JPH04328409A - Surface roughness meter - Google Patents

Surface roughness meter

Info

Publication number
JPH04328409A
JPH04328409A JP3098953A JP9895391A JPH04328409A JP H04328409 A JPH04328409 A JP H04328409A JP 3098953 A JP3098953 A JP 3098953A JP 9895391 A JP9895391 A JP 9895391A JP H04328409 A JPH04328409 A JP H04328409A
Authority
JP
Japan
Prior art keywords
luminous flux
parallel
condenser lens
prism
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3098953A
Other languages
Japanese (ja)
Inventor
Hide Hosoe
秀 細江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP3098953A priority Critical patent/JPH04328409A/en
Publication of JPH04328409A publication Critical patent/JPH04328409A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To measure accurate roughness by providing a constitution wherein fluctuations are canceled even if there are fluctuations in the direction perpendicular to the optical axis and in the moving direction when the surface to be detected of a material to be detected for a surface roughness meter using a differential-type laser-interference length measuring machine in moved. CONSTITUTION:There are length measuring luminous flux and reference luminous flux which are emitted in parallel from an interference prism 1. The length measuring luminous flux enters a main condenser lens 2. The luminous flux is converged on a surface to be dected 5 and reflected from the surface 5. The luminous flux passes through the lens 2 again and becomes the luminuous flux which is in parallel with the length measuring flux. The luminous flux is returned to the interference prism 1. Meanwhile, the reference luminous flux is converged through a reference luminous flux condenser lens. The image is formed in a position in front of the focal point of the main condenser lens 2, and the luminous flux is reflected. The luminous flux enters the main condenser lens 2 at an incident angle theta. The parallel luminous flux is formed in that direction and reflected from the surface to be detected 5. The parallel luminous flux is made to enter with a main luminous flux lens at a reflecting angle theta and outputted. The luminous flux is reflected from a second reflecting mirror or prism 6 so as to enter into a second reference luminous flux condenser lens 7. The parallel luminous flux is formed and returend into the interference prism 1.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は差動型レーザー干渉測長
器を用いて、移動や走査に伴って被検物を動かしてもそ
れに伴う誤差がおきにくくした表面粗さ計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface roughness meter that uses a differential laser interferometric length measuring device to reduce errors caused by movement of an object to be inspected during movement or scanning.

【0002】0002

【従来の技術】差動型レーザー干渉測長計の干渉プリズ
ム1において、図2に示す様に平行に干渉プリズム1か
ら出射する測長光束と参照光束のうち前者を測長光束集
光レンズ2を通して収束光とし、その焦点を被検面5に
とり該面5で反射させた後、もう一度測長光束集光レン
ズ2を通してもう一方の光束と平行な光束にも後者の参
照光束は被検面5を反射面として折り返す方法により、
被検面5の表面粗さを測定できる。この際重要な事は、
測長光の収束光は、被検面5の非常に狭い範囲の被検面
5の変位を測長し、参照光の平行光束は、比較的広い範
囲の被検面5の変位を測長する事によって、被検面5を
移動・走査する場合や、干渉プリズム1を被検面に対し
、移動・走査する際の横ゆれ等の真直度誤差をコモンモ
ードの変位として、検出しにくくし、微小領域の表面粗
さ成分の検出S/Nを向上させる事である。
2. Description of the Related Art In an interference prism 1 of a differential laser interferometric length meter, as shown in FIG. After converging the light and focusing it on the surface 5 to be measured and reflecting it from the surface 5, it passes through the length measuring beam condenser lens 2 again to create a beam parallel to the other beam. By folding it back as a reflective surface,
The surface roughness of the test surface 5 can be measured. The important thing at this time is
The convergent light of the length measurement light measures the displacement of the test surface 5 in a very narrow range of the test surface 5, and the parallel light beam of the reference light measures the displacement of the test surface 5 in a relatively wide range. By doing so, straightness errors such as lateral wobbling when moving/scanning the test surface 5 or when moving/scanning the interference prism 1 relative to the test surface are made difficult to detect as common mode displacement. , to improve the detection S/N of surface roughness components in minute areas.

【0003】0003

【発明が解決しようとする課題】しかしながら従来の手
段では、収束光束と、その参照光束となる平行光束が同
軸ではなかったため、図2に示す様に収束光束の光軸と
平行光束のなす角度をθとすると、検出される測長信号
SにおいてS・(1−cosθ)だけコモンモードの誤
差が重畳し、必ずしも十分な精度の表面粗さ情報を得ら
れた訳ではなかった。従来、この誤差をできる限り減少
させるために、θを小さくする事が重要であったが、例
えば10°程度にしても、(1−cosθ)は1.5%
程度となり、この程度のシステム誤差は避けられない状
態であった。
[Problems to be Solved by the Invention] However, in the conventional means, since the convergent light beam and the parallel light beam serving as its reference light beam were not coaxial, it was necessary to change the angle between the optical axis of the convergent light beam and the parallel light beam as shown in FIG. When θ is assumed, a common mode error of S·(1−cos θ) is superimposed on the detected length measurement signal S, and surface roughness information with sufficient accuracy is not necessarily obtained. Conventionally, in order to reduce this error as much as possible, it was important to make θ small, but for example, even if it was about 10 degrees, (1-cos θ) was 1.5%.
This amount of system error was unavoidable.

