JPH04336493A - Method for forming via conductor of multilayer ceramic substrate - Google Patents

Method for forming via conductor of multilayer ceramic substrate

Info

Publication number
JPH04336493A
JPH04336493A JP10738291A JP10738291A JPH04336493A JP H04336493 A JPH04336493 A JP H04336493A JP 10738291 A JP10738291 A JP 10738291A JP 10738291 A JP10738291 A JP 10738291A JP H04336493 A JPH04336493 A JP H04336493A
Authority
JP
Japan
Prior art keywords
metal powder
via conductor
ceramic substrate
multilayer ceramic
green sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10738291A
Other languages
Japanese (ja)
Inventor
Shoichi Hattori
正一 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10738291A priority Critical patent/JPH04336493A/en
Publication of JPH04336493A publication Critical patent/JPH04336493A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

PURPOSE:To provide a method for forming a via conductor of a multilayer ceramic substrate for enhancing reliability of the via conductor. CONSTITUTION:A via hole 2 is provided on a green sheet 1, a metal powder 3 is filled into the via hole 2, and a land 4 for connecting the via is formed on a single or both surfaces of the above green sheet 1. And then, the green sheet 1 is laminated and calcined, thus enabling the green sheet 1 to be sintered to a one-piece ceramic plate 51. In a method for manufacturing the multilayer ceramic substrate for sintering the metal powder 3 within the via hole 2 to a one-piece via conductor 52 and then performing press treatment in equal direction of the above ceramic plate 51, etc., an inorganic matter 7 with 1-10vol.% is mixed in the above metal powder 3 and then a mixture of this metal powder 3 and the inorganic matter 7 is filled into the via hole 2.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、多層セラミック基板の
製造方法に関し、特に、ビア導体の信頼性を高められる
ようにした多層セラミック基板のビア導体形成方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a multilayer ceramic substrate, and more particularly to a method for forming via conductors in a multilayer ceramic substrate, which improves the reliability of the via conductors.

【0002】0002

【従来の技術】従来の多層セラミック基板のビア導体形
成方法においては、例えば図3に示すように、(a)グ
リーンシート形成工程、(b)孔明け工程、(c)ビア
導体充填工程、(d)回路パターン形成工程、(e)積
層工程、(f)焼成工程が順次行われる。
2. Description of the Related Art In a conventional method for forming via conductors in a multilayer ceramic substrate, for example, as shown in FIG. d) circuit pattern formation step, (e) lamination step, and (f) firing step are performed in sequence.

【0003】グリーンシート形成工程では、セラミック
粉末と有機溶剤とをスラリ−状に混練してシート状に形
成した後、裁断して所定の寸法のグリーンシート1が得
られる。孔明け工程では、グリーンシート1に多数のビ
アホール2が明けられる。ビア導体充填工程では、例え
ば銅粉末等の金属粉末3がビアホール2に充填される。 金属粉末3の粒径は、特に限定されないが、1〜5μm
程度としている。
In the green sheet forming step, ceramic powder and an organic solvent are kneaded into a slurry to form a sheet, which is then cut to obtain a green sheet 1 of a predetermined size. In the hole punching process, a large number of via holes 2 are punched in the green sheet 1. In the via conductor filling step, the via hole 2 is filled with metal powder 3 such as copper powder, for example. The particle size of the metal powder 3 is not particularly limited, but is 1 to 5 μm.
It is said that the amount of

【0004】回路パターン形成工程では、グリーンシー
ト1の片面(あるいは両面)にビア接続用のランド4が
形成され、必要に応じて所定の回路パターンが形成され
る。回路パターン及びランド4の形成方法は特に限定さ
れず、例えば、スクリーン印刷法等の公知の方法を採用
すればよい。積層工程では、回路パターンやランド4を
形成した多数のグリーンシート1を所定の順に積み重ね
、加熱加圧して互いに圧着させる。この積層工程におい
て、グリーンシート1に含まれた有機溶剤は気化して放
散されるが、その一部分はグリーンシート1や金属粉末
3の中に残留する。また、金属粉末3の粒子間には充填
時以来の空気が存在している。
In the circuit pattern forming step, lands 4 for via connections are formed on one (or both) sides of the green sheet 1, and a predetermined circuit pattern is formed as necessary. The method of forming the circuit pattern and the land 4 is not particularly limited, and for example, a known method such as screen printing may be employed. In the lamination process, a large number of green sheets 1 having circuit patterns and lands 4 formed thereon are stacked in a predetermined order and are pressed together by heating and pressure. In this lamination process, the organic solvent contained in the green sheet 1 is vaporized and diffused, but a portion of it remains in the green sheet 1 and the metal powder 3. Moreover, air exists between the particles of the metal powder 3 since the time of filling.

