JP4110536B2 - Multilayer ceramic aggregate substrate and method for producing multilayer ceramic aggregate substrate - Google Patents

Multilayer ceramic aggregate substrate and method for producing multilayer ceramic aggregate substrate Download PDF

Info

Publication number
JP4110536B2
JP4110536B2 JP2005281211A JP2005281211A JP4110536B2 JP 4110536 B2 JP4110536 B2 JP 4110536B2 JP 2005281211 A JP2005281211 A JP 2005281211A JP 2005281211 A JP2005281211 A JP 2005281211A JP 4110536 B2 JP4110536 B2 JP 4110536B2
Authority
JP
Japan
Prior art keywords
multilayer ceramic
substrate
ceramic body
groove
sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005281211A
Other languages
Japanese (ja)
Other versions
JP2007095862A (en
Inventor
到 上田
初男 池田
光一郎 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005281211A priority Critical patent/JP4110536B2/en
Publication of JP2007095862A publication Critical patent/JP2007095862A/en
Application granted granted Critical
Publication of JP4110536B2 publication Critical patent/JP4110536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、無収縮プロセスを用いた多層セラミック基板に関するもので、特に大型の多層セラミック集合基板と、この集合基板から複数個の小片に分割して得られる多層セラミック基板に関するものである。   The present invention relates to a multilayer ceramic substrate using a non-shrinkage process, and particularly to a large multilayer ceramic aggregate substrate and a multilayer ceramic substrate obtained by dividing the aggregate substrate into a plurality of small pieces.

今日、LSI・チップ部品等は小型化・軽量化が益々進んでおり、これらを実装する配線基板も小型化・軽量化が望まれている。このような要求に対して、基板内に内部電極等を配した多層セラミック基板は、要求される高密度配線が可能となり、かつ薄型化が可能なことから、多層セラミック基板は、携帯電話等の移動体通信端末機器の分野などにおいて、アンテナスイッチモジュール、PAモジュール基板、フィルタ、チップアンテナ、各種パッケージ部品等の種々の電子部品を構成するのに広く用いられている。   Today, LSIs and chip parts are increasingly reduced in size and weight, and the wiring board on which these are mounted is also desired to be reduced in size and weight. In response to such a demand, the multilayer ceramic substrate having internal electrodes and the like arranged in the substrate enables the required high-density wiring and can be thinned. In the field of mobile communication terminal equipment and the like, it is widely used to configure various electronic components such as antenna switch modules, PA module substrates, filters, chip antennas, and various package components.

上記多層セラミック基板は、電子部品、半導体集積回路等を高密度に搭載すべく、低温焼成セラミック材料:LTCC(Low Temperature Co-fired Ceramics)からなるセラミックグリーンシートにビアホールを開け、その穴に導体を充填し、シート表面には回路を構成する電極パターンを印刷形成し、これらのシートを複数枚積層し、圧着して未焼成の多層セラミック基板を形成する。その後、これを1,000℃以下の温度で焼成することにより製造されている。このとき、未焼結多層セラミック基板の体積が減少し、緻密化する。この収縮はグリーンシート積層体の密度とセラミック体の理論密度との比、すなわち相対密度が通常45〜65%であるのに対し焼成によりその相対密度が約95%以上になるためで避けられない。通常、未焼結多層セラミック基板はセラミック敷板に載せて電気炉で焼成されるが、焼成による収縮率は一般的に線収縮率で10〜25%の範囲にある。この焼成に伴う収縮は、ロットごとに異なるため、高密度の配線を必要とする回路には位置ずれなどが起こり、精密な回路が必要とされる多層セラミック基板において問題である。   In order to mount electronic parts, semiconductor integrated circuits, etc. at a high density, the multilayer ceramic substrate has via holes formed in a ceramic green sheet made of low-temperature fired ceramic material: LTCC (Low Temperature Co-fired Ceramics), and a conductor is formed in the hole. After filling, an electrode pattern constituting a circuit is printed on the surface of the sheet, and a plurality of these sheets are laminated and pressed to form an unfired multilayer ceramic substrate. Then, it is manufactured by firing at a temperature of 1,000 ° C. or lower. At this time, the volume of the unsintered multilayer ceramic substrate is reduced and densified. This shrinkage is inevitable because the ratio between the density of the green sheet laminate and the theoretical density of the ceramic body, that is, the relative density is usually 45 to 65%, but the relative density becomes about 95% or more by firing. . Usually, an unsintered multilayer ceramic substrate is placed on a ceramic base plate and fired in an electric furnace. The shrinkage rate due to firing is generally in the range of 10 to 25% in terms of linear shrinkage rate. Since shrinkage due to firing differs from lot to lot, misalignment occurs in a circuit that requires high-density wiring, which is a problem in a multilayer ceramic substrate that requires a precise circuit.

そこで、特許文献1(特許第2617643号公報)では未焼結多層セラミック体の焼成中の収縮を減少させる方法である無収縮プロセスについて述べている。
ここで無収縮プロセスは、基板用グリーンシートの焼成温度では焼結しない無機材料(アルミナ等)を有機バインダ中に分散させた無機組成物ペーストからなる拘束グリーンシートを用意し、この拘束グリーンシートを未焼結の多層セラミック基板の上面および下面に対し密着して設け、その上で焼成するものである。このとき拘束層の収縮抑制作用により基板表面の収縮が抑制される。
Therefore, Patent Document 1 (Japanese Patent No. 2617643) describes a non-shrinkage process which is a method for reducing shrinkage during firing of an unsintered multilayer ceramic body.
Here, the non-shrinking process is to prepare a constrained green sheet made of an inorganic composition paste in which an inorganic material (such as alumina) that is not sintered at the firing temperature of the substrate green sheet is dispersed in an organic binder. It is provided in close contact with the upper and lower surfaces of an unsintered multilayer ceramic substrate and fired thereon. At this time, contraction of the substrate surface is suppressed by the contraction suppressing action of the constraining layer.

ところで、このような多層セラミック基板を製造する際のコスト抑制および小型基板製造のための一つの方法として、大型のセラミック集合基板を得て、それを複数個に分割する、いわゆる多数個取りと言われる方法がある。この方法は、基板用グリーンシートを積層した未焼結多層セラミック体の両面又は片面に縦方向と横方向の分割溝を交差して形成し、これを焼結して多層セラミック集合基板を作製する。その後、分割溝に沿って破断する、あるいは砥石カッター等で切断するなどして個々小片の多層セラミック基板を得るものである。このような分割溝による多数個取りの方法は無収縮プロセスでも用いられており、例えば特許文献2や特許文献3に開示されている。   By the way, as one method for cost reduction and small substrate manufacturing when manufacturing such a multilayer ceramic substrate, a large ceramic aggregate substrate is obtained and divided into a plurality of so-called multi-chips. There is a way to be called. In this method, a non-sintered multilayer ceramic body on which green sheets for a substrate are laminated is formed on both sides or one side by intersecting longitudinal and lateral dividing grooves and sintered to produce a multilayer ceramic aggregate substrate. . Thereafter, the multilayer ceramic substrate is obtained by breaking along the dividing grooves or by cutting with a grindstone cutter or the like. Such a multi-cavity method using divided grooves is also used in a non-shrink process, and is disclosed in, for example, Patent Document 2 and Patent Document 3.

特許文献2では基板の反りを抑制するために、未焼結多層セラミック体と拘束グリーンシートを圧着して十分な密着強度を得た上で、拘束層の上から多層セラミック体の厚み方向に切り込む分割溝を形成したものである。さらにこのとき、分割溝の終端と多層セラミック体の端縁との距離を3mm以上とることにより反りや変形を抑えることができるとしている。   In Patent Document 2, in order to suppress the warpage of the substrate, the unsintered multilayer ceramic body and the constrained green sheet are pressure-bonded to obtain sufficient adhesion strength, and then cut in the thickness direction of the multilayer ceramic body from above the constraining layer. A dividing groove is formed. Further, at this time, warping and deformation can be suppressed by setting the distance between the end of the dividing groove and the edge of the multilayer ceramic body to 3 mm or more.

特許文献3は基板の端面の欠けやクラックを防止するために、基板用セラミックグリーンシートの端縁から3mm以上内側の領域に配線回路層を形成し、未焼結多層セラミック体には前記配線回路層を横切らないように0.01〜1mmの切り込みによる分割溝を形成したものである。これにより端面の中央部がへこむことが防止され欠けやクラックを防止できるとある。   In Patent Document 3, a wiring circuit layer is formed in a region 3 mm or more inside from an edge of a ceramic green sheet for a substrate in order to prevent chipping or cracking of the end surface of the substrate. A dividing groove is formed by cutting 0.01 to 1 mm so as not to cross the layer. As a result, the central portion of the end face is prevented from being dented and chipping and cracking can be prevented.

