JPH0433861B2 - - Google Patents

Info

Publication number
JPH0433861B2
JPH0433861B2 JP59263940A JP26394084A JPH0433861B2 JP H0433861 B2 JPH0433861 B2 JP H0433861B2 JP 59263940 A JP59263940 A JP 59263940A JP 26394084 A JP26394084 A JP 26394084A JP H0433861 B2 JPH0433861 B2 JP H0433861B2
Authority
JP
Japan
Prior art keywords
carbonitride
cemented carbide
cermet
weight
dispersed phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59263940A
Other languages
Japanese (ja)
Other versions
JPS61143550A (en
Inventor
Nobuhiko Shima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP26394084A priority Critical patent/JPS61143550A/en
Publication of JPS61143550A publication Critical patent/JPS61143550A/en
Publication of JPH0433861B2 publication Critical patent/JPH0433861B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Impact Printers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、ドツトプリンターに使用されるドツ
トプリンター用ワイヤーにおける、耐摩耗性、耐
食性、耐欠損性の改善に関するものである。 〔従来技術〕 従来、ドツトワイヤーとしては、ハイス、超硬
合金が主に使用されている。ハイスはその耐食
性、耐摩耗性がWC基超硬合金に比べ劣るため、
WC基超硬合金に移行しつつある。一方WC基超
硬合金はハイスに比べれば耐食性、耐摩耗性はあ
るものの、インクの種類によつては耐食性が問題
になる場合がある。また比重が13〜14g/cm3と高
く慣性力が大きくプリントの高速化に追従しない
欠点を有する。 〔本発明が解決しようとする問題点〕 本発明は、上記WC基超硬合金製ドツトワイヤ
ーの耐摩耗性、耐食性をさらに改良し、かつ、高
速化へ追従するために密度を軽くすることを目的
とする。 〔問題点を解決するための手段〕 本発明は分散相形成成分として、1以上のC/
N比をもつ炭窒化チタンにおける炭窒化チタンの
1部を10〜70重量%の範囲で、Tiを除く周期律
表の4a、5aおよび6a族金属の1種または2
種以上の炭化物で置換した複炭窒化物50〜90重量
%、結合相形成成分として、鉄族金属のうち1種
または2種以上および不可避不純物を含む、残部
50〜10重量%からなり、かつ分散相を形成する粒
子同士の接触率が15%以下であることを特徴とす
るサーメツト製ドツトワイヤーであり、耐摩耗
性、耐食性を改善するため、従来のWC基超硬合
金に代わり、炭窒化チタンTi(CN)基サーメツ
トの検討を行つた。Ti(CN)基サーメツトは、
密度が6〜9g/cm3と軽く、銅より密度が低いた
め、高速化への追従も可能である。また耐食性、
耐摩耗性もWC基超硬合金より優れている。しか
しながらTi(CN)基サーメツトは、WC基超硬合
金に比べ、その主成分であるTi炭窒化物の性質
上、靭性に欠く欠点をもつているため、これまで
小径のドツトワイヤー等に使用することは不可能
であつた。 本発明者は、上述のTi(CN)基サーメツトが
靭性に欠ける原因を追及、検討した結果、次のよ
うな事実を得た。 Ti(CN)基サーメツトは、分散相として
TiCN、Mo2C、TaC、WC等の固溶化した複炭
窒化物相と結合相からなり、結合相と炭窒化物相
のぬれ性を改善するためMo、W、Ta等を添加す
るのが一般的となつている。しかしこれら添加物
の挙動を調べると、第1図Aに示すように、Ti
(CN)粒子の中心部にTi、窒素を多量に含む芯
部(CORE)、周辺にMO、W、Ta等を多量に含
む、いわゆる周辺組織を形成する。この周辺組織
は、その成分の関係上Ti(CN)に比べ、結合相
に対するぬれ性が良く、Ti(CN)基の靭性を改
善させるのであるが、反面、第1図Bに示すよう
に、炭窒化物粒子同志を接触させる傾向にある。 この炭窒化物粒子同志の接触(以下スケルトン
と称す)は、クラツクの伝播抵抗を下げ、靭性が
改善されない最大の要因となつている。例えば、
同一体積率(15容量%)の結合相において、Ti
(CN)基サーメツトとWC基超硬合金のスケルト
ンの度合を実際の組織写真から定量的に測定して
みると、Ti(CN)基サーメツトでは、全炭窒化
物粒子の面積に対し、接触部の面積は30〜40%で
あり、WC基超硬合金の同10〜15%に比べ、格段
と高い値になつている。 本発明者は、以上の観点から炭窒化物のスケル
トンを抑制すべく種々検討した結果、例えば、周
辺組織形成元素を前もつてTi(CN)と固溶せし
めた原料を使い、周辺組織形成量を減少させるこ
とが可能であること等を見出した。特にTi炭窒
化物と進入型固溶体を形成するWを固溶体化処理
した場合その効果が大きく、Ta、Mo等の置換型
固溶体を形成する場合には、スケルトンの形成量
を抑制することが可能である。 このように、製造条件を種々留意したTi(CN)
基サーメツトは、前述のスケルトンの比率は、10
〜15%であり、WC基超硬合金に優るとも劣らぬ
靭性を得ることが可能である。さらに靭性を改善
したサーメツトドツトワイヤーは、WCに比べTi
(CN)の耐摩耗、耐食性に優れる利点より高寿
命かつ軽量のため高速化にも追従し得るものであ
る。 次に、数値を限定した理由について述べる。 分散相を形成する複炭窒化物の量は、50%未満
だと所望の耐摩耗性が得られなく、90%を越えて
含有すると合金の靭性をそこなうため50〜90%と
した。 Tiを除く4a,5a,6a属の炭化物の置換
量は、10%未満だと、Ti(CN)と結合相のぬれ
性を改善する効果が少なく、70%を越えて含有す
ると、Ti(CN)本来の耐摩耗性、耐食性が劣化
するため、10〜70%とした。 結合相は、10%未満では、合金の耐欠損性が悪
くまた、50%を越えて含有すると耐摩耗性をそこ
