JPH04331007A - Ceramic cutting tool - Google Patents

Ceramic cutting tool

Info

Publication number
JPH04331007A
JPH04331007A JP6090391A JP6090391A JPH04331007A JP H04331007 A JPH04331007 A JP H04331007A JP 6090391 A JP6090391 A JP 6090391A JP 6090391 A JP6090391 A JP 6090391A JP H04331007 A JPH04331007 A JP H04331007A
Authority
JP
Japan
Prior art keywords
cutting
base material
sintered body
nitride
ceramic sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6090391A
Other languages
Japanese (ja)
Inventor
Hideki Moriguchi
秀樹 森口
Toshio Nomura
俊雄 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP6090391A priority Critical patent/JPH04331007A/en
Publication of JPH04331007A publication Critical patent/JPH04331007A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To enable cutting of a highly hard material at high efficiency and for extended time by combining a specified base material with coated layers to increase the toughness of the base material ceramics and reduce the coefficient of friction. CONSTITUTION:An alumina ceramic sintered body containing at least one compound, selected from Ti carbide, nitride, carbon nitride or carbon nitrogen oxide of 10 to 50 in weight%, in an Al2O3 matrix is used as a base material. Coating layers of Ti carbide, nitride or carbon nitride, or combinations theirof of 0.2 to 10mum in total thickness are formed on the surface of the base material by PVD or CVD method. A surface compressive residual stress produced on the coated layers increases the toughness of the ceramic sintered body and, since a coefficient of friction of the coated layers is smaller than that of the surface of the ground ceramic sintered body, exhaust of metal chip is smooth to reduce cutting resistance.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高硬度材料を高能率で
切削できるアルミナ系セラミックス切削工具に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an alumina ceramic cutting tool capable of cutting highly hard materials with high efficiency.

【0002】0002

【従来の技術】合金工具鋼等の高硬度材料、特にロック
ェルC硬度(HRC)で50以上又はビッカース硬度(
HV)で500Kgf/mm2以上の高硬度材料は、機
械加工が極めて難しく、特に通常の超硬合金等の切削工
具では殆ど切削できないほど切削加工が困難である。
[Prior Art] High hardness materials such as alloy tool steels, especially Rockwell C hardness (HRC) of 50 or more or Vickers hardness (
High hardness materials with a hardness of 500 Kgf/mm2 or more are extremely difficult to machine, especially to the extent that they can hardly be cut with cutting tools such as ordinary cemented carbide.

【0003】従来、かかる高硬度材料の切削には、立方
晶窒化ホウ素(CBN)焼結体からなる切削工具、又は
黒セラと称されるAl2O3−TiC系セラミックス焼
結体初めとするアルミナ系焼結体からなる切削工具が用
いられていた。
Conventionally, for cutting such high-hardness materials, cutting tools made of cubic boron nitride (CBN) sintered bodies or alumina-based sintered bodies such as Al2O3-TiC ceramic sintered bodies called black ceramics have been used. Cutting tools made of solids were used.

【0004】しかし、CBN焼結体切削工具は、その製
造プロセスに超高圧超高温を必要とすることから、超硬
合金切削工具に比べて価格が極めて高価であり、又製造
できる工具の形状にも大幅な制限が加わる等の欠点があ
つた。一方、黒セラ切削工具は安価であり工具形状にも
かなりの自由度があるものの、実際に高硬度材料を切削
すると靭性の不足が目立ち、チッピングやフレーキング
が発生しやすい等、安定した切削を行うことが難しいの
が現実であつた。
However, since CBN sintered cutting tools require ultra-high pressure and ultra-high temperature in the manufacturing process, they are extremely expensive compared to cemented carbide cutting tools, and the shapes of the tools that can be manufactured are limited. However, there were also drawbacks such as significant limitations. On the other hand, although black ceramic cutting tools are inexpensive and have considerable flexibility in tool shape, when actually cutting high-hardness materials, the lack of toughness is noticeable and chipping and flaking are likely to occur, making stable cutting difficult. The reality is that it is difficult to do so.