特許第2617643号公報Japanese Patent No. 2617643 特開2002−185136号公報JP 2002-185136 A 特開2003−249755号公報JP 2003-249755 A

多数個取りを行なうためには、焼結後の多層セラミック集合基板の表面に、分割を容易に行うために分割溝を形成しておく必要がある。上記したように分割溝の形成手段としては、通常は未焼結状態の、つまり生状態の多層セラミック体の表面にナイフカッター等の装置により縦横に切り込み溝を設けることが行われている。しかしながら、無収縮プロセスにおいては、このような分割溝があることにより、溝の周囲と中央部との間に収縮挙動にばらつきが生じる。これは基板の厚み方向(分割溝の深さ方向)においても同様であり、表面側と断面の中心部とでは収縮量に勾配が生じる。
また、従来の分割溝は単純にカッターの刃先が反映された、例えば略V字状のものであった。分割し易さの面からは切り込み溝は深い方が良いが、逆に深い溝ほどハンドリング性が悪くなる。つまり上部がめり込んでダレたり、刃先の型離れが悪くなってシートが変形してしまうのである。その結果、焼結過程で割れが発生してしまう問題があった。このような問題は、特に厚いセラミックス基板の場合に顕著になり、小片の多層セラミック基板においては端部欠陥となって現われる。
In order to take a large number of pieces, it is necessary to form dividing grooves on the surface of the sintered multilayer ceramic aggregate substrate for easy division. As described above, as the means for forming the dividing grooves, the grooves are usually formed vertically and horizontally on the surface of the multilayer ceramic body in an unsintered state, that is, in a green state, using a device such as a knife cutter. However, in the non-shrinkage process, the presence of such divided grooves causes variations in shrinkage behavior between the periphery and the center of the groove. This also applies to the thickness direction of the substrate (the depth direction of the dividing grooves), and a gradient occurs in the amount of contraction between the surface side and the center of the cross section.
Further, the conventional dividing groove is, for example, substantially V-shaped, which simply reflects the cutting edge of the cutter. From the standpoint of ease of division, the cut groove should be deep, but conversely, the deeper the groove, the worse the handling. In other words, the upper part is sunk and the sheet is deformed, and the cutting edge of the blade is deteriorated and the sheet is deformed. As a result, there was a problem that cracking occurred during the sintering process. Such a problem becomes prominent particularly in the case of a thick ceramic substrate, and appears as an end defect in a small multilayer ceramic substrate.

そこで、本発明は分割溝を形成した無収縮プロセスによる多層セラミック集合基板において、比較的浅い切り込み溝で分割溝を形成し、分割溝の形状を変更し、ハンドリング性が良好でありながら分割性に優れており、シート変形などの欠陥のない多層セラミック集合基板及び多層セラミック集合基板の製造方法を提供することを目的とする。 Therefore, the present invention is a multi-layer ceramic aggregate substrate formed by a non-shrink process in which divided grooves are formed, and the divided grooves are formed by relatively shallow cut grooves, the shape of the divided grooves is changed, and the handleability is good but the dividing property is improved. An object of the present invention is to provide a multilayer ceramic aggregate substrate that is excellent and free from defects such as sheet deformation and a method for producing the multilayer ceramic aggregate substrate .

本発明は、セラミックを含む低温焼結材からなる基板用グリーンシートを積層した未焼結多層セラミック体の両面又は片面縦横方向に断面略V字状の分割溝を形成し、前記基板用グリーンシートの焼成温度では焼結しない無機粒子を主成分とする拘束層を前記未焼結多層セラミック体の両面又は片面に設け、前記拘束層を設けた未焼結多層セラミック体を当該未焼結多層セラミック体の焼結する温度で焼結し、焼成後の多層セラミック体から前記拘束層を除去してなる多層セラミック集合基板であって、前記多層セラミック集合基板の少なくとも一つの分割溝が表面部より内部の方がやや膨らんだ断面略Ω状であることを特徴とする多層セラミック集合基板である。尚、本発明において略U字状とは、分割溝の下部が広がったΩ状やU状等を指し、広義に言えばV字状のように狭まった形状でないものを言う。 The present invention provides a substrate-forming green by forming divided grooves having a substantially V-shaped cross section in the longitudinal and transverse directions of both sides or one side of an unsintered multilayer ceramic body in which substrate green sheets made of a low-temperature sintered material containing ceramic are laminated. A constraining layer composed mainly of inorganic particles that are not sintered at the firing temperature of the sheet is provided on both sides or one side of the unsintered multilayer ceramic body, and the unsintered multilayer ceramic body provided with the constraining layer is provided in the unsintered multilayer ceramic body. A multilayer ceramic aggregate substrate obtained by sintering at a temperature at which the ceramic body is sintered and removing the constraining layer from the fired multilayer ceramic body , wherein at least one dividing groove of the multilayer ceramic aggregate substrate is formed from a surface portion. The multilayer ceramic aggregate substrate is characterized in that the inside is a slightly swollen cross section having a substantially Ω shape. In the present invention, the substantially U shape refers to an Ω shape, a U shape, or the like in which the lower part of the dividing groove is widened. In a broad sense, it is not a narrow shape like a V shape.

本発明の多層セラミック集合基板は、前記断面略Ω状の分割溝の深さが、両面合わせて当該多層セラミック集合基板の厚さの2/3以下であることが望ましい。In the multilayer ceramic aggregate substrate of the present invention, it is desirable that the depth of the dividing groove having a substantially Ω-shaped cross section is 2/3 or less of the thickness of the multilayer ceramic aggregate substrate in both sides.

本発明は、セラミックを含む低温焼結材よりなる基板用グリーンシートを準備する工程と、前記基板用グリーンシートのうち、所望のグリーンシートに導体ペーストで所望の導体パターンを形成する工程と、前記導体パターンを適宜形成した基板用グリーンシートを積層、圧着して未焼結多層セラミック体を作製する工程と、前記未焼結多層セラミック体の両面又は片面の縦横方向に深さ10〜200μmの断面略V字状の分割溝を、当該分割溝の深さ(m2)が両面合わせて未焼結多層セラミック体の厚さの30%以下となるように形成する工程と、前記基板用グリーンシートの焼成温度では焼結しない無機粒子を主成分とする拘束層を前記未焼結多層セラミック体の両面又は片面に設ける工程と、前記拘束層を設けた未焼結多層セラミック体を当該未焼結多層セラミック体の焼結する温度で焼結する工程と、焼成した後、当該多層セラミック体から前記拘束層を除去する工程とを具備し、前記焼結過程において少なくとも一つの前記断面略V字状の分割溝を、表面部より内部の方がやや膨らんだ断面略Ω状の溝となし、当該分割溝の深さ(m1)が両面合わせて焼結後の多層セラミック体の厚さの2/3以下となるように形成することを特徴とする多層セラミック集合基板の製造方法である。 The present invention provides a step of preparing a substrate green sheet made of a low-temperature sintered material containing ceramic, a step of forming a desired conductor pattern with a conductor paste on a desired green sheet of the substrate green sheet, A step of laminating and pressing a green sheet for a substrate having a conductor pattern appropriately formed to produce an unsintered multilayer ceramic body, and a cross section having a depth of 10 to 200 μm in both longitudinal and lateral directions of the unsintered multilayer ceramic body Forming a substantially V-shaped dividing groove so that the depth (m2) of the dividing groove is equal to or less than 30% of the thickness of the unsintered multilayer ceramic body; A step of providing a constraining layer mainly composed of inorganic particles that are not sintered at the firing temperature on both sides or one side of the unsintered multilayer ceramic body, and an unsintered multilayer ceramic provided with the constraining layer. A step of sintering the body at a temperature at which sintering of the non-sintered multilayer ceramic structure, after firing, comprising a step of removing the constraining layer from the multilayer ceramic body, at least one of the said sintering process the substantially V-shaped section of the dividing groove, the surface portion than the inside of it is slightly swelled cross section Ω-shaped groove and without, multilayer ceramic structure of the depth of the dividing groove (m1) is sintered to fit both sides It is formed so that it may become 2/3 or less of this thickness, The manufacturing method of the multilayer ceramic aggregate substrate characterized by the above-mentioned.

また本発明の多層セラミック集合基板の製造方法では、焼結前の分割溝の深さ(m2)の未焼結多層セラミック体の厚さに対する深さ率よりも焼結後の分割溝の深さ(m1)の焼結多層セラミック体の厚さに対する深さ率を大きくすることを特徴としている。In the method for producing a multilayer ceramic aggregate substrate of the present invention, the depth of the divided grooves after sintering is greater than the depth ratio of the depth (m2) of the divided grooves before sintering to the thickness of the unsintered multilayer ceramic body. The depth ratio of the (m1) to the thickness of the sintered multilayer ceramic body is increased.

