JPH04330702A - Rare-earth permanent magnet of excellent corrosion resistance - Google Patents

Rare-earth permanent magnet of excellent corrosion resistance

Info

Publication number
JPH04330702A
JPH04330702A JP2314643A JP31464390A JPH04330702A JP H04330702 A JPH04330702 A JP H04330702A JP 2314643 A JP2314643 A JP 2314643A JP 31464390 A JP31464390 A JP 31464390A JP H04330702 A JPH04330702 A JP H04330702A
Authority
JP
Japan
Prior art keywords
rare earth
rich phase
carbon
permanent magnet
corrosion resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2314643A
Other languages
Japanese (ja)
Other versions
JP3066806B2 (en
Inventor
Masanobu Shimao
正信 島尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2314643A priority Critical patent/JP3066806B2/en
Publication of JPH04330702A publication Critical patent/JPH04330702A/en
Application granted granted Critical
Publication of JP3066806B2 publication Critical patent/JP3066806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To improve the corrosion resistance of the title magnet by a method wherein a texture in a sintered body is constituted of the following: a ferromagnetic main phase; a nonmagnetic B-rich phase; and a nonmagnetic R-rich phase in which the intermetallic compound by rare-earth elements and by carbon is smaller than a specific amount. CONSTITUTION:A permanent magnet alloy composed of the following is formed as a sintered body: rare-earth elements R; boron B; and iron as their residual part. Out of them, the magnetic alloy component R contains 10 to 25 atomic % of one or more kinds out of individual rare-earth element. B is at 1 to 20 atomic %; Fe is used as the residual part excluding the R and the B. A ferromagnetic main phase is composed of R2Fe14B; a nonmagnetic B-rich phase is composed of R1+nFe4B4 [where (n)=0 to 0.5]; and a nonmagnetic R-rich phase is composed of Fe whose content is within a range of 0 to 10wt.%. The intermetallic compound by R and by C in the nonmagnetic R-rich phase is suppressed to 1.0wt.% or lower. Thereby, the corrosion resistance of the title magnet is improved, and it is possible to prevent the density of the sintered body from being lowered.

Description

【発明の詳細な説明】 (産業上の利用分野)  本発明は、電気、電子分野に有用な希土類永久磁石に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a rare earth permanent magnet useful in the electrical and electronic fields.

(従来の技術)  R−Fe−B系希土類永久磁石は、R−Co系希土類
永久磁石より高い磁気特性を有し、最大エネルギー積(
以下、(BH)maxで示す)で見ると基本組成である
Nd15Fe77B8で35MGOeまでに達し、組成
改良したものの量産レベルで37MGOeの磁石が提供
されている。現在(BH)max40MGOe以上の高
特性磁石が開発されつつあり、R−Co系磁石で得られ
る33MGOeを大きく上回っている。また、Feの一
部をCoで置換することによりキュリー温度が向上する
こと、Al、Bi、Zr、Hf、V、W、Mo、Cr、
Ta、Sb、Ge、Nb、Ni、Ti、Snなどの添加
によりiHcが向上することが知られている。このよう
な高特性を有するR−Fe−B系希土類永久磁石でも粉
末状態の磁石原料粉は非常に酸化され易く、インゴット
を粉砕して希土類磁石の原料粉末を調整する場合、酸化
防止のため粉砕工程を窒素のような非酸化性ガス中、あ
るいはアルゴンのような不活性ガス中、もしくはヘキサ
ンのような有機溶剤中で実施しなければならないという
不利があった。らにこれらR−Fe−B系永久磁石合金
焼結体は化学的に不安定であることが知られており、R
−Co系希土類永久磁石に較べて錆を発生し易い欠点を
有していた。
(Prior art) R-Fe-B rare earth permanent magnets have higher magnetic properties than R-Co rare earth permanent magnets, and have a maximum energy product (
(hereinafter referred to as (BH)max), the basic composition of Nd15Fe77B8 reaches up to 35 MGOe, and although the composition has been improved, magnets of 37 MGOe are provided at the mass production level. Currently, high-performance magnets with (BH) max of 40 MGOe or more are being developed, which greatly exceeds the 33 MGOe obtained with R-Co magnets. In addition, the Curie temperature is improved by replacing a part of Fe with Co, Al, Bi, Zr, Hf, V, W, Mo, Cr,
It is known that addition of Ta, Sb, Ge, Nb, Ni, Ti, Sn, etc. improves iHc. Even with R-Fe-B rare earth permanent magnets that have such high properties, the magnet raw material powder in powder form is very easily oxidized. The disadvantage was that the process had to be carried out in a non-oxidizing gas such as nitrogen, or in an inert gas such as argon, or in an organic solvent such as hexane. Furthermore, these R-Fe-B permanent magnet alloy sintered bodies are known to be chemically unstable, and R
-Co-based rare earth permanent magnets have the disadvantage of being more prone to rust.