【0005】焼成工程では、積層工程よりも高温(例え
ば1010℃程度)に加熱され、積層されたグリーンシ
ート1は焼結して一体のセラミック板51となり、金属
粉末3は焼結してビア導体52となる。実際には、これ
らの工程の後に、外形整形工程、表面研磨工程、表面層
形成工程等を経て多層セラミック基板の完成品が得られ
るが、これらの後続の工程は本発明に直接関係しないの
で、その説明は省略する。
In the firing process, the laminated green sheets 1 are heated to a higher temperature (for example, about 1010° C.) than in the lamination process, and the laminated green sheets 1 are sintered to form an integrated ceramic plate 51, and the metal powder 3 is sintered to form via conductors. It becomes 52. In reality, after these steps, a finished product of the multilayer ceramic substrate is obtained through an external shaping step, a surface polishing step, a surface layer forming step, etc., but these subsequent steps are not directly related to the present invention. The explanation will be omitted.

【0006】ところで、積層工程において金属粉末3の
粒子間に残留する空気は、焼成工程中に大部分放散され
るが、図4に示すように、その一部分がビア導体52中
に捕らえられて空孔53を形成することが少なくない。 このような空孔53が形成されると、ビア導体52の導
通性が損なわれ、極端な場合には断線が発生し、ビア導
体52の信頼性が損なわれることになる。
By the way, most of the air remaining between the particles of the metal powder 3 in the lamination process is dissipated during the firing process, but as shown in FIG. Holes 53 are often formed. If such holes 53 are formed, the conductivity of the via conductor 52 will be impaired, and in extreme cases, disconnection will occur, and the reliability of the via conductor 52 will be impaired.

【0007】そこで、本発明者は、例えば図5に示すよ
うに、積層工程の後に、上記セラミック板51を高温、
高圧のアルゴン等の不活性雰囲気中に置いて空孔53を
圧壊させる等方向加圧処理(以下、HIP処理という)
を行うことを試みた。HIP処理においては、約1時間
にわたり、約850℃に加熱することによりビア導体5
2を軟化させるとともに、1000atm程度の圧力を
加えるので、ビア導体52中の空孔53が圧壊されて消
滅する。
Therefore, as shown in FIG. 5, for example, the inventor of the present invention heated the ceramic plate 51 at a high temperature after the lamination process.
Isodirectional pressure treatment (hereinafter referred to as HIP treatment) in which the holes 53 are crushed by placing them in an inert atmosphere such as high-pressure argon.
I tried to do this. In the HIP process, the via conductor 5 is heated to about 850°C for about 1 hour.
Since the via conductor 52 is softened and a pressure of about 1000 atm is applied, the pores 53 in the via conductor 52 are crushed and disappear.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、HIP
処理においては、約1時間程度加熱及び加圧を継続する
ことによって、図6に示すようにビア導体52内に60
〜70μm 程度の巨大単結晶粒子が形成され、その粒
子相互の粒界が力学的に弱くなり、断線を生じる場合が
あることが分かった。また、ビア導体52のランド54
との間の粒界には特に断線が生じ易いことが分かった。
[Problem to be solved by the invention] However, HIP
In the treatment, by continuing heating and pressurizing for about one hour, 600 ml of heat is formed in the via conductor 52 as shown in FIG.
It was found that giant single-crystal grains of about 70 μm were formed, and the grain boundaries between the grains became mechanically weak, leading to wire breakage. In addition, the land 54 of the via conductor 52
It was found that wire breaks were particularly likely to occur at the grain boundaries between the two.

【0009】本発明は、上記の事情を鑑みてなされたも
のであり、HIP処理においてビア導体の粒子が巨大化
することを防止し、以て、ビア導体の信頼性を高められ
るようにした多層セラミック基板のビア導体形成方法を
提供することを目的とする。
The present invention was made in view of the above-mentioned circumstances, and provides a multilayer structure that prevents via conductor particles from becoming gigantic during HIP processing, thereby increasing the reliability of via conductors. An object of the present invention is to provide a method for forming via conductors on a ceramic substrate.