本発明の多層セラミック集合基板の製造方法において、焼結前の未焼結多層セラミック体の厚さが0.34〜1.99mm、焼結後の焼結多層セラミック体の厚さが0.18〜1.07mmであることは望ましい。In the method for producing a multilayer ceramic aggregate substrate of the present invention, the thickness of the unsintered multilayer ceramic body before sintering is 0.34 to 1.99 mm, and the thickness of the sintered multilayer ceramic body after sintering is 0.18. It is desirable to be -1.07 mm.

本発明によれば、分割溝を形成した多層セラミック体のハンドリング性が良好であり、焼結後は分割がし易い分割溝となした多層セラミック集合基板及び多層セラミック集合基板の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the handling property of the multilayer ceramic body in which the division | segmentation groove | channel was formed is favorable, and the manufacturing method of the multilayer ceramic aggregate substrate which became the division | segmentation groove | channel which is easy to divide | segment after sintering is provided. be able to.

以下、本発明の多層セラミック集合基板および多層セラミック基板について製造方法を含めて説明する。
図1は多層セラミック集合基板の製造過程の一例を示す断面図である。工程順序や材料は一例を示しただけで、必ずしも下記である制約は無く、また複数の工程を同時に実施してもよい。場合によっては、不要となる工程は実施しない場合もある。図2は多層セラミック集合基板の斜視図の一例である。但し、多層セラミック基板の小片数は任意である。図3は多層セラミック集合基板の分割溝部分を示す断面図である。図4は分割溝に沿って分割した後の多層セラミック基板の分割溝部分を示す断面図である。
Hereinafter, the multilayer ceramic aggregate substrate and multilayer ceramic substrate of the present invention will be described including the manufacturing method.
FIG. 1 is a cross-sectional view showing an example of a manufacturing process of a multilayer ceramic aggregate substrate. The process sequence and materials are only examples, and are not necessarily limited as described below, and a plurality of processes may be performed simultaneously. In some cases, unnecessary steps may not be performed. FIG. 2 is an example of a perspective view of a multilayer ceramic aggregate substrate. However, the number of small pieces of the multilayer ceramic substrate is arbitrary. FIG. 3 is a cross-sectional view showing a dividing groove portion of the multilayer ceramic aggregate substrate. FIG. 4 is a cross-sectional view showing a divided groove portion of the multilayer ceramic substrate after being divided along the divided grooves.

図1に従って、多層セラミック集合基板の一実施例について説明する。まず、低温焼成可能なセラミック材料の粉末とガラス成分の粉末及び有機バインダ、可塑剤、溶剤の混合物からなるスラリーを有機キャリアフィルム(PETフィルム)上にドクターブレード法により適宜の厚さ、およそ20〜200μmに形成して、複数の基板用グリーンシート1a、1b、1cを準備する。尚、低温焼成可能なセラミックでなるグリーンシートの作製はドクターブレード法に限定されず、例えば圧延法、印刷法等によって作製することもできる。
また、用いる低温焼結可能なセラミック材料としては、800〜1000℃で銀などの導体ペーストと同時焼成できるセラミック材料であって、所謂LTCCセラミックスなら何でも使用できる。一例としては、主成分であるAl、Si、Sr、TiをそれぞれAl、SiO、SrO、TiOに換算したとき、Al:10〜60質量%、SiO:25〜60質量%、SrO:7.5〜50質量%、TiO:20質量%以下(0を含む)であり、その主成分100質量部に対して、副成分として、Bi、Na、K、Coの群のうちの少なくとも1種をBi換算で0.1〜10質量%、NaO換算で0.1〜5質量%、KO換算で0.1〜5質量%、CoO換算で0.1〜5質量%含有し、更に、Cu、Mn、Agの群のうちの少なくとも1種をCuO換算で0.01〜5質量%、MnO換算で0.01〜5質量%、Agを0.01〜5質量%含有し、その他不可避不純物を含有している混合物を一旦700℃〜850℃で仮焼し、これを粉砕して平均粒径0.6〜2μmの微粉砕粒子からなる誘電体磁器組成物を挙げることができる。
An embodiment of a multilayer ceramic aggregate substrate will be described with reference to FIG. First, a slurry made of a mixture of ceramic material powder, glass component powder, organic binder, plasticizer, and solvent, which can be fired at low temperature, is deposited on an organic carrier film (PET film) to an appropriate thickness by a doctor blade method, approximately 20 to A plurality of substrate green sheets 1a, 1b, and 1c are prepared to have a thickness of 200 μm. The production of the green sheet made of ceramic that can be fired at a low temperature is not limited to the doctor blade method, and can be produced by, for example, a rolling method or a printing method.
The ceramic material that can be sintered at a low temperature is a ceramic material that can be fired simultaneously with a conductive paste such as silver at 800 to 1000 ° C., and any so-called LTCC ceramic can be used. As an example, when Al, Si, Sr, and Ti, which are main components, are converted into Al 2 O 3 , SiO 2 , SrO, and TiO 2 , respectively, Al 2 O 3 : 10 to 60% by mass, SiO 2 : 25 to 25% 60% by mass, SrO: 7.5 to 50% by mass, TiO 2 : 20% by mass or less (including 0), Bi, Na, K, Co as subcomponents with respect to 100 parts by mass of the main component At least one of these groups is 0.1 to 10% by mass in terms of Bi 2 O 3 , 0.1 to 5% by mass in terms of Na 2 O, 0.1 to 5% by mass in terms of K 2 O, CoO contain 0.1 to 5 wt% in terms of further, Cu, Mn, 0.01 to 5 mass% of at least one kind selected from the group of Ag in terms of CuO, 0.01 to 5 mass% with MnO 2 in terms of , Containing 0.01 to 5% by mass of Ag and other inevitable impurities The compound once calcined at 700 ° C. to 850 ° C., can be mentioned which was triturated consisting milled particles having an average particle diameter of 0.6~2μm dielectric ceramic composition.

上記基板用グリーンシート1a、1b、1cに適宜ビアホールを作製し、ビアホールにAg等の導体ペーストでビア導体3を作製する。また所望の基板用グリーンシートの表面に同じ導体ペーストで導体パターン2を印刷により5〜35μm厚さに形成する。これらの導体パターンによりインダクタ、伝送線路、コンデンサ、グランド電極等を形成し、上記ビア導体により接続して適宜回路を構成する。尚、所望の基板用グリーンシートとは、多層セラミック基板の回路設計の必要に応じてビア導体3や導体パターン2を形成するグリーンシートをいう。この例では、全ての基板用グリーンシートにビア導体や導体パターンを形成した。   Via holes are appropriately formed in the substrate green sheets 1a, 1b, and 1c, and via conductors 3 are formed in the via holes with a conductor paste such as Ag. Further, the conductor pattern 2 is formed on the surface of the desired substrate green sheet with the same conductor paste to a thickness of 5 to 35 μm by printing. An inductor, a transmission line, a capacitor, a ground electrode, and the like are formed by these conductor patterns, and are connected by the via conductor to appropriately constitute a circuit. The desired substrate green sheet refers to a green sheet on which the via conductor 3 and the conductor pattern 2 are formed as required for circuit design of the multilayer ceramic substrate. In this example, via conductors and conductor patterns were formed on all the substrate green sheets.

