26 1997-03-26 Method for continuously casting steel Pending JPH10263762A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7316197A JPH10263762A (en) 1997-03-26 1997-03-26 Method for continuously casting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7316197A JPH10263762A (en) 1997-03-26 1997-03-26 Method for continuously casting steel

Publications (1)

Publication Number Publication Date
JPH10263762A true JPH10263762A (en) 1998-10-06

Family

ID=13510176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7316197A Pending JPH10263762A (en) 1997-03-26 1997-03-26 Method for continuously casting steel

Country Status (1)

Country Link
JP (1) JPH10263762A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301630A (en) * 2006-05-15 2007-11-22 Nippon Steel Corp Method for manufacturing highly clean steel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007301630A (en) * 2006-05-15 2007-11-22 Nippon Steel Corp Method for manufacturing highly clean steel

Similar Documents

Publication Publication Date Title
US7967058B2 (en) Apparatus for controlling flow of molten steel in mold
Kunstreich et al. Effect of liquid steel flow pattern on slab quality and the need for dynamic electromagnetic control in the mould
JP5929872B2 (en) Steel continuous casting method
JP2006281218A (en) Method for continuously casting steel
KR101302526B1 (en) Method for controlling flow of moltensteen in mold and method for producing continuous castings
JPH10263762A (en) Method for continuously casting steel
JP2008055431A (en) Method of continuous casting for steel
JP5125663B2 (en) Continuous casting method of slab slab
JP3240927B2 (en) Method for controlling molten steel flow in continuous casting mold
JPH10263777A (en) Method for continuously casting steel
JPH10193047A (en) Method for controlling flow of molten steel in continuous casting mold
JP4910357B2 (en) Steel continuous casting method
JP2006255759A (en) Method for continuously casting steel
JP2010221276A (en) Continuous casting apparatus and continuous casting method
JP2014076481A (en) Continuous casting facility, and continuous casting method
JPH10305358A (en) Continuous molding of steel
JP2010000518A (en) Method and apparatus for controlling flow of molten steel in continuous casting mold
JPH04344858A (en) Method for continuously casting steel utilizing static magnetic field
JPH0292445A (en) Method for continuously casting steel
JPS63260652A (en) Method for preventing involvement of mold powder in continuous casting
JP5359653B2 (en) Steel continuous casting method
JP2002103009A (en) Continuous casting method
JPH11320052A (en) Method for controlling fluid of molten steel in continuous casting
JPH01266949A (en) Method for continuously casting steel
JPH11123507A (en) Method for removing inclusion in tundish for continuous casting