(発明が解決しようとする課題)  前述の欠点を解消するために、合成樹脂を磁石表面に
塗装する方法や、Ni、Cuなどの金属元素をメッキす
る方法などが採られている。しかし、磁石素地自体の耐
蝕性は改善されないため、表面処理のみではおのずと限
界があり、必ずしも満足できる方法ではなかった。
(Problems to be Solved by the Invention) In order to eliminate the above-mentioned drawbacks, methods such as coating the magnet surface with synthetic resin and plating with metal elements such as Ni and Cu have been adopted. However, since the corrosion resistance of the magnet base itself is not improved, surface treatment alone has its limits, and is not always a satisfactory method.

本発明の目的はこれら磁石自体の耐蝕性を改善するため
に、磁石内部の組織を改良することにより耐蝕性の優れ
た永久磁石を提供することにある。
An object of the present invention is to provide permanent magnets with excellent corrosion resistance by improving the structure inside the magnets in order to improve the corrosion resistance of these magnets themselves.

(課題を解決するための手段)  本発明者は、このような問題を解決するために磁石組
成について研究を重ねた結果、不純物炭素が希土類元素
−炭素の金属間化合物を形成し、これが酸化を促進し、
磁石劣化の原因となっていることを突止め、炭素混入防
止策を検討して本発明を完成させた。本発明の要旨は、 希土類元素R10〜25原子%(ここにRはNdを含む
希土類元素の内少なくとも1種もしくは2種以上の希土
類元素)、ボロンB1〜20原子%、及び残部が鉄から
なる永久磁石合金の焼結体中の組織が、強磁性主相R2
Fe14B、非磁性Bリッチ相および非磁性Rリッチ相
の3相組織であり、かつ非磁性Rリッチ相の組織中の希
土類元素と炭素との金属間化合物R−Cが1.0重量%
以下であることを特徴とする耐蝕性に優れた希土類永久
磁石にある。
(Means for Solving the Problem) As a result of repeated research on magnet composition in order to solve such problems, the present inventor found that impurity carbon forms a rare earth element-carbon intermetallic compound, which causes oxidation. promote,
They discovered that this was the cause of magnet deterioration, studied measures to prevent carbon from being mixed in, and completed the present invention. The gist of the present invention is that: 10 to 25 atomic % of a rare earth element R (here, R is at least one or two or more rare earth elements including Nd), 1 to 20 atomic % of boron B, and the balance is iron. The structure in the sintered body of the permanent magnet alloy is a ferromagnetic main phase R2
It has a three-phase structure of Fe14B, a non-magnetic B-rich phase and a non-magnetic R-rich phase, and the intermetallic compound R-C of rare earth elements and carbon in the structure of the non-magnetic R-rich phase is 1.0% by weight.
A rare earth permanent magnet with excellent corrosion resistance is characterized by:

以下、本発明を詳細に説明する。The present invention will be explained in detail below.