【0005】この様に、高硬度材料の切削が困難になる
のは切削抵抗の三分力のうち背分力が非常に大きくなる
ためと考えられ、従って安価ではあるが耐欠損性に不安
のある黒セラ等のアルミナ系セラミックス焼結体切削工
具については、その強度及び靭性を改善向上させること
が必要とされている。
[0005] As described above, it is thought that the reason why it becomes difficult to cut high-hardness materials is that the thrust force among the three components of the cutting force becomes extremely large. There is a need to improve the strength and toughness of certain alumina-based ceramic sintered cutting tools such as black ceramics.

【0006】そこで従来、Al2O3−TiC系等のA
l2O3系セラミックス焼結体について、HIP処理に
よりAl2O3結晶粒子及びTiC粒子の粒径を小さく
する方法(特公平1−22223号公報)、或はNb、
V、Zr、Ta、Hf等を金属又は酸化物の形で添加し
、TiCを均一微細に分散させて焼結体強度を向上させ
る方法(特公昭63−35587号公報)が提案されて
いる。これらの方法により、焼結体中に存在するポアを
無くして強度及び硬度を向上させることは可能になった
が、背分力が特に大きくなる高硬度材料の切削において
は尚その強度及び耐摩耗性が十分とはいえない。
[0006] Conventionally, therefore, A
A method of reducing the grain size of Al2O3 crystal particles and TiC particles by HIP treatment for l2O3-based ceramic sintered bodies (Japanese Patent Publication No. 1-22223), or Nb,
A method has been proposed in which the strength of the sintered body is improved by adding V, Zr, Ta, Hf, etc. in the form of metals or oxides to uniformly and finely disperse TiC (Japanese Patent Publication No. 63-35587). These methods have made it possible to eliminate pores in the sintered body and improve its strength and hardness. I can't say it's sexual enough.

【0007】上記方法以外に、切削工具のすくい面をラ
ッピングして切粉の排出を容易にすることにより、切削
抵抗の低減を図る方法も取られている。又、ブレーカー
を設ける等して切削抵抗を低減する方法も当然考えられ
るが、セラミックス切削工具では強度面での不安があり
且つ製造上の制約もあるため普及していない。
[0007] In addition to the above method, there is also a method of lapping the rake face of a cutting tool to facilitate the discharge of chips to reduce cutting resistance. Naturally, it is possible to reduce the cutting resistance by installing a breaker, etc., but this method is not widely used because ceramic cutting tools have concerns about their strength and are also subject to manufacturing constraints.

【0008】[0008]

【発明が解決しようとする課題】本発明はかかる従来の
事情に鑑み、本質的にAl2O3−TiC系等の低価格
のアルミナ系セラミックス焼結体からなり、HRCで5
0以上又はHVで500Kgf/mm2以上の高硬度材
料を高能率で且つ長寿命で切削することの出来るセラミ
ックス切削工具を提供することを目的とする。
Problems to be Solved by the Invention In view of the above-mentioned conventional circumstances, the present invention essentially consists of a low-cost alumina-based ceramic sintered body such as Al2O3-TiC system, and has an HRC rating of 5.
It is an object of the present invention to provide a ceramic cutting tool that can cut high-hardness materials of 0 or more or 500 Kgf/mm2 or more at HV with high efficiency and long life.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
、本発明のセラミックス切削工具においては、Al2O
3マトリックス中に10〜50重量%のTiの炭化物、
窒化物、炭窒化物又は炭窒酸化物から選ばれた少なくと
も1つの化合物を含有したアルミナ系セラミックス焼結
体の母材と、該母材の表面に設けたTiの炭化物、窒化
物又は炭窒化物若しくはこれらの組み合わせからなる合
計膜厚0.2〜10μmの被覆層とを備えたことを特徴
とする。
[Means for Solving the Problems] In order to achieve the above object, in the ceramic cutting tool of the present invention, Al2O
3 10-50% by weight of Ti carbide in the matrix,
A base material of an alumina ceramic sintered body containing at least one compound selected from nitride, carbonitride, or carbonitride, and Ti carbide, nitride, or carbonitride provided on the surface of the base material. It is characterized by comprising a coating layer having a total thickness of 0.2 to 10 μm consisting of a material or a combination thereof.

