JPH04337065A - Production of oxide ceramics thin film - Google Patents

Production of oxide ceramics thin film

Info

Publication number
JPH04337065A
JPH04337065A JP10911991A JP10911991A JPH04337065A JP H04337065 A JPH04337065 A JP H04337065A JP 10911991 A JP10911991 A JP 10911991A JP 10911991 A JP10911991 A JP 10911991A JP H04337065 A JPH04337065 A JP H04337065A
Authority
JP
Japan
Prior art keywords
thin film
substrate
target
film
oxide ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10911991A
Other languages
Japanese (ja)
Inventor
Kazumasa Hasegawa
和正 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10911991A priority Critical patent/JPH04337065A/en
Publication of JPH04337065A publication Critical patent/JPH04337065A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To improve the growing rate of an oxide ceramics thin film by using a metal as a target, executing sputtering by the use of an inert gas and simultaneously irradiating a metal deposited on the substrate with oxygen ions. CONSTITUTION:Cathodes 2 to 4 are arranged concentrically into a trisection at the inside of a vacuum tank 1, and round metallic targets are placed on each one. An inert gas is used as the atmosphere, and high frequency power is applied respectively on each cathode 2 to 4 to form a sputtered film. At the same time, a metal deposited on the substrate 6 is irradiated with oxygen ions from an ion gun 7. In this way, the growing rate of an oxide ceramics thin film can be improved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、Pb(Zr,Ti)O
3やYBaCu0等の酸化物セラミックス薄膜の製造方
法に関する。
[Industrial Application Field] The present invention relates to Pb(Zr,Ti)O
The present invention relates to a method for manufacturing oxide ceramic thin films such as No. 3 and YBaCu0.

【0002】0002

【従来の技術】従来の酸化物セラミックス薄膜の製造方
法は、K.Sreenivas,etal.,J.Ap
pl.Phys.64(3),pp.1484〜149
3(1988)に示されるごとく、金属の複合ターゲッ
トを用い、酸素ガスを含んだ雰囲気でスパッタリング成
膜をする方法や、特開昭63−53264に示されるご
とく、成膜する薄膜と同組成のセラミックスターゲット
を用いてスパッタリングし、同時に酸素イオンを照射す
る方法が採られていた。
BACKGROUND OF THE INVENTION A conventional method for producing an oxide ceramic thin film is described by K. Sreenivas, et al. , J. Ap
pl. Phys. 64(3), pp. 1484-149
3 (1988), a method of sputtering film formation using a metal composite target in an atmosphere containing oxygen gas, and a method of forming a film by sputtering in an atmosphere containing oxygen gas, as shown in JP-A No. 63-53264, a method of forming a film by sputtering using a metal composite target in an atmosphere containing oxygen gas. The method used was to perform sputtering using a ceramic target and simultaneously irradiate oxygen ions.

【0003】0003

【発明が解決しようとする課題】しかしながら、K.S
reenivas,etal.,J.Appl.Phy
s.64(3),pp.1484〜1493(1988
)に示されるごとき金属の複合ターゲットを用い、酸素
ガスを含んだ雰囲気でスパッタリング成膜する場合、文
中に示されるごとく成膜速度が最高でも0.5μm/h
ourと遅いものであった。また、特開昭63−532
64に示されるごとき成膜する薄膜と同組成のセラミッ
クスターゲットを用いてスパッタリングし、同時に酸素
イオンを照射する場合は、大面積のターゲットを得るの
が困難であり、従って大面積の基板に膜厚、組成共に均
一な酸化物セラミックス薄膜を得るのが困難であった。
[Problem to be solved by the invention] However, K. S
reenivas, etal. , J. Appl. Phy
s. 64(3), pp. 1484-1493 (1988
) When forming a film by sputtering in an atmosphere containing oxygen gas using a metal composite target as shown in the text, the maximum film forming rate is 0.5 μm/h as shown in the text.
It was slow. Also, JP-A-63-532
When performing sputtering using a ceramic target with the same composition as the thin film to be deposited as shown in No. 64 and simultaneously irradiating oxygen ions, it is difficult to obtain a large-area target, and therefore it is difficult to obtain a large-area target. However, it was difficult to obtain an oxide ceramic thin film with a uniform composition.

【0004】本発明は以上の課題を解決するものであり
、その目的とするところは成膜速度が早く、しかも大面
積の基板に膜厚、組成共に均一に形成できる酸化物セラ
ミックス薄膜の製造方法を提供することにある。
The present invention is intended to solve the above-mentioned problems, and its purpose is to provide a method for producing an oxide ceramic thin film that can be formed at a high deposition rate and that can be formed uniformly in both thickness and composition on a large-area substrate. Our goal is to provide the following.