なうため10〜50%とした。 接触の測定はラツプ面上のミクロ組織観察より
粒子同士が接触している粒子の面積と、球状に近
似される粒子の面積を測定して、硬質相全面積を
1として、百分率で表現したものであり、15%を
越えると、スケルトン同士の接触がおおくなり曲
げ強度を劣化させるため15%以下とした。 〔実施例〕 次に本発明サーメツト製ドツトワイヤーを実施
例により比較ドツト用ワイヤーと対比しながら説
明する。原料粉末をC/N=3として第1表の組
成になるようにボールミルで96時間、混合粉砕を
し、可塑剤添加の後、混錬を行いΦ0.5mmの丸棒
に押出し成型した。次に、脱脂し1350℃で30分焼
結を行つた後、この丸棒焼結体をセンタレス研削
をして、Φ0.3mmのドツプトプリンター用ワイヤ
ー用素材を作製した。この合金の物性を第1表に
併記する。抗折力の試験は、JIS B7704「金属材
料抗折試験片」に準じて径0.3mm長さ20mm、支点
間距離10mmとして行つた。次に、片持ちで振幅4
mm、50Hz、応力130Kg/mm2で疲労テストを10回行
い、欠損した疲労回数の平均を求め、これを第2
表に示す。また、実装テストを行い先端の摩耗量
は、第2図に示すaを測定した。その結果を第3
表に示す。 〔発明の効果〕 本発明サーメツト製ドツトワイヤーは、スケル
トンの形成量を抑制して、Ti(CN)基サーメツ
トの靭性を改善し、そしてTi(CN)の耐摩耗性、
耐食性に加えて、密度は6.0〜9.0g/cm3と、従来
使用されているWC基超硬合金の約半分なので、
本発明ワイヤーの重量も従来WC基超硬合金製の
ものの約半分であり、今後の高速化に十分に追従
し得るものである。
[Industrial Application Field] The present invention relates to improving the abrasion resistance, corrosion resistance, and chipping resistance of a dot printer wire used in a dot printer. [Prior Art] Conventionally, high speed steel and cemented carbide have been mainly used as dot wires. Since high speed steel has inferior corrosion resistance and wear resistance compared to WC-based cemented carbide,
There is a transition to WC-based cemented carbide. On the other hand, although WC-based cemented carbide has better corrosion and abrasion resistance than high-speed steel, corrosion resistance may become a problem depending on the type of ink. Further, it has a high specific gravity of 13 to 14 g/cm 3 and has a large inertial force, which makes it unable to keep up with higher printing speeds. [Problems to be solved by the present invention] The present invention aims to further improve the abrasion resistance and corrosion resistance of the above-mentioned WC-based cemented carbide dot wire, and to reduce the density in order to keep up with higher speeds. purpose. [Means for Solving the Problems] The present invention uses one or more C/C as a dispersed phase forming component.
A part of the titanium carbonitride in the titanium carbonitride having an N ratio is in the range of 10 to 70% by weight, and one or two of the metals of Groups 4a, 5a and 6a of the periodic table excluding Ti are added.
50 to 90% by weight of double carbonitride substituted with one or more carbides, the remainder containing one or more iron group metals and unavoidable impurities as binder phase forming components.
This is a cermet dot wire consisting of 50 to 10% by weight and characterized by a contact ratio of 15% or less between the particles forming the dispersed phase. In place of the base cemented carbide, we investigated titanium carbonitride Ti (CN)-based cermet. Ti(CN) based cermet is
Since it has a light density of 6 to 9 g/cm 3 and is lower than copper, it is also possible to follow higher speeds. Also corrosion resistance,