次に、ビア導体3及び/又は導体パターン2を形成した複数の基板用グリーンシート1a、1b、1cをプレスによる圧着、キャリアフィルムの剥離工程を繰り返して積層し未焼結多層セラミック体7を作製する。
先ず、未焼結多層セラミック体7の表層となる基板用グリーンシート1aを、固定用フィルム上にセットし、上側の金型で所定の圧力、温度、時間でプレスし圧着する。例えば、圧力10〜50kg/cm、温度30〜60℃、時間3〜15秒である。熱圧着上下の金型はヒーターを内蔵した単純な平板形状でよい。プレスによる圧着が終わると、基板用グリーンシート1aのキャリアフィルムを剥離する。この時、グリーンシートは固定用フィルムに強固に固定されており、キャリアフィルムの剥離に際して一緒に剥離されることはない。
次に、第2層目の基板用グリーンシート1bを積層する。基板用グリーンシート1bには、内層に所定の内部回路を構成する導体パターン2が印刷されている。基板用グリーンシート1bの主面が第1層の基板用グリーンシート1aに当接するようにセットし、第1層の基板用グリーンシート1aの場合と同様に、プレスし圧着する。この時、プレス温度を印刷ペースト内の粘着剤が軟化固着する温度とすれば、加圧力により印刷部が相手側の基板用グリーンシートと接合する。従って、基板用グリーンシート同士は、印刷導体ペーストを介して結合される。また、電極が無くセラミック層同士が直接接触するところも、電極を介する場合と同様に軟化して固着し結合する。このときの圧着温度は粘着剤の種類にもよるが、通常40〜90℃程度の低温でよく、接合強度は加圧力を変えることにより調整できる。圧着後、基板用グリーンシート1bのキャリアフィルムを剥離する。第3層の基板用グリーンシート1c以降は、第2層目の基板用グリーンシート1bの積層で述べたものと同様な一連の作業を繰り返す。また、積層体を強力に一体化させるために、さらに圧着工程を行ってもよい。ここでは3層としているが、積層数は特定できず、回路構成によって異なり10層以上の未焼結多層セラミック体とする場合もある。
Next, a plurality of green sheets 1a, 1b, and 1c for substrates on which via conductors 3 and / or conductor patterns 2 are formed are laminated by repeating press bonding and carrier film peeling steps to produce an unsintered multilayer ceramic body 7. To do.
First, the substrate green sheet 1a which is the surface layer of the unsintered multilayer ceramic body 7 is set on a fixing film, and is pressed and pressure-bonded at a predetermined pressure, temperature and time with an upper mold. For example, the pressure is 10 to 50 kg / cm 2 , the temperature is 30 to 60 ° C., and the time is 3 to 15 seconds. The upper and lower molds for thermocompression bonding may have a simple flat plate shape with a built-in heater. When the press bonding is completed, the carrier film of the substrate green sheet 1a is peeled off. At this time, the green sheet is firmly fixed to the fixing film and is not peeled off together with the carrier film.
Next, a second-layer substrate green sheet 1b is laminated. On the green sheet for substrate 1b, a conductor pattern 2 constituting a predetermined internal circuit is printed on the inner layer. The main surface of the substrate green sheet 1b is set so as to be in contact with the first-layer substrate green sheet 1a, and is pressed and pressed in the same manner as in the case of the first-layer substrate green sheet 1a. At this time, if the pressing temperature is set to a temperature at which the adhesive in the printing paste is softened and fixed, the printing unit is bonded to the other substrate green sheet by the applied pressure. Therefore, the green sheets for substrates are bonded together via the printed conductor paste. In addition, where there is no electrode and the ceramic layers are in direct contact with each other, they are softened, fixed and bonded in the same way as when the electrodes are interposed. Although the pressure bonding temperature at this time depends on the type of the pressure-sensitive adhesive, it may be a low temperature of about 40 to 90 ° C., and the bonding strength can be adjusted by changing the pressure. After the pressure bonding, the carrier film of the substrate green sheet 1b is peeled off. After the third layer green sheet for substrate 1c, a series of operations similar to those described for the lamination of the second layer substrate green sheet 1b are repeated. Moreover, in order to integrate a laminated body strongly, you may perform a crimping | compression-bonding process further. Although the number of layers is three here, the number of laminated layers cannot be specified, and may vary depending on the circuit configuration and may be a non-sintered multilayer ceramic body of 10 layers or more.

この未焼結多層セラミック体の上下面(基板表面)に、適宜Agを主体とする導体ペーストを用いて、外部電極4、外部端子電極6を印刷形成する。さらに基板表面の導体パターン4、6の周囲にはオーバーコート材5を適宜形成する。このオーバーコート材の材質としては、焼結収縮特性や熱膨張特性が未焼結多層セラミック体の素材と近似していることが望ましい。例えば、基板用シートと同材質のスラリーにコート部分の視認性を向上するような機能を付与するための添加成分を加えたものが挙げられる。表面導体パターンの周縁にオーバーコートを被覆して電極被覆領域を形成することにより、表面の導体パターンの機械的保護と、後の工程で導体パターンの上に設けた半田が流れ出して導電部と接するなどの短絡防止ができる。尚、基体表面の導体パターンとオーバコート材は必ずしも未焼結多層セラミック体の状態で設ける必要はなく、焼結後の多層セラミック体に対して形成するのでも良い。   External electrodes 4 and external terminal electrodes 6 are printed on the upper and lower surfaces (substrate surfaces) of the unsintered multilayer ceramic body by using a conductive paste mainly composed of Ag as appropriate. Further, an overcoat material 5 is appropriately formed around the conductor patterns 4 and 6 on the substrate surface. As the material of this overcoat material, it is desirable that the sintering shrinkage characteristic and the thermal expansion characteristic are similar to the raw material of the unsintered multilayer ceramic body. For example, what added the addition component for providing the function which improves the visibility of a coat part to the slurry of the same material as a board | substrate sheet | seat is mentioned. By covering the periphery of the surface conductor pattern with an overcoat to form an electrode coating region, mechanical protection of the surface conductor pattern and solder provided on the conductor pattern in a later process flow out and contact the conductive portion Can prevent short circuit. The conductor pattern and the overcoat material on the surface of the substrate do not necessarily need to be provided in the state of an unsintered multilayer ceramic body, and may be formed on the sintered multilayer ceramic body.

次に、図5に示すように、上記未焼結多層セラミック体7の表面、通常は上面と下面の両面にナイフカッター等の治具により縦方向と横方向に交差する切り込み溝を形成し、分割溝14を形成する。この分割溝は、集合基板の大きさや製品基板のサイズによって分割数は異なるが、回路を構成する導体パターンに悪影響がでないように隣り合う基板同士が干渉しない位置、概ね2〜15mm程度の距離を置いて切り込み溝を入れる。この分割溝は通常V字型で溝の深さは0.01〜0.2mm程度と浅くしておく。深さは未焼結多層セラミック体の厚さによって異なるが、上下両面の溝深さの総和が未焼結多層セラミック体7の厚さの30%以下に収めるようにする。この深さが深いとカッターの型離れが悪く変形するし、焼結過程でクラックの起点となるので望ましくない。また、分割溝は両面でなく、上面か下面の何れか一方でも良い。
その後、CIP装置にて、100〜400kg/cm、85℃で熱圧着し、各層が一体化した未焼結多層セラミック体7となす(図1(a))。
Next, as shown in FIG. 5, cut grooves that intersect in the vertical and horizontal directions are formed on the surface of the unsintered multilayer ceramic body 7, usually both the upper and lower surfaces, by a jig such as a knife cutter, A dividing groove 14 is formed. Although the number of divisions of this dividing groove varies depending on the size of the collective substrate and the size of the product substrate, a position where adjacent substrates do not interfere with each other so as not to adversely affect the conductor pattern constituting the circuit, a distance of about 2 to 15 mm. Place it and make a notch. This dividing groove is usually V-shaped, and the depth of the groove is as shallow as about 0.01 to 0.2 mm. The depth varies depending on the thickness of the unsintered multilayer ceramic body, but the sum of the groove depths on the upper and lower surfaces is set to be 30% or less of the thickness of the unsintered multilayer ceramic body 7. If this depth is deep, the cutter will be unsatisfactory and will be deformed, and will be the starting point of cracks during the sintering process, which is not desirable. Further, the dividing groove may be either the upper surface or the lower surface instead of the both surfaces.
Then, it thermocompression-bonds at 100-400 kg / cm < 2 >, 85 degreeC with a CIP apparatus, and it is set as the unsintered multilayer ceramic body 7 with which each layer was integrated (FIG. 1 (a)).

一方で前記未焼結多層セラミック体7の焼成温度では焼結しない無機材料に有機バインダ、可塑剤、溶剤を加えたセラミックスラリーを作製し、これをドクターブレード法でキャリアフィルム上に所定厚(例えば100〜200μm)で拘束グリーンシートを作製する。拘束グリーンシートに用いるセラミック材料は、上記基板用グリーンシートに用いたガラスセラミック材料の焼成温度(800〜1000℃程度)では焼結しないもので未焼結多層セラミック体の表面を収縮させない機能があるものであればよい。無機材料としては様々な種類のアルミナが安価に入手できるのでアルミナを用いることが一般的である。また、有機バインダ、可塑剤、溶剤は基板用グリーンシートに用いたものと同様なものが使用可能である。
そして、上記未焼結多層セラミック体7の上面及び下面に、上記で用意した拘束グリーンシートを位置合わせして、その拘束用グリーンシートの厚さが200μm程度になるように積層し、CIP装置にて、100〜400kg/cm、85℃で熱圧着し拘束層と未焼結多層セラミック体を一体化した積層体を得る(図1(b))。
On the other hand, a ceramic slurry is prepared by adding an organic binder, a plasticizer, and a solvent to an inorganic material that is not sintered at the firing temperature of the unsintered multilayer ceramic body 7, and this is formed on a carrier film by a doctor blade method with a predetermined thickness (for example, 100 to 200 [mu] m) to produce a constrained green sheet. The ceramic material used for the constrained green sheet does not sinter at the firing temperature (about 800 to 1000 ° C.) of the glass ceramic material used for the substrate green sheet, and has the function of not shrinking the surface of the unsintered multilayer ceramic body. Anything is acceptable. As the inorganic material, various types of alumina are available at low cost, and therefore alumina is generally used. In addition, the same organic binder, plasticizer, and solvent as those used for the green sheet for the substrate can be used.
Then, the constrained green sheets prepared above are aligned on the upper and lower surfaces of the unsintered multilayer ceramic body 7 and laminated so that the thickness of the constraining green sheets is about 200 μm. Then, a laminated body in which the constraining layer and the unsintered multilayer ceramic body are integrated is obtained by thermocompression bonding at 100 to 400 kg / cm 2 and 85 ° C. (FIG. 1B).