【0010】0010

【作用】本発明では、上記特定の母材と被覆層との組み
合わせにより、被覆層に生ずる表面圧縮残留応力が母材
であるAl2O3系セラミックス焼結体の靭性を向上さ
せ、且つ被覆層の摩擦係数が研削された従来のAl2O
3−TiC系等のセラミックス焼結体表面の摩擦係数よ
りも小さいため、切粉の排出が良く切削抵抗が軽減され
る。その結果、本発明のセラミックス切削工具は高硬度
材料切削用として靭性及び耐摩耗性に優れ、従来の被覆
層を有しないAl2O3−TiC系焼結体等からなるセ
ラミックス切削工具に比べ数倍の寿命で、能率的に安定
した切削を行うことが出来る。
[Function] In the present invention, by combining the specific base material and the coating layer, the surface compressive residual stress generated in the coating layer improves the toughness of the Al2O3 ceramic sintered body, which is the base material, and reduces the friction of the coating layer. Conventional Al2O with modulus ground
Since it is smaller than the friction coefficient of the surface of a ceramic sintered body such as 3-TiC, chips can be easily discharged and cutting resistance can be reduced. As a result, the ceramic cutting tool of the present invention has excellent toughness and wear resistance for cutting high-hardness materials, and has a service life several times longer than conventional ceramic cutting tools made of Al2O3-TiC-based sintered bodies that do not have a coating layer. This enables efficient and stable cutting.

【0011】特に、被覆層の最外層は、被覆層が単層で
あっても複層であっても、TiNとすることが好ましい
。TiNはTiC及びTiCNに比べて摩擦係数が小さ
く、高硬度材料切削時の切削抵抗を軽減する効果が大き
いからである。
In particular, the outermost layer of the covering layer is preferably made of TiN, whether the covering layer is a single layer or a multilayer. This is because TiN has a smaller coefficient of friction than TiC and TiCN, and is more effective in reducing cutting resistance when cutting high-hardness materials.

【0012】母材となるアルミナ系セラミックス焼結体
は、Al2O3のマトリックス中にTiの炭化物、窒化
物、炭窒化物又は炭窒酸化物から選ばれた少なくとも1
つの化合物を含有したものである。これらのAl2O3
系セラミックス焼結体は、強度並びに硬度が高く従来か
ら高硬度材料の切削工具として使用されていたものであ
る。しかし、本発明の切削工具の母材として用いるため
には、Ti炭化物、窒化物、炭窒化物又は炭窒酸化物の
添加量が10重量%未満では焼結体の強度及び硬度が低
く、又50重量%を越えると焼結性が悪くなるので、1
0〜50重量%の範囲とする。
[0012] The alumina ceramic sintered body serving as the base material contains at least one Ti carbide, nitride, carbonitride, or carbonitride of Ti in a matrix of Al2O3.
It contains two compounds. These Al2O3
BACKGROUND ART Ceramic sintered bodies have high strength and hardness, and have traditionally been used as cutting tools for high-hardness materials. However, if the amount of Ti carbide, nitride, carbonitride or carbonitride added is less than 10% by weight, the strength and hardness of the sintered body will be low, or If it exceeds 50% by weight, sinterability will deteriorate, so 1
The range is 0 to 50% by weight.

【0013】尚、母材となる上記焼結体の製造方法は公
知であり、所定割合に混合した原料粉末組成物を150
0〜1900℃程度の温度で焼結すれば良い。焼結法と
してはホットプレス法が好ましいが、普通焼結法やHI
P法を採用することも出来る。又、焼結に際しては、添
加物としてNiO、Y2O3、MgO等の公知の焼結助
剤を用いて良いことは当然である。
[0013] The method for manufacturing the above-mentioned sintered body serving as the base material is known, and the raw material powder composition mixed in a predetermined ratio is
Sintering may be performed at a temperature of about 0 to 1900°C. The hot press method is preferred as the sintering method, but ordinary sintering and HI
It is also possible to adopt the P method. Furthermore, during sintering, it is a matter of course that known sintering aids such as NiO, Y2O3, MgO, etc. may be used as additives.