【0010】0010

【課題を解決するための手段】本発明に係る多層セラミ
ック基板のビア導体形成方法は、例えば図1に示すよう
に、グリーンシート1にビアホール2をあけ、該ビアホ
ール2に金属粉末3を充填し、更に上記グリーンシート
1の片面あるいは両面にビア接続用のランド4を形成し
た後、グリーンシート1を積層し、焼成してグリーンシ
ート1を一体のセラミック板51に焼結するとともに、
ビアホール2内の金属粉末3を一体のビア導体52に焼
結させる多層セラミック基板の製造方法において、上記
の目的を達成するため、次のような手段を講じている。
[Means for Solving the Problems] A method for forming via conductors in a multilayer ceramic substrate according to the present invention includes, for example, as shown in FIG. Further, after forming a land 4 for via connection on one or both sides of the green sheet 1, the green sheets 1 are laminated and fired to sinter the green sheet 1 into an integrated ceramic plate 51,
In a method for manufacturing a multilayer ceramic substrate in which metal powder 3 in via hole 2 is sintered into integrated via conductor 52, the following measures are taken to achieve the above object.

【0011】即ち上記金属粉末3に1〜10体積%の無
機物7を混合し、上記焼結後のセラミック板51を等方
向加圧処理するという手段を講じている。
That is, a method is taken in which 1 to 10% by volume of inorganic substance 7 is mixed with the metal powder 3 and the ceramic plate 51 after sintering is subjected to isodirectional pressure treatment.

【0012】0012

【作用】本発明においては、焼結後のHIP処理におい
て、金属粉末3の粒子が巨大化することが無機物7の粒
子によって妨げられ、ビア導体52を構成する金属粒子
の大きさが数μm程度以下に抑えられる。本発明におい
て使用する金属粉末3は、グリーンシート1あるいはセ
ラミック板51の焼結温度以下で焼結する金属の粉末で
構成すればよく、例えば銅粉末で構成すればよい。また
、金属粉末3の粒径は、ビアホール2の孔径、アスペク
ト比等に対応して適宜選定すればよく、例えばビアホー
ル2の孔径が90μm程度、アスペクト比が1〜3程度
の場合には従来と同様に1〜5μmとすればよい。
[Operation] In the present invention, in the HIP treatment after sintering, the particles of the inorganic substance 7 prevent the particles of the metal powder 3 from becoming gigantic, and the size of the metal particles constituting the via conductor 52 is approximately several μm. It can be kept below. The metal powder 3 used in the present invention may be composed of a metal powder that is sintered at a temperature lower than the sintering temperature of the green sheet 1 or the ceramic plate 51, and may be composed of copper powder, for example. Further, the particle size of the metal powder 3 may be appropriately selected depending on the hole diameter, aspect ratio, etc. of the via hole 2. For example, if the hole diameter of the via hole 2 is about 90 μm and the aspect ratio is about 1 to 3, the particle size of the metal powder 3 may be selected as appropriate. Similarly, the thickness may be 1 to 5 μm.

【0013】また、本発明において使用する無機物7は
、特に限定されず、例えばアルミナ(Al2O3)、酸
化珪素(SiO)、窒化珪素(SiN)等を使用するこ
とができる。 また、無機物7の粒径は金属粉末3の粒径と同等以下で
あればよく、特に、粒径1〜5μm程度の金属粉末3に
対して粒径0.1〜3μm程度の無機物7を添加する場
合には、表面改良処理あるいはハイブリダイズ処理と呼
ばれ、母粒子の表面に該母粒子より小径の子粒子が付着
して金属粉末3及び無機物7の分散性が高められるので
好ましい。
Further, the inorganic material 7 used in the present invention is not particularly limited, and for example, alumina (Al2O3), silicon oxide (SiO), silicon nitride (SiN), etc. can be used. Further, the particle size of the inorganic substance 7 may be equal to or smaller than the particle size of the metal powder 3, and in particular, the inorganic substance 7 with a particle size of about 0.1 to 3 μm is added to the metal powder 3 with a particle size of about 1 to 5 μm. In this case, it is called a surface improvement treatment or a hybridization treatment, and it is preferable because child particles smaller in diameter than the mother particles are attached to the surface of the mother particles, thereby improving the dispersibility of the metal powder 3 and the inorganic substance 7.