【0005】[0005]

【課題を解決するための手段】以上の課題を解決するた
め、本発明の酸化物セラミックス薄膜の製造方法は、タ
ーゲットに金属を用い、雰囲気に不活性ガスを用いてス
パッタリングを行い、同時に基板上に堆積した金属上に
酸素イオンを照射すること複数の金属もしくは酸化物の
ターゲットを用い、雰囲気に不活性ガスを用いて同時ス
パッタリングを行い、同時に基板上に堆積した膜上に酸
素イオンを照射することを特徴とする。
[Means for Solving the Problems] In order to solve the above problems, the method for manufacturing an oxide ceramic thin film of the present invention uses a metal as a target and an inert gas atmosphere to perform sputtering, and simultaneously sputters on a substrate. Simultaneous sputtering is performed using multiple metal or oxide targets and an inert gas atmosphere, and at the same time oxygen ions are irradiated onto the film deposited on the substrate. It is characterized by

【0006】[0006]

【実施例】以下、実施例に基づき本発明を具体的に説明
する。
[Examples] The present invention will be specifically explained below based on Examples.

【0007】(実施例1)図1は、本発明の実施に用い
た成膜装置の概念図である。真空槽1の内部に3個のカ
ソード2乃至4が同心円上に3等分配置され、各々のカ
ソードの上にターゲットを載せている。各ターゲットの
中心から該ターゲット平面に対し垂直に延ばした補助線
が、基板ホルダー5上に設置した基板6の中心点で交差
するようになっている。7はイオン銃であり、ここで発
生したイオンは同心円上に3等分配置されたカソード2
乃至4の同心円の中心部分を通過し、基板6上に照射さ
れるようになっている。真空槽1及びイオン銃7にはそ
れぞれガス導入口及び排気口が設けられ、所望のガス圧
力に設定できるようになっている。
(Example 1) FIG. 1 is a conceptual diagram of a film forming apparatus used for implementing the present invention. Inside the vacuum chamber 1, three cathodes 2 to 4 are arranged concentrically into three equal parts, and a target is placed on each cathode. An auxiliary line extending from the center of each target perpendicularly to the target plane intersects at the center point of the substrate 6 placed on the substrate holder 5. 7 is an ion gun, and the ions generated here are sent to the cathode 2 arranged in three equal parts on a concentric circle.
The light passes through the center of concentric circles 4 to 4 and is irradiated onto the substrate 6. The vacuum chamber 1 and the ion gun 7 are each provided with a gas inlet and an exhaust port, so that a desired gas pressure can be set.

【0008】以下、この装置を用いて行った本発明の実
施例について説明する。発明者は、鉛(Pb)、ジルコ
ニウム(Zr)、チタン(Ti)の直径4インチの丸型
金属ターゲットを用いてPZT(チタン酸鉛−ジルコン
酸鉛固溶体)薄膜の形成を試みた。基板6には面方位(
100)の単結晶Siを用い、基板中心と各ターゲット
の距離を10mmとした。真空槽1への導入ガスはAr
とし、圧力5mtorrとした。基板6上への成膜は、
基板ホルダー5をアースしておき、各カソードにそれぞ
れ高周波電力を投入しスパッタリング成膜すると同時に
、イオン銃7から酸素(O)イオンを照射することによ
り行った。基板温度を600℃に加熱しておき基板中心
を軸に基板ホルダー5を回転させ、Pbには250W、
Zr及びTiにはそれぞれ500Wの高周波電力を印加
し、イオン銃7からはOイオンを加速電圧2keV、イ
オン電流1mAで基板6の面上を走査させながら照射し
た。
Examples of the present invention using this apparatus will be described below. The inventor attempted to form a PZT (lead titanate-lead zirconate solid solution) thin film using a round metal target of lead (Pb), zirconium (Zr), and titanium (Ti) with a diameter of 4 inches. The substrate 6 has a surface orientation (
100) single crystal Si was used, and the distance between the center of the substrate and each target was 10 mm. The gas introduced into the vacuum chamber 1 is Ar.
The pressure was set at 5 mtorr. The film formation on the substrate 6 is as follows:
The substrate holder 5 was grounded, and high-frequency power was applied to each cathode to perform sputtering film formation, and at the same time oxygen (O) ions were irradiated from the ion gun 7. The substrate temperature was heated to 600°C, and the substrate holder 5 was rotated around the center of the substrate, and Pb was heated to 250W,
High frequency power of 500 W was applied to each of Zr and Ti, and O ions were irradiated from the ion gun 7 while scanning the surface of the substrate 6 at an acceleration voltage of 2 keV and an ion current of 1 mA.