【0014】上記母材表面に設ける被覆層は、Tiの炭
化物、窒化物又は炭窒化物の単層か、若しくはこれらを
組み合わせた複層からなる。単層又は複層いずれの場合
であつても、被覆層の合計膜厚は0.2〜10μmの範
囲とする。その理由は、0.2μm未満の膜厚では靭性
や耐摩耗性の向上効果か小さく、10μmを越えると被
覆層自体の靭性が低下するからである。
[0014] The coating layer provided on the surface of the base material consists of a single layer of Ti carbide, nitride or carbonitride, or a multilayer combination of these. Regardless of whether it is a single layer or a multilayer, the total thickness of the coating layer is in the range of 0.2 to 10 μm. The reason for this is that if the film thickness is less than 0.2 μm, the effect of improving toughness and wear resistance will be small, and if it exceeds 10 μm, the toughness of the coating layer itself will decrease.

【0015】上記被覆層の形成には、公知のPVD法や
CVD法などの物理的又は化学的な気相からの析出によ
る皮膜形成方法を利用することが出来る。
[0015] To form the above-mentioned coating layer, a film forming method by physical or chemical deposition from a gas phase, such as a known PVD method or CVD method, can be used.

【0016】[0016]

【実施例】平均粒径0.4μmのAl2O3粉末に平均
粒径1.0μmのTiC粉末を30体積%混合し、この
混合粉末を黒鉛ダイスに充填した後、アルゴンガス中に
おいて30MPaの圧力の下に1650℃で1時間ホッ
トプレス焼結して、型番SNGN120408の切削チ
ップ形状の焼結体を製造した。
[Example] Al2O3 powder with an average particle size of 0.4 μm is mixed with 30% by volume of TiC powder with an average particle size of 1.0 μm. After filling this mixed powder into a graphite die, it is placed under a pressure of 30 MPa in argon gas. Hot press sintering was performed at 1650° C. for 1 hour to produce a sintered body in the shape of a cutting tip with model number SNGN120408.

【0017】得られたAl2O3−TiC焼結体を母材
とし、その表面に通常のPVD法により表1に示す被覆
層をそれぞれ形成して、切削チップA〜G(但し、切削
チップFとGは比較例)を作製した。又、被覆層を形成
せず、Al2O3−TiC焼結体のみからなる切削チッ
プH(比較例)も準備した。
The obtained Al2O3-TiC sintered body was used as a base material, and the coating layers shown in Table 1 were formed on its surface by the usual PVD method, and cutting chips A to G (however, cutting chips F and G (Comparative example) was prepared. In addition, a cutting tip H (comparative example) consisting of only an Al2O3-TiC sintered body without forming a coating layer was also prepared.

【0018】次に、各切削チップA〜Hを用い、下記条
件での切削試験を行った。 切削条件:被 削 材…SKD11(HRC 60)切
削速度…100m/min. 送    り…0.1mm/rev. 切り込み…1.0mm ホルダー…FN11R44A 切 削 油…乾式 切削時間…10min.
Next, a cutting test was conducted under the following conditions using each of the cutting tips A to H. Cutting conditions: Work material...SKD11 (HRC 60) Cutting speed...100m/min. Feed…0.1mm/rev. Depth of cut…1.0mm Holder…FN11R44A Cutting oil…Dry cutting time…10min.

【0019】上記切削試験において、各切削チップの被
覆層の剥離状態を観察し、又試験後の各切削チップにつ
いてフランク摩耗幅を測定し、表1に切削試験結果とし
て併せて記載した。
In the above cutting test, the peeling state of the coating layer of each cutting tip was observed, and the flank wear width was measured for each cutting tip after the test, and the results are also listed in Table 1 as the cutting test results.