次に、上記拘束層が一体化した積層体を焼成炉内で熱処理し拘束層のバインダーの脱気を適宜行いながら未焼結多層セラミック体が焼結する温度である800〜1000℃で一体焼成を行う。
焼成後、焼結した多層セラミック体の拘束層を超音波洗浄やブラスト処理等により取り除き、多層セラミック集合基板11を得る(図1(c))。
多層セラミック集合基板11の一例を図2に示す。このように大型の集合基板11には縦方向および横方向に分割溝14が形成されており、この分割溝に沿って破断して小片の多層セラミック基板を得ることができる。若しくは砥石カッターにより切断して多層セラミック基板を得ることができる。
Next, the laminated body in which the constraining layer is integrated is heat-treated in a firing furnace, and the unfired multilayer ceramic body is sintered at a temperature of 800 to 1000 ° C. while appropriately degassing the binder of the constraining layer. I do.
After firing, the constraining layer of the sintered multilayer ceramic body is removed by ultrasonic cleaning, blasting, or the like to obtain the multilayer ceramic aggregate substrate 11 (FIG. 1 (c)).
An example of the multilayer ceramic aggregate substrate 11 is shown in FIG. As described above, the large collective substrate 11 is formed with the dividing grooves 14 in the vertical direction and the horizontal direction, and can be broken along the dividing grooves to obtain a small multilayer ceramic substrate. Or it can cut | disconnect with a grindstone cutter and a multilayer ceramic substrate can be obtained.

このようにして得られた多層セラミック集合基板の分割溝部分の断面図を図3に示す。図3(a)は、本発明の実施例の一例であり、多層セラミック集合基板11の上下面に分割溝14が形成されている。この分割溝14は、断面が略U字状に形成されている。この分割溝14をより詳細に見ると、分割溝14の内部の構造が、基板表面部より内部の方がやや膨らんだ形状となっている。また図3(b)は、本発明の実施例の別の形態を示している。この実施例の分割溝14は、断面が略U字状に形成されている。この分割溝14を更に詳細に見ると、分割溝14の基板表面から底部に向けて、ほぼ直線状となっている部分を有している。   FIG. 3 shows a cross-sectional view of the dividing groove portion of the multilayer ceramic aggregate substrate thus obtained. FIG. 3A is an example of an embodiment of the present invention, and dividing grooves 14 are formed on the upper and lower surfaces of the multilayer ceramic aggregate substrate 11. The dividing groove 14 has a substantially U-shaped cross section. When the dividing groove 14 is viewed in more detail, the structure inside the dividing groove 14 has a shape in which the inside is slightly swollen from the surface portion of the substrate. Moreover, FIG.3 (b) has shown another form of the Example of this invention. The dividing groove 14 of this embodiment has a substantially U-shaped cross section. When the dividing groove 14 is seen in more detail, it has a substantially linear portion from the substrate surface to the bottom of the dividing groove 14.

本発明の分割溝の未焼結多層セラミック体に形成した分割溝の一例を図5に示したが、未焼結多層セラミック体7に形成した分割溝14は、略V字状の断面形状をしている。この分割溝14が未焼結多層セラミック体を焼結したのち、図3に示すような略U字状の分割溝14となるものである。
本発明では、この焼結により、分割溝14の深さの基板厚さに対する比率は大きくなることがわかり、未焼結多層セラミック体7の状態では、分割溝14の深さ(m2)は、上下面の分割溝を合わせ、未焼結多層セラミック体7の厚さ(l2)の30%以下に設定されている。つまり、本発明では、(m2×2)/l2が30%以下となるように構成されている。また、この未焼結多層セラミック体に形成する分割溝は、深さ0.2mm以下とすることが好ましい。あまり深いと、例え未焼結多層セラミック体の厚さが厚くても、セラミック体が変形するなど不具合を生じてしまう。そして、焼結後、分割溝14の深さ(m1)は、上下面の分割溝を合わせ、多層セラミック集合基板11の厚さ(l1)の2/3以下となるように構成している。
分割溝をこのようにして構成することにより、未焼結時には浅いV溝として、切り込み溝形成の作業性、ハンドリング性を高め、焼結後は未焼結時に比較し基板厚さに対して深いU字状溝とすることができ、これによって、上下の分割溝間の距離が近くなり、しかもU字型に広がることによって分割がし易く、ハンドリング性も良いものである。
An example of the dividing groove formed in the unsintered multilayer ceramic body of the dividing groove of the present invention is shown in FIG. 5, but the dividing groove 14 formed in the unsintered multilayer ceramic body 7 has a substantially V-shaped cross-sectional shape. is doing. After dividing the unsintered multilayer ceramic body, the dividing groove 14 becomes a substantially U-shaped dividing groove 14 as shown in FIG.
In the present invention, it can be seen that the ratio of the depth of the divided groove 14 to the substrate thickness is increased by this sintering. In the state of the unsintered multilayer ceramic body 7, the depth (m2) of the divided groove 14 is The dividing grooves on the upper and lower surfaces are combined and set to 30% or less of the thickness (l2) of the unsintered multilayer ceramic body 7. That is, in the present invention, (m2 × 2) / l2 is configured to be 30% or less. Moreover, it is preferable that the division | segmentation groove | channel formed in this unsintered multilayer ceramic body shall be 0.2 mm or less in depth . If the depth is too deep, problems such as deformation of the ceramic body occur even if the green multilayer ceramic body is thick. After the sintering, the depth (m1) of the dividing groove 14 is configured to be 2/3 or less of the thickness (l1) of the multilayer ceramic aggregate substrate 11 by combining the dividing grooves on the upper and lower surfaces.
By constructing the dividing grooves in this way, a shallow V-groove is formed when unsintered, so that the workability and handling properties of the cut groove formation are improved, and after sintering, the depth is deeper than the substrate thickness compared with the unsintered state. A U-shaped groove can be formed, whereby the distance between the upper and lower divided grooves is shortened, and the U-shaped groove spreads to facilitate division and good handling.

本発明の多層セラミック集合基板11を分割溝に沿って分割した多層セラミック基板の分割溝部分の断面図を図4に示す。図4(a)は、図3(a)の多層セラミック集合基板11を分割した実施例である。この実施例では、多層セラミック基板15の側面の上端部15a及び下端部15bには分割溝跡の切欠き部16を有し、前記分割溝跡の切欠き部16は、上端部15a、下端部15bよりも凹状となっている部分16aを有する。この凹状となっている部分16aとは、分割溝跡の切欠き部16において、基板の表面(上面又は下面)の端部(上端部15a又は下端部15b)から厚さ方向に垂線18を引いたとき、その垂線18より基板の内部方向(基板平面の中心方向)に窪んでいる部分のことである。
また図4(b)は、図3(b)の多層セラミック集合基板11を分割した実施例である。この実施例では、多層セラミック基板15の側面の上端部15a及び下端部15bには分割溝跡の切欠き部16を有し、この分割溝跡の切欠き部16は、前記上端部15a又は下端部15bから基板平面に対してほぼ垂直となっている部分16bを有している。
FIG. 4 shows a cross-sectional view of the divided groove portion of the multilayer ceramic substrate obtained by dividing the multilayer ceramic aggregate substrate 11 of the present invention along the divided grooves. FIG. 4A shows an embodiment in which the multilayer ceramic aggregate substrate 11 of FIG. 3A is divided. In this embodiment, the upper end portion 15a and the lower end portion 15b of the side surface of the multilayer ceramic substrate 15 have a notch portion 16 of a split groove trace, and the notch portion 16 of the split groove trace has an upper end portion 15a and a lower end portion. It has a portion 16a that is more concave than 15b. The concave portion 16a is a vertical line 18 drawn in the thickness direction from the end portion (upper end portion 15a or lower end portion 15b) of the surface (upper surface or lower surface) of the substrate in the cutout portion 16 of the split groove trace. In this case, the portion is recessed from the perpendicular 18 in the internal direction of the substrate (center direction of the substrate plane).
FIG. 4B shows an embodiment in which the multilayer ceramic aggregate substrate 11 of FIG. 3B is divided. In this embodiment, the upper end portion 15a and the lower end portion 15b of the side surface of the multilayer ceramic substrate 15 have a notch portion 16 of the split groove trace, and the notch portion 16 of the split groove trace is the upper end portion 15a or the lower end portion. A portion 16b that is substantially perpendicular to the substrate plane from the portion 15b is provided.