【0014】本発明において、無機物7の添加量は1〜
10体積%とすることが好ましい。無機物7の添加量が
1体積%未満の場合には粒成長を抑制する効果が著しく
低下するので好ましくなく、また、10体積%を上回る
場合にはビア導体52の導体抵抗が大きくなるので好ま
しくない。
In the present invention, the amount of the inorganic substance 7 added is 1 to 1.
The content is preferably 10% by volume. If the amount of the inorganic substance 7 added is less than 1% by volume, the effect of suppressing grain growth will be significantly reduced, which is undesirable, and if it exceeds 10% by volume, the conductor resistance of the via conductor 52 will increase, which is not preferred. .

【0015】[0015]

【実施例】本発明の一実施例に係る多層セラミック基板
のビア導体形成方法を図1及び図2に基づき説明すれば
、以下の通りである。この多層セラミック基板のビア導
体形成方法では、(a)グリーンシート形成工程、(b
)孔明け工程、(c)ビア導体充填工程、(d)回路パ
ターン形成工程、(e)積層工程、(f)焼成工程、(
g)HIP処理工程が順次行われる。これらの工程のう
ち、(a)グリーンシート形成工程、(b)孔明け工程
、(d)回路パターン形成工程、(e)積層工程、(f
)焼成工程は従来と同様であるので、その詳細な説明は
省略する。なお、孔明け工程でグリーンシート1に明け
られるビアホール2の直径は約90μmとしている。
Embodiment A method for forming via conductors in a multilayer ceramic substrate according to an embodiment of the present invention will be described below with reference to FIGS. 1 and 2. This method for forming via conductors in a multilayer ceramic substrate includes (a) a green sheet forming step, (b)
) hole drilling process, (c) via conductor filling process, (d) circuit pattern forming process, (e) lamination process, (f) firing process, (
g) HIP treatment steps are performed sequentially. Among these steps, (a) green sheet forming step, (b) hole punching step, (d) circuit pattern forming step, (e) laminating step, (f
) Since the firing process is the same as the conventional one, detailed explanation thereof will be omitted. Note that the diameter of the via hole 2 formed in the green sheet 1 in the hole forming process is approximately 90 μm.

【0016】また、HIP処理工程の後に、外形整形工
程、表面研磨工程、表面層形成工程等を経て多層セラミ
ック基板の完成品が得られるが、これらの後続の工程は
本発明に直接関係しないので、その説明も省略する。ビ
ア導体充填工程では、金属粉末3と無機物7との混合物
がビアホール2に充填される。
Further, after the HIP process, a finished product of the multilayer ceramic substrate is obtained through an external shaping process, a surface polishing process, a surface layer forming process, etc. However, these subsequent processes are not directly related to the present invention. , the explanation thereof will also be omitted. In the via conductor filling step, the via hole 2 is filled with a mixture of metal powder 3 and inorganic substance 7 .

【0017】ここでは、金属粉末3として、粒径1〜5
μmの銅粉末が使用され、無機物7としては粒径0.1
〜3μmのアルミナが使用される。また、無機物7の添
加量は金属粉末3に対して5体積%とされた。次に、H
IP処理工程では、約1時間にわたり、約850℃に加
熱してビア導体52を軟化させるとともに、1000a
tm程度の圧力を加えることにより、ビア導体52中の
空孔53が圧壊されて消滅する。
Here, the metal powder 3 has a particle size of 1 to 5.
Copper powder with a particle size of 0.1 μm is used as the inorganic substance 7.
~3 μm alumina is used. Further, the amount of the inorganic substance 7 added was 5% by volume based on the metal powder 3. Next, H
In the IP treatment process, the via conductor 52 is heated to approximately 850° C. for approximately 1 hour to soften it, and
By applying a pressure of about tm, the holes 53 in the via conductor 52 are crushed and disappear.