【0009】以上のごとく形成したPZT薄膜のX線(
CuKα線)回折波形図を図2に示す。回折ピークはい
ずれも菱面体PZTからのものであり、結晶配向はラン
ダムであるものの単相のPZTが形成されていることが
わかる。また、形成した膜をX線マイクロアナライザー
(XMA)で組成分析したところ、Pbはストイキオメ
トリーに対し5at%程度過剰、ZrとTiの原子数比
は58:42であった。成膜速度は基板中心点において
5μm/hrと高速であり、膜厚分布は直径3インチの
円内において±8%以内であった。
X-ray (
FIG. 2 shows a diffraction waveform diagram of CuKα rays. All the diffraction peaks are from rhombohedral PZT, and it can be seen that single-phase PZT is formed although the crystal orientation is random. Further, when the formed film was analyzed for composition using an X-ray microanalyzer (XMA), it was found that Pb was in excess of about 5 at% relative to stoichiometry, and the atomic ratio of Zr and Ti was 58:42. The film formation rate was as high as 5 μm/hr at the center of the substrate, and the film thickness distribution was within ±8% within a circle with a diameter of 3 inches.

【0010】(実施例2)図1に示す装置を用いて、基
板温度を室温に保ち、他は(実施例1)に示す条件で成
膜を行った。成膜した膜はアモルファス構造であった。 これを1気圧の酸素雰囲気中で550℃10時間のアニ
ールを行った。昇降温に要する時間は各3時間とした。 この膜をX線回折法により評価したところ、(実施例1
)と同様にランダム配向で単相の菱面体PZTが形成さ
れていた。
(Example 2) Film formation was carried out using the apparatus shown in FIG. 1, keeping the substrate temperature at room temperature, and under the other conditions shown in (Example 1). The deposited film had an amorphous structure. This was annealed at 550° C. for 10 hours in an oxygen atmosphere of 1 atm. The time required for raising and lowering the temperature was 3 hours each. When this film was evaluated by X-ray diffraction method, (Example 1
), single-phase rhombohedral PZT was formed with random orientation.

【0011】(応用例)以上の実施例は、直径4インチ
の円形ターゲットを用いて直径3インチのSi基板にP
ZT薄膜を形成した例であるが、本発明を応用すれば、
更に大面積の領域に酸化物セラミックス薄膜が形成でき
る。図3は、本発明の応用例における成膜装置の概念図
である。真空槽1の内部に3個のカソード2乃至4及び
イオン銃7より酸素イオンを照射するための開口部9が
同心円上に4等分配置され、各々のカソードの上にター
ゲットを載せている。各ターゲット面及び開口部9の平
面は、基板ホルダー5に平行になっている。基板ホルダ
ー5及び基板6は、基板ホルダー5の中心軸8を中心に
100rpm程度に高速回転するようになっている。真
空槽1及びイオン銃7にはそれぞれガス導入口及び排気
口が設けられ、所望のガス圧力に設定できるようになっ
ている。かかる装置を用いて酸化物セラミクス薄膜を形
成する場合、ターゲット2乃至4、開口部9、基板ホル
ダー5等の大きさを容易に大きくできるため、基板6に
大面積な物を用いても成膜した薄膜の膜厚や組成は均一
なものが保証される上に、基板ホルダー5上に取り付け
ることのできる基板6の数も大幅に増加し、生産性が非
常に良いものとなる。
(Application example) In the above embodiment, a circular target with a diameter of 4 inches is used to deposit P on a Si substrate with a diameter of 3 inches.
This is an example of forming a ZT thin film, but if the present invention is applied,
Furthermore, an oxide ceramic thin film can be formed over a large area. FIG. 3 is a conceptual diagram of a film forming apparatus in an application example of the present invention. Inside the vacuum chamber 1, three cathodes 2 to 4 and an opening 9 for irradiating oxygen ions from an ion gun 7 are arranged concentrically into four equal parts, and a target is placed on each cathode. The plane of each target surface and opening 9 is parallel to the substrate holder 5. The substrate holder 5 and the substrate 6 are configured to rotate at a high speed of about 100 rpm around the central axis 8 of the substrate holder 5. The vacuum chamber 1 and the ion gun 7 are each provided with a gas inlet and an exhaust port, so that a desired gas pressure can be set. When forming an oxide ceramic thin film using such an apparatus, the sizes of targets 2 to 4, opening 9, substrate holder 5, etc. can be easily increased, so even if a large-area substrate 6 is used, film formation is possible. Not only is the film thickness and composition of the thin film guaranteed to be uniform, but also the number of substrates 6 that can be mounted on the substrate holder 5 is greatly increased, resulting in very high productivity.