この実施例の分割した側面形状は、分割溝跡の切欠き部16を有しており、側面の中央部が凸になった段差形状に形成されている。このような凸状とすることによって、多層セラミック基板の側面の隅部の欠けや割れを防止することができる。このような側面は、多数個取りの際の分割によって形成されたもので、基板の1つの側面のみが分割によって形成された場合にはその1つの側面に、基板の2側面が分割によって形成された場合にはその2側面に、基板の3側面あるいは4側面が分割によって形成された場合にはその3側面あるいは4側面にこのような切欠き部を有している。   The divided side surface shape of this embodiment has a notch portion 16 of the division groove trace, and is formed in a step shape in which the central portion of the side surface is convex. By adopting such a convex shape, it is possible to prevent chipping or cracking at the corners of the side surface of the multilayer ceramic substrate. Such a side surface is formed by dividing a large number of pieces. When only one side surface of the substrate is formed by dividing, two side surfaces of the substrate are formed by dividing the one side surface. In the case where the three side surfaces or the four side surfaces of the substrate are formed by division on the two side surfaces, the notches are formed on the three side surfaces or the four side surfaces.

Al:48質量%、SiO:38質量%、SrO:10質量%、TiO:4質量%、さらに主成分100質量部に対して、Bi:2.5質量%、NaO:2質量%、KO:0.5質量%、CuO:0.3質量%、MnO:0.5質量%の組成のセラミック材を800℃×2時間で仮焼きし、これを微粉砕した平均粒径約1μmのセラミック粉100質量部に対して有機バインダとしてPVBを15質量部、可塑剤としてDOP(フタル酸ビス(2-エチルヘキシル))を10質量部加えて、更に溶剤として、エタノールとブタノールの混合物を使用し、ボールミルにて20時間分散した。得られたスラリーを、減圧下にて脱泡し一部溶剤を揮発させて、ドクターブレード法にてシート成形した。得られた基体用グリーンシートを、キャリアフィルムと一緒に所定の大きさに裁断し、所定の導体パターンをAgペーストにてスクリーン印刷して形成した。前記基体用グリーンシートの各層を順次、位置合わせ後、約50℃、圧力40kg/cm(3.9MPa)で熱圧着し、仮圧着状態の積層体を得た。その後、ナイフカッターにより積層体の表面に表1に示す分割溝を形成した。その後、表層導体パターンやオーバコート材を形成し、CIP装置にて100Kg/cm(9.8MPa)、85℃で熱圧着し、各層が一体化した未焼結多層セラミック体を得た。未焼結多層セラミック体の厚さは表1に示す。 Al 2 O 3 : 48% by mass, SiO 2 : 38% by mass, SrO: 10% by mass, TiO 2 : 4% by mass, Bi 2 O 3 : 2.5% by mass with respect to 100 parts by mass of the main component, A ceramic material having a composition of Na 2 O: 2% by mass, K 2 O: 0.5% by mass, CuO: 0.3% by mass, MnO 2 : 0.5% by mass was calcined at 800 ° C. for 2 hours, 15 parts by mass of PVB as an organic binder and 10 parts by mass of DOP (bis (2-ethylhexyl phthalate)) as a plasticizer are added to 100 parts by mass of finely pulverized ceramic powder having an average particle size of about 1 μm. A mixture of ethanol and butanol was used as a solvent, and the mixture was dispersed in a ball mill for 20 hours. The obtained slurry was defoamed under reduced pressure to partially volatilize the solvent, and formed into a sheet by the doctor blade method. The obtained green sheet for a substrate was cut into a predetermined size together with a carrier film, and a predetermined conductor pattern was formed by screen printing with an Ag paste. Each layer of the green sheet for the substrate was sequentially aligned, and then thermocompression bonded at about 50 ° C. and a pressure of 40 kg / cm 2 (3.9 MPa) to obtain a laminate in a temporarily pressed state. Then, the division | segmentation groove | channel shown in Table 1 was formed in the surface of the laminated body with the knife cutter. Then, a surface layer conductor pattern and an overcoat material were formed, and thermocompression bonded at 100 Kg / cm 2 (9.8 MPa) and 85 ° C. with a CIP device to obtain an unsintered multilayer ceramic body in which the layers were integrated. The thickness of the unsintered multilayer ceramic body is shown in Table 1.

次に、拘束グリーンシートとして、平均粒径1.5μmのアルミナ粉100質量部に対して有機バインダとしてPVBを5質量部、可塑剤としてDOPを3質量部加えて、更に溶剤として、エタノールとブタノールの混合物を使用して、ボールミルにて10時間分散した。得られたスラリーを、減圧下にて脱泡し一部溶剤を揮発させて、ドクターブレード法にてシート成形した。得られた拘束用グリーンシートを、キャリアフィルムから剥離し、上記未焼結多層セラミック体と同一な大きさに裁断した。この拘束用グリーンシートを未焼結多層セラミック体の両面に対しCIP装置にて120kg/cm(11.8Mpa)、85℃で熱圧着し、拘束層と未焼結多層セラミック体を一体化した。拘束層の厚さは表1に示す。
この積層体を脱バインダを行い、900℃で2時間保持し焼結体となした。この焼結体の拘束層を除去し、超音波洗浄を行い、残存アルミナを除去して、多層セラミック集合基板を得た。
その後、分割溝の切り込みに沿って破断するか、あるいは砥石で切断することにより、小片の多層セラミック基板を得た。多層セラミック基板と取れ数は90個であった。
Next, as a constrained green sheet, 5 parts by mass of PVB as an organic binder and 3 parts by mass of DOP as a plasticizer are added to 100 parts by mass of alumina powder having an average particle size of 1.5 μm, and ethanol and butanol as solvents. And the mixture was dispersed in a ball mill for 10 hours. The obtained slurry was defoamed under reduced pressure to partially volatilize the solvent, and formed into a sheet by the doctor blade method. The obtained constraining green sheet was peeled from the carrier film and cut into the same size as the unsintered multilayer ceramic body. This constraining green sheet was thermocompression bonded to both sides of the unsintered multilayer ceramic body with a CIP device at 120 kg / cm 2 (11.8 Mpa) at 85 ° C., and the constraining layer and the unsintered multilayer ceramic body were integrated. . The thickness of the constraining layer is shown in Table 1.
The laminate was debindered and held at 900 ° C. for 2 hours to obtain a sintered body. The constrained layer of the sintered body was removed, ultrasonic cleaning was performed, and residual alumina was removed to obtain a multilayer ceramic aggregate substrate.
Then, the multilayer ceramic substrate of the small piece was obtained by fracture | rupturing along the notch | incision of a division groove | channel, or cut | disconnecting with a grindstone. There were 90 multilayer ceramic substrates.

評価項目は、未焼結多層セラミック体に形成した分割溝用の切り込み溝形成時の作業性を良好(○)あるいは悪い(×)で評価し、焼結後の多層セラミック集合基板の分割溝の形態と、取れ数90個に対する破断のし易さを良好(○)あるいは悪い(×)で評価し、側面の割れや欠け等の欠陥状況を無し(○)あるいは有り(×)で評価し、焼結後のハンドリング性を、焼成後にすでに割れていたもの、あるいは、焼成後の洗浄時(治具へのセット時あるいは、超音波洗浄時)に割れてしまったものを(×)、割れてないもの(○)として評価した。
以上の結果を表1に示す。
The evaluation item is to evaluate the workability at the time of forming the cut groove for the split groove formed in the unsintered multilayer ceramic body with good (○) or bad (×), and the split groove of the multilayer ceramic aggregate substrate after sintering. Evaluate the form and ease of breakage for 90 pieces with good (○) or bad (×), and evaluate the defect status such as cracks or chips on the side with (○) or with (×), The handling properties after sintering are those that were already cracked after firing, or those that were cracked during cleaning after firing (when set to a jig or ultrasonic cleaning). Evaluated as no (○).
The results are shown in Table 1.