【0018】この加熱及び加圧が終了した後、セラミッ
ク板51及びビア導体52が冷却され、ビア導体52は
単結晶化するが、ビア導体52中に分散された無機物7
が金属の単結晶粒子の成長を抑制するので、図2に示す
ように、単結晶粒子の成長は例えば数μm以下に抑制さ
れる。その結果、金属粒子どうしの接触面積が大きくな
り、導通性が高められる。また、細かい金属粒子どうし
が無機物を介して互いに複雑に、かつ、緻密に絡みあう
ように焼結するので、ビア導体52の機械的強度も高め
られる。ちなみに、この多層セラミック基板のビア導体
形成方法に従って作られた多層セラミック基板(図2)
と、無機物7を添加しない従来例に従って作られた多層
セラミック基板(図4)と、無機物7を添加せず、HI
P処理を付加した多層セラミック基板のビア導体形成方
法に従って作られた多層セラミック基板(図6)とにつ
いて、ビア導体52の引っ張り強度と、振動試験とを行
った。その結果を表1に示す。
After this heating and pressurization is completed, the ceramic plate 51 and the via conductor 52 are cooled, and the via conductor 52 becomes a single crystal, but the inorganic substance 7 dispersed in the via conductor 52 is
suppresses the growth of metal single crystal particles, so as shown in FIG. 2, the growth of single crystal particles is suppressed to, for example, several μm or less. As a result, the contact area between the metal particles becomes larger and the conductivity is improved. Further, since the fine metal particles are sintered so as to be intricately and densely intertwined with each other via inorganic substances, the mechanical strength of the via conductor 52 is also increased. By the way, a multilayer ceramic board (Figure 2) made according to the via conductor formation method of this multilayer ceramic board
, a multilayer ceramic substrate made according to the conventional example without adding the inorganic substance 7 (Fig. 4), and a multilayer ceramic substrate made according to the conventional example without adding the inorganic substance 7, and HI
The tensile strength of the via conductor 52 and a vibration test were conducted on a multilayer ceramic substrate (FIG. 6) made according to the method for forming via conductors in a multilayer ceramic substrate that was subjected to P treatment. The results are shown in Table 1.

【0019】[0019]

【表1】 注1:ビア導体の上下両端を引っ張り破壊力を見たもの
。 注2:ビア導体に超音波振動を与え全ビア導体のうち断
線しなかったビア導体の百分率(生存率)を求めたもの
[Table 1] Note 1: The breaking force was measured by pulling both the upper and lower ends of the via conductor. Note 2: The percentage of via conductors that did not break (survival rate) among all via conductors was determined by applying ultrasonic vibration to the via conductors.

【0020】[0020]

【発明の効果】以上のように、本発明によれば、金属粉
末に無機物を混ぜてビアホールに充填し、焼結後にHI
P処理を行うので、HIP処理後ビア導体を構成する金
属粒子が巨大化することが防止され、金属粒子どうしの
接触面積が大きくなり、導通性が高められるとともに、
細かい金属粒子どうしが無機物を介して互いに複雑に、
かつ、緻密に絡みあうように焼結するので、ビア導体の
機械的強度も高められる。その結果、ビア導体の信頼性
が著しく高められることになる。
As described above, according to the present invention, via holes are filled with metal powder mixed with an inorganic substance, and after sintering, HI
Since the P treatment is performed, the metal particles constituting the via conductor are prevented from becoming gigantic after the HIP treatment, the contact area between the metal particles is increased, and conductivity is improved.
Fine metal particles interact with each other through inorganic substances,
In addition, since the via conductors are sintered in a densely intertwined manner, the mechanical strength of the via conductor is also increased. As a result, the reliability of the via conductor is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例のフロー図である。FIG. 1 is a flow diagram of one embodiment of the present invention.

【図2】本発明の一実施例により作られたビア導体の断
面図である。
FIG. 2 is a cross-sectional view of a via conductor made in accordance with one embodiment of the present invention.

【図3】従来のビア導体形成方法のフロー図である。FIG. 3 is a flow diagram of a conventional via conductor forming method.

【図4】従来のビア導体形成方法により作られたビア導
体の断面図である。
FIG. 4 is a cross-sectional view of a via conductor made by a conventional via conductor forming method.

【図5】他の従来例のビア導体形成方法のフロー図であ
る。
FIG. 5 is a flow diagram of another conventional method for forming via conductors.

【図6】他の従来例により作られたビア導体の断面図で
ある。
FIG. 6 is a cross-sectional view of a via conductor made according to another conventional example.