It also has better wear resistance than WC-based cemented carbide. However, compared to WC-based cemented carbide, Ti(CN)-based cermets lack toughness due to the nature of their main component, Ti carbonitride, so they have not been used for small-diameter dot wires, etc. That was impossible. The present inventor investigated and investigated the cause of the lack of toughness of the above-mentioned Ti(CN)-based cermet, and as a result, the following facts were obtained. Ti(CN) based cermet is used as a dispersed phase.
It consists of a solid solution double carbonitride phase such as TiCN, Mo 2 C, TaC, and WC and a binder phase, and it is recommended to add Mo, W, Ta, etc. to improve the wettability of the binder phase and the carbonitride phase. It is becoming common. However, when we investigate the behavior of these additives, we find that Ti
A core (CORE) containing a large amount of Ti and nitrogen is formed at the center of the (CN) particle, and a so-called peripheral structure containing a large amount of MO, W, Ta, etc. is formed at the periphery. Due to its composition, this surrounding structure has better wettability to the binder phase than Ti(CN) and improves the toughness of the Ti(CN) group, but on the other hand, as shown in Figure 1B, It tends to bring carbonitride particles into contact with each other. This contact between carbonitride particles (hereinafter referred to as skeleton) reduces crack propagation resistance and is the biggest factor in not improving toughness. for example,
In the bonded phase with the same volume fraction (15% by volume), Ti
When we quantitatively measured the degree of skeleton of (CN)-based cermet and WC-based cemented carbide from actual microstructure photographs, we found that in Ti(CN)-based cermet, the contact area The area is 30-40%, which is much higher than the 10-15% for WC-based cemented carbide. As a result of various studies in order to suppress the skeleton of carbonitrides from the above viewpoint, the inventors of the present invention found that, for example, by using a raw material in which surrounding structure-forming elements were previously solid-dissolved with Ti (CN), the amount of surrounding structure formation We have found that it is possible to reduce the In particular, the effect is large when solid solution treatment is performed on W, which forms an interstitial solid solution with Ti carbonitride, and when forming a substitutional solid solution of Ta, Mo, etc., it is possible to suppress the amount of skeleton formation. be. In this way, Ti(CN) was produced with various manufacturing conditions in mind.
The base cermet has the aforementioned skeleton ratio of 10
~15%, making it possible to obtain toughness that is as good as, if not better than, that of WC-based cemented carbide. Furthermore, the cermet dot wire with improved toughness has a Ti