本発明の希土類鉄系永久磁石の組成は、希土類元素R(
但し、RはNdを含む希土類元素のうち少なくとも1種
以上の希土類元素)とボロン(B)および残部が鉄(F
e)からなる永久磁石含金の焼結体であって、先ず、磁
石合金成分Rとしては、Ndを含むY,La,Ce,P
r,Pm,Sm,Eu,Gd,Tb,Dy,Ho,Er
,Tm、YbおよびLuの各希土類元素の内少なくとも
1種以上の希土類元素を10〜25原子%含有すること
が必要で、10原子%未満では磁石焼結体中の粒子の配
向を乱すα−Feの析出が起こり、25原子%を越える
と実用的な磁束密度が得られない。Bは1〜20原子%
を必須要件とし、1原子%未満では軟磁性相のR2Fe
17化合物が析出し、磁気特性が低下し、20原子%を
越えると非磁性R1Fe4B4の析出により充分な磁束
密度が得られない。これらR、Bを除く残部はFeとす
れば良く、FeをCo、Al、Nb、Zr、Mo、Ga
、Ti、V、Ni、Si、Bi、Hf、W、Cr、Ta
、Sb、Ge、Sn等から選択される少なくとも1種以
上の元素で0〜20原子%置換すること、およびO、N
、H、Cl、F、S等の混入が不可避な不純物を含むこ
とは磁気特性を損なわない限り任意である。また、強磁
性主相はR2Fe14B、非磁性Bリッチ相はR1+n
Fe4B4(ここにn=0〜0.5)、非磁性Rリッチ
相はFe含有量が0〜10重量%の範囲とされる。
The composition of the rare earth iron-based permanent magnet of the present invention is the rare earth element R (
However, R is at least one rare earth element (including Nd), boron (B), and the balance is iron (F
e) is a permanent magnet metal-containing sintered body consisting of Y, La, Ce, and P containing Nd as the magnet alloy component R.
r, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er
, Tm, Yb, and Lu, it is necessary to contain 10 to 25 at% of at least one rare earth element, and if it is less than 10 at%, the α- Precipitation of Fe occurs, and if it exceeds 25 atomic %, a practical magnetic flux density cannot be obtained. B is 1 to 20 atomic%
is an essential requirement, and if it is less than 1 atomic %, the soft magnetic phase of R2Fe
17 compounds are precipitated and the magnetic properties are deteriorated, and if it exceeds 20 atomic %, a sufficient magnetic flux density cannot be obtained due to the precipitation of non-magnetic R1Fe4B4. The remainder excluding R and B may be Fe, and Fe can be replaced by Co, Al, Nb, Zr, Mo, Ga.
, Ti, V, Ni, Si, Bi, Hf, W, Cr, Ta
, Sb, Ge, Sn, etc. by 0 to 20 atomic % substitution, and O, N
, H, Cl, F, S, etc., are optional as long as they do not impair the magnetic properties. In addition, the ferromagnetic main phase is R2Fe14B, and the non-magnetic B-rich phase is R1+n
Fe4B4 (where n=0 to 0.5), the nonmagnetic R-rich phase has an Fe content in the range of 0 to 10% by weight.

R−Fe−B系永久磁石合金は、希土類元素やその他原
料元素に含まれる不純物により、磁石焼結体に様々な影
響を受けることが知られてきた。特に原料元素とする希
土類金属中に含まれる不純物の炭素、その他原料元素で
ある鉄、ボロン元素中に含まれる炭素が多量に混入する
と、保磁力を著しく低下させたり、焼結時に焼結体の密
度を上昇させにくいことが判つた。
It has been known that the magnet sintered body of R-Fe-B permanent magnet alloys is affected in various ways by impurities contained in rare earth elements and other raw material elements. In particular, if a large amount of carbon, an impurity contained in rare earth metals used as raw material elements, or carbon contained in iron or boron elements, which are raw material elements, is mixed in a large amount, the coercive force may be significantly reduced, or the sintered body may deteriorate during sintering. It was found that it was difficult to increase the density.

本発明者は、不純物炭素が希土類永久磁石に与える影響
について、詳細に研究を重ねた結果、不純物炭素が多量
に混入した場合、磁石焼結体中の非磁性Rリッチ相中に
は、鉄を含むRリッチ相と炭素を含むRリッチ相とに分
離して存在していることを見出した。この炭素を含むR
リッチ相を電子線微小探針分析装置により分析した結果
、希土類元素と炭素との金属間化合物R−Cを形成して
おり、その量的なものは焼結体中全炭素含有量に比例し
て増加する傾向にある。この金属間化合物は、原料イン
ゴット中には殆ど観測されず、焼結後の熱処理中に生成
することも判った。さらにこの金属間化合物の耐蝕性を
調べるため磁石の環境試験を行なった結果、この相が優
先的に腐食されること、その腐食は急激に起こることも
判明した。
As a result of detailed research into the influence of impurity carbon on rare earth permanent magnets, the inventor found that when a large amount of impurity carbon is mixed, iron is removed from the non-magnetic R-rich phase in the magnet sintered body. It has been found that an R-rich phase containing carbon and an R-rich phase containing carbon exist separately. R containing this carbon
As a result of analyzing the rich phase using an electron beam microprobe analyzer, it was found that an intermetallic compound R-C was formed between rare earth elements and carbon, and its quantity was proportional to the total carbon content in the sintered body. There is a tendency to increase. It was also found that this intermetallic compound was hardly observed in the raw material ingot and was generated during the heat treatment after sintering. Furthermore, as a result of conducting environmental tests on magnets to investigate the corrosion resistance of this intermetallic compound, it was found that this phase is preferentially corroded and that the corrosion occurs rapidly.