Figure 0004110536
Figure 0004110536

表1の結果によれば、試料番号6は、分割溝用の切り込み溝の深さは、両面合わせて未焼結多層セラミック体の厚さの28%であり、切り込み溝の作業性は良好であったが、焼結後の分割溝の深さが、両面合わせて多層セラミック集合基板の厚さの80%となり、2/3より大きく、焼結後のハンドリング性が悪く、割れが多く発生し、好ましくなかった。
試料番号7、8は、分割溝用の切り込み溝の深さ及び焼結後の分割溝の深さは良好であったが、焼結後の分割溝の形状がV字状となっており、分割し易さの評価が好ましくなかった。
According to the results in Table 1, in sample No. 6, the depth of the cut groove for the dividing groove is 28 % of the thickness of the unsintered multilayer ceramic body on both sides, and the workability of the cut groove is good. However, the depth of the divided groove after sintering is 80% of the thickness of the multilayer ceramic aggregate substrate on both sides, which is larger than 2/3, the handling property after sintering is poor, and many cracks occur. It was not preferable.
In Sample Nos. 7 and 8, the depth of the cut groove for the divided groove and the depth of the divided groove after sintering were good, but the shape of the divided groove after sintering was V-shaped, Evaluation of easiness of division was not preferable.

試料番号9は、分割溝用の切り込み溝の深さは、両面合わせて未焼結多層セラミック体の厚さの33%であり、深過ぎたため、この切り込み溝形成作業時の作業性が好ましくなかった。この作業性の悪さとしては、セラミック体に押し込んだ刃を持ち上げる際に、刃だけではなくセラミック体まで一緒に持ち上げられてしまうことがあり、このような状態となると、セラミック体の変形につながり、好ましくない。この切り込み溝の深さについては、セラミック体の厚さとも関係があり、試料番号17のように、分割溝用の切り込み溝の深さが、両面合わせて未焼結多層セラミック体の厚さの35%であっても、切り込み溝形成作業時の作業性が良好な場合もある。これは、分割溝用の切り込み溝の深さが0.06mmであり、未焼結多層セラミック体の厚さに対しては深いものの、実数として深すぎない(0.2mm以下)ことにより、切り込み溝形成作業時の作業性が良好であったものである。つまり、30%を超えても、この点の評価は良好な場合がある。しかし、この試料番号17では、焼結後の分割溝の深さが、両面合わせて多層セラミック集合基板の厚さの78%となり、2/3より大きく、焼結後のハンドリング性が悪く、割れが多く発生し、結果的には好ましくなかった。   In sample No. 9, the depth of the cut groove for the split groove is 33% of the thickness of the unsintered multilayer ceramic body on both sides, and is too deep, so the workability during the cut groove forming operation is not preferable. It was. As this poor workability, when lifting the blade pushed into the ceramic body, not only the blade but also the ceramic body may be lifted together, and in such a state, it leads to deformation of the ceramic body, It is not preferable. The depth of the cut groove is also related to the thickness of the ceramic body. As shown in Sample No. 17, the depth of the cut groove for the divided groove is equal to the thickness of the unsintered multilayer ceramic body. Even if it is 35%, the workability during the cut groove forming work may be good. This is because the depth of the cut groove for the split groove is 0.06 mm, which is deeper than the thickness of the unsintered multilayer ceramic body, but is not too deep as a real number (0.2 mm or less). The workability during the groove forming work was good. That is, even if it exceeds 30%, the evaluation of this point may be good. However, in Sample No. 17, the depth of the divided groove after sintering is 78% of the thickness of the multilayer ceramic aggregate substrate on both sides, which is larger than 2/3, the handling property after sintering is poor, and cracks are present. As a result, it was not preferable.

試料番号10、11は、分割溝用の切り込み溝の深さは、両面合わせて未焼結多層セラミック体の厚さの43%、65%であり、深過ぎたため、この切り込み溝形成作業時の作業性が好ましくなかった。
試料番号22は、分割溝用の切り込み溝の深さは、両面合わせて未焼結多層セラミック体の厚さの25%であったが、実際の切り込み深さが一つの切り込み溝において0.25mmと、深さ自体が大きく、切り込み溝形成作業時の作業性が好ましくなかった。また、焼結後の分割溝の深さが、両面合わせて多層セラミック集合基板の厚さの75%となり、2/3より大きく、焼結後のハンドリング性が悪く、割れが多く発生し、好ましくなかった。
In Sample Nos. 10 and 11, the depth of the cut groove for the split groove was 43% and 65% of the thickness of the unsintered multilayer ceramic body in both sides, which was too deep. Workability was not preferable.
In Sample No. 22, the depth of the cut groove for the split groove was 25% of the thickness of the unsintered multilayer ceramic body on both sides, but the actual cut depth was 0.25 mm in one cut groove. In addition, the depth itself is large, and workability at the time of forming the cut groove is not preferable. Further, the depth of the divided groove after sintering is 75% of the thickness of the multilayer ceramic aggregate substrate on both sides, which is larger than 2/3, the handling property after sintering is poor, and many cracks are generated. There wasn't.

この結果から、分割溝用の切り込み溝の深さが、両面合わせて未焼結多層セラミック体の厚さの30%以下であり、多層セラミック集合基板の分割溝の深さが、両面合わせて多層セラミック集合基板の厚さの2/3以下とし、分割溝の断面形状が略U字状とすることによって、分割溝用の切り込み溝の作業性が良好であり、焼結後のハンドリング性が良好であり、分割し易く、欠け/割れがなく、多層セラミック基板を得ることができる。また、このとき、分割溝用の切り込み溝の深さは0.2mm以下であることが望ましい。
以上により本発明によれば良好な多層セラミック基板が得られることが分かった。
From this result, the depth of the cut groove for the split groove is 30% or less of the thickness of the unsintered multilayer ceramic body on both sides, and the depth of the split groove on the multilayer ceramic aggregate substrate is multilayer on both sides. When the thickness of the ceramic aggregate substrate is 2/3 or less and the sectional shape of the dividing groove is substantially U-shaped, the workability of the cutting groove for the dividing groove is good and the handling property after sintering is good. It is easy to divide and there is no chipping / cracking, and a multilayer ceramic substrate can be obtained. At this time, the depth of the cut groove for the dividing groove is preferably 0.2 mm or less.
From the above, it was found that a good multilayer ceramic substrate can be obtained according to the present invention.

本発明の多層セラミック集合基板の一実施例を示し、その製造過程と共に説明する図である。It is a figure which shows one Example of the multilayer ceramic aggregate substrate of this invention, and demonstrates with the manufacture process. 本発明の多層セラミック集合基板の一例を示す斜視図である。It is a perspective view which shows an example of the multilayer ceramic aggregate substrate of this invention. 本発明の多層セラミック集合基板の分割溝部分の断面図である。It is sectional drawing of the division groove part of the multilayer ceramic aggregate substrate of this invention. 本発明の多層セラミック基板の分割溝部分の断面図である。It is sectional drawing of the division groove part of the multilayer ceramic substrate of this invention. 本発明の未焼結多層セラミック体の分割溝用の切り込み溝部分の断面図である。It is sectional drawing of the notch groove part for the division grooves of the non-sintered multilayer ceramic body of this invention.

符号の説明Explanation of symbols

1a〜1c:セラミックグリーンシート
2:内部電極
3:ビアホール
4:外部電極
5:オーバーコート層
6:外部端子電極
7:未焼結多層セラミック体
8:シート状上面拘束層
9:シート状下面拘束層
10:拘束層を設けた未焼結多層セラミック体(積層体)
11:多層セラミック集合基板
14:分割溝
15:多層セラミック基板
16:分割溝跡の切欠き部
DESCRIPTION OF SYMBOLS 1a-1c: Ceramic green sheet 2: Internal electrode 3: Via hole 4: External electrode 5: Overcoat layer 6: External terminal electrode 7: Unsintered multilayer ceramic body 8: Sheet-like upper surface constrained layer 9: Sheet-like lower surface constrained layer 10: Unsintered multilayer ceramic body (laminated body) provided with a constraining layer
11: Multilayer ceramic aggregate substrate 14: Divided groove 15: Multilayer ceramic substrate 16: Notch portion of the divided groove trace

Claims (5)