(CN) has the advantage of superior wear and corrosion resistance, has a long lifespan, and is lightweight, making it suitable for high-speed applications. Next, we will discuss the reason for limiting the numerical values. The amount of double carbonitride forming the dispersed phase was set at 50 to 90% because if it was less than 50%, the desired wear resistance could not be obtained, and if it was more than 90%, the toughness of the alloy would be impaired. If the substitution amount of carbides of the 4a, 5a, and 6a groups excluding Ti is less than 10%, it will have little effect on improving the wettability of Ti(CN) and the binder phase, and if it exceeds 70%, Ti(CN) ) Since the original wear resistance and corrosion resistance deteriorate, it was set at 10 to 70%. If the binder phase is less than 10%, the chipping resistance of the alloy will be poor, and if it exceeds 50%, the wear resistance will be impaired, so the content was set at 10 to 50%. Contact is measured by observing the microstructure on the lap surface, measuring the area of particles in contact with each other, and the area of particles approximated to a spherical shape, and expressing it as a percentage, with the total area of the hard phase being 1. If it exceeds 15%, contact between the skeletons increases and bending strength deteriorates, so it was set to 15% or less. [Example] Next, the cermet dot wire of the present invention will be explained based on an example while comparing it with a comparative dot wire. The raw material powder was mixed and ground in a ball mill for 96 hours to have the composition shown in Table 1 with C/N=3, and after adding a plasticizer, it was kneaded and extruded into a round bar with a diameter of 0.5 mm. Next, after degreasing and sintering at 1350°C for 30 minutes, this round bar sintered body was centerless ground to produce a wire material for dot printers with a diameter of 0.3 mm. The physical properties of this alloy are also listed in Table 1. The transverse rupture strength test was conducted in accordance with JIS B7704 "Metallic material transverse fracture test piece" with a diameter of 0.3 mm, a length of 20 mm, and a distance between fulcrums of 10 mm. Next, with a cantilever, the amplitude is 4
mm, 50Hz, stress 130Kg/ mm2 , fatigue test was performed 10 times, the average number of fatigue failures was calculated, and this was used for the second test.
Shown in the table. In addition, a mounting test was conducted and the amount of wear at the tip was measured at a shown in FIG. The result is the third
Shown in the table. [Effects of the Invention] The cermet dot wire of the present invention suppresses the amount of skeleton formation, improves the toughness of Ti(CN)-based cermet, and improves the wear resistance of Ti(CN).
In addition to its corrosion resistance, it has a density of 6.0 to 9.0 g/ cm3 , which is about half that of conventionally used WC-based cemented carbide.
The weight of the wire of the present invention is also about half that of conventional wires made of WC-based cemented carbide, and can fully support future speed increases.