従って、この相が磁石焼結体中に析出することにより磁
石素地自体の耐蝕性に大きく関与しており、耐蝕性を著
しく低下させる最大の要因であることが判明した。
Therefore, it has been found that the precipitation of this phase in the magnet sintered body greatly contributes to the corrosion resistance of the magnet base itself, and is the biggest factor in significantly reducing the corrosion resistance.

本発明は、このような問題点を希土類磁石の原料となる
元素の不純物、特には炭素濃度を所定の限度以下に抑え
た希土類元素、遷移金属元素およびボロンなどを選択す
ることによって解決した。
The present invention solves these problems by selecting impurities in the elements used as raw materials for rare earth magnets, particularly rare earth elements, transition metal elements, boron, etc. whose carbon concentration is suppressed to below a predetermined limit.

この不純物炭素の混入許容量は、磁石の環境試験の結果
、非磁性Rリッチ相の組織中の希土類元素と炭素との金
属間化合物を1.0重量%以下に抑える必要があること
から計算して決定され、永久磁石合金組成中の炭素含有
量を0.04重量%以下に抑えることによって耐蝕性が
著しく改善され、焼結体密度の低下も防止できた。
The allowable amount of impurity carbon is calculated based on the fact that the intermetallic compound of rare earth elements and carbon in the structure of the nonmagnetic R-rich phase must be suppressed to 1.0% by weight or less as a result of the magnet's environmental test. By suppressing the carbon content in the permanent magnet alloy composition to 0.04% by weight or less, corrosion resistance was significantly improved and a decrease in sintered body density was also prevented.

従って、出発元素に含まれる炭素量は、希土類金属では
低炭素のもので0.02重量%、高炭素のもので0.0
8重量%程度以下のものが好ましく、フェロボロンを用
いるならば、高炭素のもので約2重量%、低炭素のもの
で約0.2重量%程度のものを選択する必要がある。ま
た、電解鉄は約0.01重量%以下の含有量なので極め
て好ましい。さらに、微粉砕後の磁場中プレス成形時に
は、成形体の磁場配向性を改善するために炭素を含んだ
潤滑剤を磁石微粉に混練し用いられる場合があり、この
量も考慮して原料元素中炭素量を抑える必要がある。
Therefore, the amount of carbon contained in the starting element is 0.02% by weight for low carbon rare earth metals and 0.0% by weight for high carbon ones.
It is preferably about 8% by weight or less, and if ferroboron is used, it is necessary to select a high carbon material of about 2% by weight and a low carbon material of about 0.2% by weight. Also, electrolytic iron is highly preferred since it has a content of about 0.01% by weight or less. Furthermore, during press forming in a magnetic field after pulverization, a lubricant containing carbon is sometimes mixed into the magnet fine powder to improve the magnetic field orientation of the compact. It is necessary to reduce the amount of carbon.

これら永久磁石材料は、公知の粉末冶金法によって製造
される。即ち、原料元素インゴットの溶解、粉砕、磁界
中成形、熱処理、加工の工程を経由する。原料元素イン
ゴットの溶解は、アルゴンまたは真空中で高周波溶解し
、希土類元素は最後に投入する。得られた磁石合金イン
ゴットの粉砕は粗粉砕と微粉砕にわかれ、粗粉砕はスタ
ンプミル、ジョークラッシャー、ブラウンミル等で、微
粉砕はジェットミル、ボールミル等で行なわれる。いず
れも酸化を防ぐために、非酸化性の雰囲気中で行なうが
、有機溶剤や不活性ガスも用いられる。成形は金型プレ
ス成形により、磁場中で行なわれ、この成形体を真空中
、アルゴン、窒素などの不活性ガスあるいは非酸化性雰
囲気中で1,000〜1,200℃の範囲内の所定の温
度に30〜120分間保持して焼結し、さらに、その後
350℃〜焼結温度の範囲内で、30分間〜4時間熱処
理することにより耐蝕性に優れた希土類永久磁石を得る
ことができる。
These permanent magnet materials are manufactured by known powder metallurgy methods. That is, the raw material element ingot is melted, pulverized, formed in a magnetic field, heat treated, and processed. The raw material element ingot is melted by high frequency in argon or vacuum, and the rare earth element is added last. The obtained magnetic alloy ingot is pulverized into coarse pulverization and fine pulverization. Coarse pulverization is performed using a stamp mill, jaw crusher, brown mill, etc., and fine pulverization is performed using a jet mill, ball mill, etc. In order to prevent oxidation, both are carried out in a non-oxidizing atmosphere, and organic solvents and inert gases are also used. Molding is carried out in a magnetic field by press molding, and the molded body is heated at a predetermined temperature within the range of 1,000 to 1,200°C in a vacuum, an inert gas such as argon or nitrogen, or a non-oxidizing atmosphere. A rare earth permanent magnet with excellent corrosion resistance can be obtained by holding the magnet at a temperature of 30 to 120 minutes for sintering, and then heat-treating the magnet at a temperature of 350° C. to sintering temperature for 30 minutes to 4 hours.