【0012】また、本発明の酸化物セラミックス薄膜の
製造方法における応用例として、基板と成膜する酸化物
セラミクス層の間に挟むバッファー層も本発明の製造方
法で形成することも考えられる。例えば、前記のPZT
を形成する場合、PZTと格子整合性の良いMgOやS
rTiO3 を、MgターゲットやSr、Tiターゲッ
トからスパッタリングを行い、酸素イオンを照射して形
成し、しかる後に(実施例1)や(実施例2)に示すご
とく形成するようにしても良い。
Further, as an application example of the method of manufacturing an oxide ceramic thin film of the present invention, it is also possible to form a buffer layer sandwiched between the substrate and the oxide ceramic layer to be formed by the manufacturing method of the present invention. For example, the above-mentioned PZT
When forming PZT, use MgO or S, which has good lattice matching with PZT.
rTiO3 may be formed by sputtering from a Mg target, Sr, or Ti target, irradiated with oxygen ions, and then formed as shown in (Example 1) and (Example 2).

【0013】さらなる応用例としては、(実施例1)、
(実施例2)で用いたターゲットを酸化物にすることが
考えられる。具体的には、酸化鉛、酸化ジルコニウム、
酸化チタンの粉末もしくは焼結体ターゲットを用いて、
同様の方法でPZT薄膜を形成すれば良い。酸化鉛のご
とき2成分の焼結体ターゲットは、4成分のPZT焼結
体ターゲットに比べ、組成変動を考慮しなくて良い分大
面積な物が形成できる。もちろん、金属ターゲットと酸
化物ターゲットを組み合わせて用いるようにしても良く
、例えば、酸化鉛焼結体ターゲットと、ジルコニウムタ
ーゲット及びチタンターゲットを用いてPZT薄膜を形
成するようにしても良い。また、スパッタ雰囲気もAr
ガスのみならず、Ne、Kr等の不活性ガスを用いるよ
うにしても良い。
[0013] As a further application example, (Example 1),
It is conceivable to use an oxide as the target used in (Example 2). Specifically, lead oxide, zirconium oxide,
Using titanium oxide powder or sintered target,
A PZT thin film may be formed using a similar method. A two-component sintered target such as lead oxide can be formed with a larger area than a four-component PZT sintered target because compositional fluctuations do not need to be taken into consideration. Of course, a metal target and an oxide target may be used in combination; for example, a PZT thin film may be formed using a lead oxide sintered target, a zirconium target, and a titanium target. Also, the sputtering atmosphere is Ar.
In addition to gas, an inert gas such as Ne or Kr may also be used.

【0014】以上、PZT薄膜の形成を例に述べてきた
が、同様の方法でチタン酸鉛、PLZT等の強誘電体材
料や、YBaCuOやBiSrCaCuO等の超伝導材
料、またSiO2 等の絶縁材料の薄膜も形成でき、本
発明は一般的な酸化物セラミックス薄膜の形成に関して
適用される。
The above has described the formation of a PZT thin film as an example, but the same method can also be used to form ferroelectric materials such as lead titanate and PLZT, superconducting materials such as YBaCuO and BiSrCaCuO, and insulating materials such as SiO2. Thin films can also be formed, and the present invention has application with respect to the formation of oxide ceramic thin films in general.

【0015】[0015]

【発明の効果】以上説明したように本発明の製造方法を
用いることにより、不活性ガスを用いてスパッタリング
を行うため、酸化物セラミックス薄膜の成長速度を向上
することができた。また、ターゲット面積や基板ホルダ
ーの面積を容易に大きくできるため、酸化物セラミック
ス薄膜が大面積の基板に膜厚、組成共に均一に形成でき
るようになる。以上の結果、酸化物セラミックス薄膜の
生産性が向上した。
[Effects of the Invention] As explained above, by using the manufacturing method of the present invention, since sputtering is performed using an inert gas, it was possible to improve the growth rate of an oxide ceramic thin film. Furthermore, since the target area and the area of the substrate holder can be easily increased, an oxide ceramic thin film can be formed on a large substrate with a uniform thickness and composition. As a result of the above, the productivity of oxide ceramic thin films was improved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施に用いた成膜装置の概念図。FIG. 1 is a conceptual diagram of a film forming apparatus used to implement the present invention.