セラミックを含む低温焼結材からなる基板用グリーンシートを積層した未焼結多層セラミック体の両面又は片面縦横方向に断面略V字状の分割溝を形成し、前記基板用グリーンシートの焼成温度では焼結しない無機粒子を主成分とする拘束層を前記未焼結多層セラミック体の両面又は片面に設け、前記拘束層を設けた未焼結多層セラミック体を当該未焼結多層セラミック体の焼結する温度で焼結し、焼成後の多層セラミック体から前記拘束層を除去してなる多層セラミック集合基板であって、前記多層セラミック集合基板の少なくとも一つの分割溝が表面部より内部の方がやや膨らんだ断面略Ω状であることを特徴とする多層セラミック集合基板。 A non-sintered multilayer ceramic body formed by laminating a green sheet for a substrate made of a low-temperature sintered material containing ceramic is formed with split grooves having a substantially V-shaped cross section in the longitudinal and lateral directions on one side , and the firing temperature of the green sheet for a substrate Then, a constraining layer mainly composed of inorganic particles that are not sintered is provided on both sides or one side of the unsintered multilayer ceramic body, and the unsintered multilayer ceramic body provided with the constraining layer is sintered on the unsintered multilayer ceramic body. A multilayer ceramic aggregate substrate obtained by sintering at a sintering temperature and removing the constraining layer from the fired multilayer ceramic body , wherein at least one dividing groove of the multilayer ceramic aggregate substrate is more inside than the surface portion. A multi-layer ceramic aggregate substrate characterized by having a slightly swollen cross section and a substantially Ω shape. 前記断面略Ω状の分割溝の深さが、両面合わせて当該多層セラミック集合基板の厚さの2/3以下であることを特徴とする請求項1に記載の多層セラミック集合基板。2. The multilayer ceramic aggregate substrate according to claim 1, wherein a depth of the divisional groove having a substantially Ω-shaped cross section is 2/3 or less of a thickness of the multilayer ceramic aggregate substrate in total on both surfaces. セラミックを含む低温焼結材よりなる基板用グリーンシートを準備する工程と、
前記基板用グリーンシートのうち、所望のグリーンシートに導体ペーストで所望の導体パターンを形成する工程と、
前記導体パターンを適宜形成した基板用グリーンシートを積層、圧着して未焼結多層セラミック体を作製する工程と、
前記未焼結多層セラミック体の両面又は片面の縦横方向に深さ10〜200μmの断面略V字状の分割溝を、当該分割溝の深さ(m2)が両面合わせて未焼結多層セラミック体の厚さの30%以下となるように形成する工程と、
前記基板用グリーンシートの焼成温度では焼結しない無機粒子を主成分とする拘束層を前記未焼結多層セラミック体の両面又は片面に設ける工程と、
前記拘束層を設けた未焼結多層セラミック体を当該未焼結多層セラミック体の焼結する温度で焼結する工程と、
焼成した後、当該多層セラミック体から前記拘束層を除去する工程とを具備し、
前記焼結過程において少なくとも一つの前記断面略V字状の分割溝を、表面部より内部の方がやや膨らんだ断面略Ω状の溝となし、当該分割溝の深さ(m1)が両面合わせて焼結後の多層セラミック体の厚さの2/3以下となるように形成することを特徴とする多層セラミック集合基板の製造方法。
Preparing a green sheet for a substrate made of a low-temperature sintered material containing ceramic;
Of the green sheets for the substrate, forming a desired conductor pattern with a conductor paste on a desired green sheet;
Laminating a green sheet for a substrate having the conductor pattern appropriately formed, and pressing to produce a green multilayer ceramic body,
The green and sintered multilayer ceramic structure of both surfaces or one surface depth substantially V-shaped section of the dividing groove of 10~200μm in vertical and horizontal direction, the depth of the dividing groove (m2) and the combined two-sided non-sintered multilayer ceramic structure Forming to be 30% or less of the thickness of
Providing a constraining layer mainly composed of inorganic particles that are not sintered at the firing temperature of the substrate green sheet on both sides or one side of the unsintered multilayer ceramic body;
Sintering the unsintered multilayer ceramic body provided with the constraining layer at a temperature at which the unsintered multilayer ceramic body is sintered;
After firing, removing the constraining layer from the multilayer ceramic body,
At least one of said substantially V-shaped section of the dividing groove in the sintering process, the inside of it is slightly swelled cross section Ω-shaped groove and without the surface portion, the depth of the dividing groove (m1) is double-sided alignment A method for producing a multilayer ceramic aggregate substrate, characterized in that the multilayer ceramic body is formed to be 2/3 or less of the thickness of the multilayer ceramic body after sintering.
焼結前の分割溝の深さ(m2)の未焼結多層セラミック体の厚さに対する深さ率よりも焼結後の分割溝の深さ(m1)の焼結多層セラミック体の厚さに対する深さ率を大きくすることを特徴とする請求項3に記載の多層セラミック集合基板の製造方法。The depth of the divided groove depth (m1) after sintering is greater than the depth ratio of the depth of the divided groove (m2) before sintering to the thickness of the sintered multilayer ceramic body. 4. The method of manufacturing a multilayer ceramic aggregate substrate according to claim 3, wherein the depth ratio is increased. 焼結前の未焼結多層セラミック体の厚さが0.34〜1.99mm、焼結後の焼結多層セラミック体の厚さが0.18〜1.07mmであることを特徴とする請求項3又は4に記載の多層セラミック集合基板の製造方法。The thickness of the unsintered multilayer ceramic body before sintering is 0.34 to 1.99 mm, and the thickness of the sintered multilayer ceramic body after sintering is 0.18 to 1.07 mm. Item 5. The method for producing a multilayer ceramic aggregate substrate according to Item 3 or 4.
JP2005281211A 2005-09-28 2005-09-28 Multilayer ceramic aggregate substrate and method for producing multilayer ceramic aggregate substrate Active JP4110536B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005281211A JP4110536B2 (en) 2005-09-28 2005-09-28 Multilayer ceramic aggregate substrate and method for producing multilayer ceramic aggregate substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005281211A JP4110536B2 (en) 2005-09-28 2005-09-28 Multilayer ceramic aggregate substrate and method for producing multilayer ceramic aggregate substrate

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2007274573A Division JP4645962B2 (en) 2007-10-23 2007-10-23 Multilayer ceramic substrate

Publications (2)

Publication Number Publication Date
JP2007095862A JP2007095862A (en) 2007-04-12
JP4110536B2 true JP4110536B2 (en) 2008-07-02

Family

ID=37981216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005281211A Active JP4110536B2 (en) 2005-09-28 2005-09-28 Multilayer ceramic aggregate substrate and method for producing multilayer ceramic aggregate substrate

Country Status (1)

Country Link
JP (1) JP4110536B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5347950B2 (en) * 2009-12-24 2013-11-20 株式会社デンソー Manufacturing method of ceramic substrate
JP5818654B2 (en) * 2011-11-22 2015-11-18 京セラ株式会社 Multi-cavity wiring board, wiring board and electronic device
CN115073148B (en) * 2022-07-21 2023-08-08 瓷金科技(河南)有限公司 Ceramic packaging base and preparation method thereof

Also Published As

Publication number Publication date
JP2007095862A (en) 2007-04-12

Similar Documents

Publication Publication Date Title
KR100451949B1 (en) Method for manufacturing multilayer ceramic substrates
JP6214930B2 (en) Multilayer wiring board
KR100989342B1 (en) Method for manufacturing ceramic multilayer substrate
JP4507012B2 (en) Multilayer ceramic substrate
KR100451955B1 (en) Method of manufacturing ceramic multi-layer substrate, and unbaked composite laminated body
KR20060112591A (en) Multi-layer ceramic substrate, method for manufacturing the same and electronic device using the same
US6942833B2 (en) Ceramic multilayer substrate manufacturing method and unfired composite multilayer body
US20030062111A1 (en) Method of manufacturing glass ceramic multilayer substrate
EP2120522A1 (en) Method for the production of laminated ceramic electronic parts
JP4110536B2 (en) Multilayer ceramic aggregate substrate and method for producing multilayer ceramic aggregate substrate
JP4565383B2 (en) Multilayer ceramic substrate with cavity and method for manufacturing the same
JP4645962B2 (en) Multilayer ceramic substrate
JP4496529B2 (en) Multilayer ceramic substrate manufacturing method and multilayer ceramic substrate
JP4595199B2 (en) Manufacturing method of multilayer ceramic substrate
JP2007221115A (en) Manufacturing method of conductor paste and multilayer ceramic substrate
JP2006108483A (en) Multilayered ceramic board having cavity and its manufacturing method
US8241449B2 (en) Method for producing ceramic body
JP2005268692A (en) Method for manufacturing multilayer substrate
JP5051513B2 (en) Manufacturing method of multilayer ceramic aggregate substrate
JP2003347730A (en) Ceramic multilayer substrate fabricating method
KR101292040B1 (en) Manufacturing method of low teperature co-fired ceramics substrate
JP2008124108A (en) Multilayer ceramic collective board, multilayer ceramic board, and manufacturing method for multilayer ceramic collective board
JP2002290040A (en) Method of manufacturing ceramic board
JP3748400B2 (en) Manufacturing method of glass ceramic substrate
JP2006303437A (en) Multilayer ceramic substrate and its manufacturing method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4110536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350