以下、本発明の具体的実施態様を実施例と比較例を挙げ
て説明するが、本発明はこれらに限定されるものではな
い。
Hereinafter, specific embodiments of the present invention will be described with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

(実施例1、比較例1)  出発原料として、純度99.7重量%以上のNd、こ
こで炭素含有量は0.082重量%及び0.412重量
%の2種類のものを用い、純度99.9重量%の電解鉄
、純度99.5重量%のボロンを使用した。これら原料
を高周波溶解し、その後鋳型に鋳造し、Nd15Fe7
7B8なる組成のインゴットを得た。得られたインゴッ
トの炭素含有量は、非分散型赤外線法の分析結果から、
それぞれ0.030重量%(実施例1とする)、0.1
41重量%(比較例1とする)であつた。このインゴッ
トをジョークラッシャー、ブラウンミルで32メッシュ
以下に粗粉砕し、その後ジェットミルにより窒素気流中
で微粉砕し、平均粒径3μm程度の原料磁石粉を得た。
(Example 1, Comparative Example 1) As a starting material, two types of Nd with a purity of 99.7% by weight or more, with a carbon content of 0.082% by weight and 0.412% by weight, were used. .9% by weight of electrolytic iron and 99.5% by weight of boron were used. These raw materials are high-frequency melted, then cast into a mold, and Nd15Fe7
An ingot having a composition of 7B8 was obtained. The carbon content of the obtained ingot was determined from the analysis results of the non-dispersive infrared method.
0.030% by weight (as Example 1) and 0.1%, respectively
It was 41% by weight (referred to as Comparative Example 1). This ingot was coarsely crushed to 32 mesh or less using a jaw crusher and a brown mill, and then finely crushed using a jet mill in a nitrogen stream to obtain raw material magnet powder with an average particle size of about 3 μm.

次いで粉末冶金法により磁石焼結体を得た。成形は金型
プレス成形により、磁場中で行なわれ、20mmW×3
0mml×10mmt、見掛け密度4.0gr/ccの
成形体を得た。次にこの成形体を真空中で1,100℃
に60分間保持して焼結し、さらに、その後600℃で
120分間熱処理することにより希土類永久磁石を得た
。これら2種類の炭素含有量をもつ焼結体を電子線微小
探針分析装置を用いてRリッチ相を観察したところ、比
較例1はRリッチ相に多量のR−C金属間化合物と少量
のFeを含むRリッチ相が観察され、実施例1について
はFeを含むRリッチ相のみが観察された。その写真を
図1に実施例1を、図2に比較例1を示す。ここで、(
a)は組成像、(b)は炭素のX線像である。この写真
を説明すると、(a)組成像のコントラストはその相の
平均原子番号が大きいと白くなり、小さいと黒く見える
Next, a magnet sintered body was obtained by a powder metallurgy method. The molding was carried out in a magnetic field by mold press molding, and the size was 20 mmW x 3.
A molded body having a size of 0 mml×10 mm and an apparent density of 4.0 gr/cc was obtained. Next, this molded body was heated to 1,100°C in a vacuum.
The magnet was held at 600° C. for sintering, and then heat treated at 600° C. for 120 minutes to obtain a rare earth permanent magnet. When the R-rich phase of the sintered bodies with these two types of carbon contents was observed using an electron beam microprobe analyzer, it was found that Comparative Example 1 contained a large amount of R-C intermetallic compounds and a small amount of R-C intermetallic compounds in the R-rich phase. An R-rich phase containing Fe was observed, and in Example 1, only an R-rich phase containing Fe was observed. The photographs are shown in FIG. 1 for Example 1 and in FIG. 2 for Comparative Example 1. here,(
a) is a composition image, and (b) is an X-ray image of carbon. To explain this photograph, (a) the contrast of the composition image appears white when the average atomic number of the phase is large, and appears black when it is small.