【図2】本発明により形成したPZT薄膜のX線(Cu
Kα線)回折波形図。
FIG. 2: X-ray (Cu
Kα ray) diffraction waveform diagram.

【図3】本発明の応用例における成膜装置の概念図。FIG. 3 is a conceptual diagram of a film forming apparatus in an application example of the present invention.

【符号の説明】[Explanation of symbols]

1…真空槽 2〜4…カソード 5…基板ホルダー 6…基板 7…イオン銃 1...Vacuum chamber 2 to 4...Cathode 5... Board holder 6...Substrate 7...Ion gun

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  ターゲットに金属を用い、雰囲気に不
活性ガスを用いてスパッタリングを行い、同時に基板上
に堆積した金属上に酸素イオンを照射することを特徴と
する、酸化物セラミックス薄膜の製造方法。
[Claim 1] A method for producing an oxide ceramic thin film, which comprises performing sputtering using a metal as a target and an inert gas atmosphere, and simultaneously irradiating oxygen ions onto the metal deposited on the substrate. .
【請求項2】  複数の金属もしくは酸化物のターゲッ
トを用い、雰囲気に不活性ガスを用いて同時スパッタリ
ングを行うことを特徴とする、請求項1記載の酸化物セ
ラミックス薄膜の製造方法。
2. The method for producing an oxide ceramic thin film according to claim 1, characterized in that simultaneous sputtering is performed using a plurality of metal or oxide targets and an inert gas atmosphere.
JP10911991A 1991-05-14 1991-05-14 Production of oxide ceramics thin film Pending JPH04337065A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10911991A JPH04337065A (en) 1991-05-14 1991-05-14 Production of oxide ceramics thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10911991A JPH04337065A (en) 1991-05-14 1991-05-14 Production of oxide ceramics thin film

Publications (1)

Publication Number Publication Date
JPH04337065A true JPH04337065A (en) 1992-11-25

Family

ID=14502038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10911991A Pending JPH04337065A (en) 1991-05-14 1991-05-14 Production of oxide ceramics thin film

Country Status (1)

Country Link
JP (1) JPH04337065A (en)

Similar Documents

Publication Publication Date Title
US5196101A (en) Deposition of thin films of multicomponent materials
JP2008523567A (en) LiCoO2 deposition
US4861750A (en) Process for producing superconducting thin film
US4874741A (en) Non-enhanced laser evaporation of oxide superconductors
KR100321561B1 (en) Method of Manufacturing Ferroelectric Thin Film of Mixed Oxides Containing Volatile Components
CN101892522B (en) Method for preparing lead-titanate-lead-magnesium niobate films by pulsed laser deposition assisted by oxygen plasmas
JP3447077B2 (en) Thin film laminate, oxide superconducting conductor, and method for producing the same
JP2004143584A (en) Article coated with zirconium compound film, method for producing the article, and sputtering target used for coating with the film
JPS63224116A (en) Manufacture of thin film superconductor
JPH04337065A (en) Production of oxide ceramics thin film
JPS63239742A (en) Manufacture for film superconductor
JP3269841B2 (en) Oxide superconductor and method of manufacturing the same
JPH07172996A (en) Production of thin film of dielectric material and production device therefor
JPS63114966A (en) Apparatus for producing thin film
JPH01208327A (en) Production of thin film of superconductor
JPH04331795A (en) Production of polycrystalline thin film
JPH0665715A (en) Formation of ground surface electrode for forming dielectric thin film
JPH07172984A (en) Production of dielectric thin film and apparatus therefor
JP2702711B2 (en) Manufacturing method of thin film superconductor
JP3415874B2 (en) Manufacturing method of oxide superconducting conductor
JP2594271B2 (en) Superconductor thin film manufacturing apparatus and superconductor thin film manufacturing method
JPH05170448A (en) Production of thin ceramic film
LICHTENWALNER PHYSICAL VAPOR DEPOSITION OF MULTICOMPONENT OXIDE THIN FILMS: TECHNIQUES, BASIC DEPOSITION PROCESSES AND FILM PROCESSING-MICROSTRUCTURE-PROPERTY RELATIONSHIPS
JPH0753638B2 (en) Method for forming superconducting thin film
JPH078760B2 (en) Method for manufacturing superconducting ceramic thin film