【符号の説明】[Explanation of symbols]

1  グリーンシート、 2  ビアホール 3  金属粉末 4  ランド 51  セラミック板 52  ビア導体 1 Green sheet, 2 Beer hall 3 Metal powder 4 Land 51 Ceramic plate 52 Via conductor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  グリーンシート(1) にビアホール
(2) をあけ、該ビアホール(2) に金属粉末(3
) を充填し、更に上記グリーンシート(1) の片面
あるいは両面にビア接続用のランド(4) を形成した
後、グリーンシート(1) を積層し、焼成してグリー
ンシート(1) を一体のセラミック板(51)に焼結
するとともに、ビアホール(2) 内の金属粉末(3)
 を一体のビア導体(52)に焼結させる多層セラミッ
ク基板の製造方法において、上記金属粉末(3) に1
〜10体積%の無機物(7) を混合し、上記焼結後の
セラミック板(51)を等方向加圧処理することを特徴
とする、多層セラミック基板のビア導体形成方法。
Claim 1: A via hole (2) is made in a green sheet (1), and a metal powder (3) is formed in the via hole (2).
), and after forming a land (4) for via connection on one or both sides of the green sheet (1), the green sheets (1) are stacked and fired to form the green sheet (1) into a single piece. While sintering into the ceramic plate (51), the metal powder (3) inside the via hole (2)
In the method for manufacturing a multilayer ceramic substrate in which the metal powder (3) is sintered into an integrated via conductor (52), 1
A method for forming via conductors in a multilayer ceramic substrate, characterized by mixing ~10% by volume of an inorganic substance (7) and subjecting the sintered ceramic plate (51) to isodirectional pressure treatment.
【請求項2】  上記金属粉末(3) の粒径よりも小
径の無機物(7) を用いる請求項1に記載の多層セラ
ミック基板のビア導体形成方法。
2. The method for forming via conductors in a multilayer ceramic substrate according to claim 1, wherein the inorganic material (7) has a particle size smaller than that of the metal powder (3).
JP10738291A 1991-05-13 1991-05-13 Method for forming via conductor of multilayer ceramic substrate Withdrawn JPH04336493A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10738291A JPH04336493A (en) 1991-05-13 1991-05-13 Method for forming via conductor of multilayer ceramic substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10738291A JPH04336493A (en) 1991-05-13 1991-05-13 Method for forming via conductor of multilayer ceramic substrate

Publications (1)

Publication Number Publication Date
JPH04336493A true JPH04336493A (en) 1992-11-24

Family

ID=14457708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10738291A Withdrawn JPH04336493A (en) 1991-05-13 1991-05-13 Method for forming via conductor of multilayer ceramic substrate

Country Status (1)

Country Link
JP (1) JPH04336493A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6629367B2 (en) * 2000-12-06 2003-10-07 Motorola, Inc. Electrically isolated via in a multilayer ceramic package

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6629367B2 (en) * 2000-12-06 2003-10-07 Motorola, Inc. Electrically isolated via in a multilayer ceramic package

Similar Documents

Publication Publication Date Title
JP5090185B2 (en) Manufacturing method of ceramic multilayer substrate
JPWO2007138826A1 (en) Manufacturing method of ceramic multilayer substrate
JP7309666B2 (en) Multilayer ceramic substrate and electronic device
WO2009119198A1 (en) Process for producing ceramic substrate
JPH04336493A (en) Method for forming via conductor of multilayer ceramic substrate
JP3757211B2 (en) Wiring board and manufacturing method thereof
JP2007115852A (en) Manufacturing method of ceramic substrate
JPH06143239A (en) Manufacture of ceramic board
JP4110536B2 (en) Multilayer ceramic aggregate substrate and method for producing multilayer ceramic aggregate substrate
US6709749B1 (en) Method for the reduction of lateral shrinkage in multilayer circuit boards on a substrate
JP2007142223A (en) Method of manufacturing ceramic substrate
JP2002176236A (en) Composition for via hole conductor and multilayer ceramic substrate and its producing method
WO2009151006A1 (en) Method for producing ceramic molded body
JP3879276B2 (en) Manufacturing method of ceramic multilayer substrate
JPH07170074A (en) Manufacture of ceramic multilayer circuit board
JP2513382B2 (en) Method for manufacturing multilayer glass ceramic substrate
JP2504351B2 (en) Multi-layer glass ceramic substrate and manufacturing method thereof
JP2005116337A (en) Conductive paste, via-hole conductor and multilayer ceramic substrate
JPH10259063A (en) Production of glass ceramic substrate
JP4590674B2 (en) Manufacturing method of multilayer ceramic substrate
JPH0832238A (en) Multilayer wiring board, its production and production of sintered silica used for it
JP2000022296A (en) Method for manufacturing aluminum nitride wiring board
JPH10341067A (en) Inorganic multilayered substrate and conductor paste for via holes
JPH04124071A (en) Ceramic circuit board and its production
JPS6164189A (en) Method of producing ceramic multilayer circuit board

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980806