写真中の白い部分はRリッチ相、その他の部分は主相で
ある。(b)X線像は試料に電子線を照射した時に放出
されるX線を分光して得られたものである。従つて、こ
の場合、炭素のKα線を分光し、そのX線のみ得て影像
化したものであり、白く光った点が炭素の存在する部分
である。これら焼結体の磁気特性および環境試験結果を
表1に示す。環境試験はこれらの焼結体を120℃、2
気圧、相対湿度100%の条件下に行なった。炭素含有
量が多い比較例1のサンプルは、環境試験を施すことに
よりぼろぼろに崩壊した。また、実施例1では表面に酸
化物が浮き出る程度であり崩壊は全く観測されなかった
The white part in the photograph is the R-rich phase, and the other parts are the main phase. (b) The X-ray image is obtained by spectroscopy of the X-rays emitted when the sample is irradiated with an electron beam. Therefore, in this case, the Kα rays of carbon are spectrally analyzed and only the X-rays are obtained and imaged, and the white glowing points are the parts where carbon is present. Table 1 shows the magnetic properties and environmental test results of these sintered bodies. Environmental tests were carried out on these sintered bodies at 120°C for 2
The test was carried out under conditions of atmospheric pressure and 100% relative humidity. The sample of Comparative Example 1, which had a high carbon content, crumbled into pieces when subjected to an environmental test. Further, in Example 1, oxides were only visible on the surface and no collapse was observed.

(実施例2、比較例2)  出発原料として、純度99.7重量%以上のNd及び
Dy、ここで希土類元素全体で炭素含有量は0.042
重量%(実施例2とする)及び0.352重量%(比較
例2とする)の2種類のものを用い、純度99.9重量
%の電解鉄及びコバルト、純度99.5重量%のボロン
、Al、Nbを使用し、これらを高周波溶解して鋳型に
鋳造し、Nd14.05Dy0.74Fe72.95C
o3.84B7Al1Nb0.4なる組成のインゴット
を得た。得られたインゴットの炭素含有量は、非分散型
赤外線法の分析結果から、夫々0.021重量%(実施
例2)、0.122重量%(比較例2)であった。この
インゴットを実施例1と同様の工程で処理し、磁石焼結
体を得、電子線微小探針分析装置で組織を観察した結果
、焼結体中のRリッチ相中の相状態は添加元素が種々含
まれるためより複雑になったが、実施例2と比較例2の
差はR−C金属間化合物の有無のみである。それぞれの
相状態を表2に示す。また、磁気特性及び環境試験の結
果を表3に示す。
(Example 2, Comparative Example 2) As starting materials, Nd and Dy with a purity of 99.7% by weight or more, where the carbon content of all rare earth elements is 0.042
Electrolytic iron and cobalt with a purity of 99.9% by weight and boron with a purity of 99.5% by weight were used. , Al, and Nb, and cast them into a mold by high-frequency melting to produce Nd14.05Dy0.74Fe72.95C.
An ingot having a composition of o3.84B7Al1Nb0.4 was obtained. The carbon content of the obtained ingots was 0.021% by weight (Example 2) and 0.122% by weight (Comparative Example 2), respectively, based on the results of non-dispersive infrared analysis. This ingot was processed in the same process as in Example 1 to obtain a magnet sintered body, and the structure was observed using an electron beam microprobe analyzer. As a result, the phase state of the R-rich phase in the sintered body was determined to be due to the additive element. However, the only difference between Example 2 and Comparative Example 2 is the presence or absence of the R-C intermetallic compound. Table 2 shows the phase states of each. Further, the magnetic properties and the results of the environmental test are shown in Table 3.