【表】【table】

【表】【table】

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図AはTi(CN)粒子の周辺にMo、W、
Ta等を多量に含む、いわゆる周辺組織の説明図、
第1図Bは炭窒化物粒子同志が接触・スケルトン
を形成した場合の説明図を示す。第2図は摩耗量
の測定位置を示す。
In Figure 1A, Mo, W,
An explanatory diagram of the so-called peripheral tissues containing large amounts of Ta, etc.
FIG. 1B shows an explanatory diagram when carbonitride particles contact each other and form a skeleton. Figure 2 shows the measurement positions for the amount of wear.

Claims (1)

【特許請求の範囲】[Claims] 1 分散相形成成分として、1以上のC/N比を
もつ炭窒化チタンにおける炭窒化チタンの1部を
10〜70重量%の範囲で、Tiを除く周期律表の4
a、5aおよび6a族金属の1種または2種以上
の炭化物で置換した複炭窒化物50〜90重量%、結
合相形成成分として、鉄族金属のうち1種または
2種以上および不可避不純物を含む、残部50〜10
重量%からなり、かつ分散相を形成する粒子同士
の接触率が15%以下であることを特徴とするサー
メツト製ドツトワイヤー。
1. As a dispersed phase forming component, a part of titanium carbonitride in titanium carbonitride having a C/N ratio of 1 or more is used as a dispersed phase forming component.
4 of the periodic table, excluding Ti, in the range of 10 to 70% by weight.
50 to 90% by weight of double carbonitride substituted with one or more carbides of group a, 5a and 6a metals, one or more iron group metals and unavoidable impurities as a binder phase forming component. Including, remaining 50~10
% by weight, and the contact ratio between particles forming a dispersed phase is 15% or less.
JP26394084A 1984-12-13 1984-12-13 Dot wire made of cermet Granted JPS61143550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26394084A JPS61143550A (en) 1984-12-13 1984-12-13 Dot wire made of cermet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26394084A JPS61143550A (en) 1984-12-13 1984-12-13 Dot wire made of cermet

Publications (2)

Publication Number Publication Date
JPS61143550A JPS61143550A (en) 1986-07-01
JPH0433861B2 true JPH0433861B2 (en) 1992-06-04

Family

ID=17396371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26394084A Granted JPS61143550A (en) 1984-12-13 1984-12-13 Dot wire made of cermet

Country Status (1)

Country Link
JP (1) JPS61143550A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6377749A (en) * 1986-09-20 1988-04-07 Hitachi Tool Eng Ltd Surface-coated cermet dot wire

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529008A (en) * 1975-07-14 1977-01-24 Mitsubishi Metal Corp Tough cermet containing metal carbide or nitride
JPS52128812A (en) * 1976-04-23 1977-10-28 Mitsubishi Metal Corp Cermet of titanium carbo=nitride dispersion type
JPS542912A (en) * 1977-06-10 1979-01-10 Mitsubishi Metal Corp Sintered hard alloy
JPS59126751A (en) * 1983-01-06 1984-07-21 Daijietsuto Kogyo Kk Sintered hard alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529008A (en) * 1975-07-14 1977-01-24 Mitsubishi Metal Corp Tough cermet containing metal carbide or nitride
JPS52128812A (en) * 1976-04-23 1977-10-28 Mitsubishi Metal Corp Cermet of titanium carbo=nitride dispersion type
JPS542912A (en) * 1977-06-10 1979-01-10 Mitsubishi Metal Corp Sintered hard alloy
JPS59126751A (en) * 1983-01-06 1984-07-21 Daijietsuto Kogyo Kk Sintered hard alloy

Also Published As

Publication number Publication date
JPS61143550A (en) 1986-07-01

Similar Documents

Publication Publication Date Title
RU2446930C1 (en) Flux-cored wire
JP5127264B2 (en) TiCN-based cermet
JP5127110B2 (en) TiCN-based cermet and method for producing the same
KR100935037B1 (en) High toughness cermet and method of manufacturing the same
JPH0433861B2 (en)
JPS61194146A (en) Cermet wire for dot printer
JP4409061B2 (en) Cemented carbide penball and method for manufacturing the same
JPS61199047A (en) Wire made of cermet for dot printer
JPS60100646A (en) High toughness sintered body of ceramic
JPS61177350A (en) Cermet wire for dot printer
JPH1053823A (en) Manufacture of tungsten carbide-base cemented carbide with high strength
JPH0476310B2 (en)
JPH0346913Y2 (en)
JP4107908B2 (en) Corrosion-resistant cemented carbide penball
JP2001049378A (en) Wear resistant cemented carbide sintered compact and its manufacture
JPH0519908B2 (en)
JPH05230587A (en) Cermet
KR890004489B1 (en) Sintered material for cutting tool having excellent high temperature characteristic and its production
JPS61261455A (en) Wire for dot printer
JPS62227060A (en) Ultra-high-toughness tungsten carbide-base sintered hard alloy wire rod capable of bending into circular shape
JP3122444B2 (en) Super hard alloy
JP2731462B2 (en) Electrode for resistance welding
JPS61261453A (en) Cermet for wire dot printer and wire for dot printer
JPS6335706B2 (en)
JPS59129751A (en) Superheat-resistant sintered alloy and its production