【0020】[0020]

【表1】[Table 1]

【0021】[0021]

【発明の効果】本発明によれば、HRCで50以上又は
HVで500Kgf/mm2以上の高硬度材料を高能率
で且つ長寿命で切削できる、高靭性で耐摩耗性に優れた
低価格のセラミックス切削工具を提供することが出来る
[Effects of the Invention] According to the present invention, a low-cost ceramic with high toughness and excellent wear resistance is capable of cutting high-hardness materials with HRC of 50 or more or HV of 500 Kgf/mm2 or more with high efficiency and long life. Cutting tools can be provided.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  Al2O3マトリックス中に10〜5
0重量%のTiの炭化物、窒化物、炭窒化物又は炭窒酸
化物から選ばれた少なくとも1つの化合物を含有したア
ルミナ系セラミックス焼結体の母材と、該母材の表面に
設けたTiの炭化物、窒化物又は炭窒化物若しくはこれ
らの組み合わせからなる合計膜厚0.2〜10μmの被
覆層とを備えたことを特徴とするセラミックス切削工具
Claim 1: 10 to 5 in the Al2O3 matrix
A base material of an alumina ceramic sintered body containing 0% by weight of at least one compound selected from Ti carbide, nitride, carbonitride, or carbonitride, and a Ti provided on the surface of the base material. A ceramic cutting tool comprising: a coating layer having a total thickness of 0.2 to 10 μm and consisting of carbide, nitride, carbonitride, or a combination thereof.
【請求項2】  被覆層の最外層がTiNであることを
特徴とする、請求項1記載のセラミックス切削工具。
2. The ceramic cutting tool according to claim 1, wherein the outermost layer of the coating layer is TiN.
JP6090391A 1991-02-08 1991-02-08 Ceramic cutting tool Pending JPH04331007A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6090391A JPH04331007A (en) 1991-02-08 1991-02-08 Ceramic cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6090391A JPH04331007A (en) 1991-02-08 1991-02-08 Ceramic cutting tool

Publications (1)

Publication Number Publication Date
JPH04331007A true JPH04331007A (en) 1992-11-18

Family

ID=13155785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6090391A Pending JPH04331007A (en) 1991-02-08 1991-02-08 Ceramic cutting tool

Country Status (1)

Country Link
JP (1) JPH04331007A (en)

Similar Documents

Publication Publication Date Title
JP3866305B2 (en) Composite high hardness material for tools
US4406668A (en) Nitride coated silicon nitride cutting tools
CA1309622C (en) Alumina coated silicon carbide whisker-alumina composition
JPS61101482A (en) Silicon nitride cutting tool
JP2011068960A (en) Surface-coated member
JP2011093003A (en) Surface-coated member
JPH0196084A (en) Surface-coated cubic boron nitride-based material sintered under superhigh pressure to be used for cutting tool
JPH0569205A (en) Ceramic cutting tool
JP4069749B2 (en) Cutting tool for roughing
JPS644988B2 (en)
JPS644989B2 (en)
JPH0271906A (en) Surface coated tungsten carbide base sintered hard alloy made cutting tool excellent in plastic deformation resistance
JPS5918157A (en) Aluminum oxide ceramic for cutting tool
JPH04331007A (en) Ceramic cutting tool
JPH07136810A (en) Ceramic tool for cutting very hard material
JP2849055B2 (en) Sialon-based sintered body and coated sintered body
JP2982359B2 (en) Cemented carbide with excellent wear and fracture resistance
JPH10310878A (en) Cutting tool made of surface-coated cemented carbide having hard coating layer excellent in wear resistance
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JP3519324B2 (en) Ceramic sintered body and coated ceramic sintered body
JP2001114562A (en) Sintered ceramic part and coated sintered ceramic part
JPS61197469A (en) Manufacture of cubic boron nitride base sintering material for cutting tool
JPH02116691A (en) Surface-coated ceramic cutting tool having excellent wear resistance
JP4428805B2 (en) Aluminum oxide-containing composite ceramic sintered body and coated composite ceramic sintered body
JP2000202705A (en) Throwaway cutting tip making its cutting edge piece display excellent cutting edge chipping resistance