(発明の効果)  本発明に従って磁石合金インゴットの不純物炭素を少
なくすることによって、粉砕、成形、焼結、熱処理して
作った磁石焼結体の組織中には、耐蝕性の極めて悪いR
−C金属間化合物は存在せず、密度及び配向低下も見ら
れず、磁石素地自体の耐蝕性を改善し、磁気特性に優れ
、且つ品質の一定した希土類永久磁石が得られ、産業上
その利用価値は極めて高い。
(Effect of the invention) By reducing impurity carbon in the magnet alloy ingot according to the present invention, the structure of the magnet sintered body made by crushing, molding, sintering, and heat treatment contains R, which has extremely poor corrosion resistance.
-C There is no intermetallic compound, no deterioration in density or orientation is observed, the corrosion resistance of the magnet base itself is improved, and a rare earth permanent magnet with excellent magnetic properties and constant quality can be obtained, and its use in industry. The value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

 図1(a)、(b)は本発明実施例1の永久磁石合金
のFe含有Rリッチ相の電子線微小探針分析装置による
(a)組成像および(b)炭素のX線像を示す写真、図
2(a)、(b)は比較例1の実施例1に対応する写真
である。
Figures 1 (a) and (b) show (a) a composition image and (b) an X-ray image of carbon of the Fe-containing R-rich phase of the permanent magnet alloy of Example 1 of the present invention, taken with an electron beam microprobe analyzer. The photographs, FIGS. 2(a) and 2(b) are photographs corresponding to Example 1 of Comparative Example 1.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】希土類元素R10〜25原子%(ここにR
はNdを含む希土類元素の内少なくとも1種もしくは2
種以上の希土類元素)、ボロンB1〜20原子%及び残
部が鉄からなる永久磁石合金の焼結体中の組織が、強磁
性主相R2Fe14B、非磁性Bリッチ相および非磁性
Rリッチ相の3相組織であり、かつ非磁性Rリッチ相の
組織中の希土類元素と炭素との金属間化合物R−Cが1
.0重量%以下であることを特徴とする耐蝕性に優れた
希土類永久磁石。
Claim 1: Rare earth element R 10 to 25 atomic % (herein R
is at least one or two rare earth elements including Nd
The structure in the sintered body of a permanent magnet alloy consisting of 1 to 20 at. phase structure, and the intermetallic compound R-C of the rare earth element and carbon in the nonmagnetic R-rich phase structure is 1
.. A rare earth permanent magnet with excellent corrosion resistance characterized by a content of 0% by weight or less.
【請求項2】永久磁石合金組成が、R10〜25原子%
、ボロン1〜20原子%及び残部が鉄よりなり、該合金
中の炭素含有量が0.04重量%以下であることを特徴
とする請求項第1項または第2項記載の耐蝕性に優れた
希土類永久磁石。
[Claim 2] Permanent magnet alloy composition is R10 to 25 atomic %.
, comprising 1 to 20 atomic % of boron and the balance iron, and having an excellent corrosion resistance according to claim 1 or 2, characterized in that the carbon content in the alloy is 0.04% by weight or less. Rare earth permanent magnet.
JP2314643A 1990-11-20 1990-11-20 Rare earth permanent magnet with excellent touch resistance Expired - Lifetime JP3066806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2314643A JP3066806B2 (en) 1990-11-20 1990-11-20 Rare earth permanent magnet with excellent touch resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2314643A JP3066806B2 (en) 1990-11-20 1990-11-20 Rare earth permanent magnet with excellent touch resistance

Publications (2)

Publication Number Publication Date
JPH04330702A true JPH04330702A (en) 1992-11-18
JP3066806B2 JP3066806B2 (en) 2000-07-17

Family

ID=18055799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2314643A Expired - Lifetime JP3066806B2 (en) 1990-11-20 1990-11-20 Rare earth permanent magnet with excellent touch resistance

Country Status (1)

Country Link
JP (1) JP3066806B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014105629A1 (en) 2013-04-22 2014-10-23 Tdk Corp. R-T-B based sintered magnet
DE102014105632A1 (en) 2013-04-22 2014-10-23 Tdk Corp. R-T-B based sintered magnet
JP2015523462A (en) * 2012-05-02 2015-08-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Magnetic material, its use and method for producing said magnetic material
US9514869B2 (en) 2012-02-13 2016-12-06 Tdk Corporation R-T-B based sintered magnet
US9773599B2 (en) 2012-02-13 2017-09-26 Tdk Corporation R-T-B based sintered magnet
US10096410B2 (en) 2013-07-03 2018-10-09 Tdk Corporation R-T-B based sintered magnet
US10256015B2 (en) 2013-08-09 2019-04-09 Tdk Corporation R-t-b based sintered magnet and rotating machine
US10410777B2 (en) 2013-08-09 2019-09-10 Tdk Corporation R-T-B based sintered magnet and motor
JPWO2021095630A1 (en) * 2019-11-11 2021-05-20
WO2021095633A1 (en) * 2019-11-11 2021-05-20 信越化学工業株式会社 R-fe-b-based sintered magnet

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260207A (en) * 1985-09-10 1987-03-16 Toshiba Corp Permanent magnet
JPH023205A (en) * 1988-06-20 1990-01-08 Seiko Epson Corp Manufacture of permanent magnet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260207A (en) * 1985-09-10 1987-03-16 Toshiba Corp Permanent magnet
JPH023205A (en) * 1988-06-20 1990-01-08 Seiko Epson Corp Manufacture of permanent magnet

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9514869B2 (en) 2012-02-13 2016-12-06 Tdk Corporation R-T-B based sintered magnet
US9773599B2 (en) 2012-02-13 2017-09-26 Tdk Corporation R-T-B based sintered magnet
JP2015523462A (en) * 2012-05-02 2015-08-13 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh Magnetic material, its use and method for producing said magnetic material
US10192661B2 (en) 2013-04-22 2019-01-29 Tdk Corporation R—T—B based sintered magnet
DE102014105632A1 (en) 2013-04-22 2014-10-23 Tdk Corp. R-T-B based sintered magnet
DE102014105629A1 (en) 2013-04-22 2014-10-23 Tdk Corp. R-T-B based sintered magnet
US10096410B2 (en) 2013-07-03 2018-10-09 Tdk Corporation R-T-B based sintered magnet
US10256015B2 (en) 2013-08-09 2019-04-09 Tdk Corporation R-t-b based sintered magnet and rotating machine
US10410777B2 (en) 2013-08-09 2019-09-10 Tdk Corporation R-T-B based sintered magnet and motor
DE112014003694B4 (en) 2013-08-09 2023-06-29 Tdk Corporation R-T-B based sintered magnet and rotary machine
JPWO2021095630A1 (en) * 2019-11-11 2021-05-20
WO2021095633A1 (en) * 2019-11-11 2021-05-20 信越化学工業株式会社 R-fe-b-based sintered magnet
JPWO2021095633A1 (en) * 2019-11-11 2021-05-20
WO2021095630A1 (en) * 2019-11-11 2021-05-20 信越化学工業株式会社 R-fe-b sintered magnet

Also Published As

Publication number Publication date
JP3066806B2 (en) 2000-07-17

Similar Documents

Publication Publication Date Title
US7488394B2 (en) Rare earth permanent magnet
JP7379362B2 (en) Low B content R-Fe-B sintered magnet and manufacturing method
TWI476791B (en) RTB rare earth publication magnet
US7488393B2 (en) Rare earth permanent magnet
US7520941B2 (en) Functionally graded rare earth permanent magnet
US7618497B2 (en) R-T-B based rare earth permanent magnet and method for production thereof
JP6488976B2 (en) R-T-B sintered magnet
JP6489201B2 (en) Method for producing RTB-based sintered magnet
JPH0521218A (en) Production of rare-earth permanent magnet
JP2004165482A (en) R-Fe-B SYSTEM SINTERED MAGNET
JP2746818B2 (en) Manufacturing method of rare earth sintered permanent magnet
JPWO2002103719A1 (en) Rare earth permanent magnet material
WO2007010860A1 (en) Rare earth sintered magnet and method for production thereof
JP2000114017A (en) Permanent magnet and material thereof
US5181973A (en) Sintered permanent magnet
JPH0574618A (en) Manufacture of rare earth permanent magnet
US10242781B2 (en) Method for manufacturing R-T-B based sintered magnet
JP3066806B2 (en) Rare earth permanent magnet with excellent touch resistance
JPH04184901A (en) Rare earth iron based permanent magnet and its manufacture
JPWO2019065481A1 (en) Method for producing RTB-based sintered magnet
JPH08181009A (en) Permanent magnet and its manufacturing method
JP2720039B2 (en) Rare earth magnet material with excellent corrosion resistance
CN108389674A (en) R-T-B systems sintered magnet
JPH0524975B2 (en)
JPH0521219A (en) Production of rare-earth permanent magnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100519

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110519

Year of fee payment: 11