【0004】本発明は差動型レーザー干渉測長器の収束
光束と平行光束を同軸にして、移動・走査に伴う真直度
誤差を両者で完全にコモンモード化し、キャンセルする
事で系誤差の少ないしかも安価な表面粗さ測定を可能に
することを課題目的にする。
[0004] The present invention makes the convergent light beam and the parallel light beam of the differential laser interferometric length measuring device coaxial, and completely converts the straightness error caused by movement and scanning into a common mode for both, canceling it out, thereby reducing systematic errors. Moreover, the objective is to enable inexpensive surface roughness measurement.

【0005】[0005]

【課題を解決するための手段】この目的は次の技術手段
a,bのいずれかによって達成される。
[Means for Solving the Problem] This object is achieved by either of the following technical means a or b.

【0006】(a)差動型レーザー干渉測長計の干渉プ
リズムから平行に出射する測長光束と参照光束を設け、
該測長光束を主集光レンズを通して収束光束とし、被検
面でその収束点を反射させ戻り光束を該主集光レンズを
通すことで平行光束にすることと、もう一方の参照光束
は、第1の参照光束集光レンズを用いて前記主集光レン
ズの前側焦点位置に集光させ、第1の反射鏡又はプリズ
ムを用いてその光束を前記収束光束の主光線と一致させ
て前記主集光レンズに入射させ、平行光束として被検面
で反射折り返した後前記主集光レンズを通り収束光束に
変換された後、その収束点を第2の反射鏡又はプリズム
によって方向を換え、前記第1の参照光束集光レンズと
同様の第2の参照光束集光レンズにより平行光束に戻さ
れ、他の平行光束と平行にされるようにしたことを特徴
とする表面粗さ計。
(a) A length measurement light beam and a reference light beam are provided which are emitted in parallel from an interference prism of a differential laser interferometer,
The length measurement light flux is made into a convergent light flux through the main condenser lens, the convergence point is reflected on the test surface, and the returned light flux is made into a parallel light flux by passing through the main condenser lens, and the other reference light flux is A first reference beam condenser lens is used to condense the light to the front focal position of the main condenser lens, and a first reflecting mirror or prism is used to match the light beam with the principal ray of the convergent beam, and the main The beam is made incident on a condensing lens, is reflected as a parallel beam by the surface to be inspected, and then passed through the main condensing lens and converted into a convergent beam.The direction of the convergence point is changed by a second reflecting mirror or a prism, and the above-mentioned A surface roughness meter characterized in that a second reference beam condenser lens similar to the first reference beam condenser lens returns the beam to a parallel beam and makes it parallel to other parallel beams.

【0007】(b)a項において、第1,第2の反射鏡
又はプリズムを前記前側焦点位置を示した主集光レンズ
よりも干渉プリズムに近く配したことを特徴とする表面
粗さ計。
(b) The surface roughness meter according to item (a), characterized in that the first and second reflecting mirrors or prisms are arranged closer to the interference prism than the main condensing lens indicating the front focal position.

【0008】[0008]

【実施例】本発明の実施例を、光学系を示す図1によっ
て説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be explained with reference to FIG. 1 showing an optical system.

【0009】干渉プリズム1から出射する平行な参照光
束と測長光束において、参照光束は第1の参照光束集光
レンズ3を通り、収束光束となり、第1の反射鏡又はプ
リズム4により、光軸をθだけ傾けられる。この収束光
束の焦点位置は、次の主集光レンズ2の前側焦点にあた
るため、参照光束は主集光レンズ2を透過後平行光束と
なり、入射角θで被検面5に達する。被検面5からの戻
り光束は平行光束で入射し、主集光レンズ2を通る事に
より収束光となる。その後、第2の反射鏡又はプリズム
6により光軸の方向を変えられ、前記第1の参照光束集
光レンズ3と同性能の第2の参照光束集光レンズ7を通
り平行光束となり、干渉プリズム1内に入射する。
In the parallel reference beam and measurement beam emitted from the interference prism 1, the reference beam passes through the first reference beam condenser lens 3 and becomes a convergent beam, and the optical axis is adjusted by the first reflecting mirror or prism 4. can be tilted by θ. Since the focal point of this convergent light beam is the front focus of the next main condenser lens 2, the reference light beam becomes a parallel light beam after passing through the main condenser lens 2 and reaches the test surface 5 at an incident angle θ. The returning light beam from the surface to be inspected 5 enters as a parallel light beam, and becomes convergent light by passing through the main condenser lens 2. Thereafter, the direction of the optical axis is changed by a second reflecting mirror or prism 6, and the beam passes through a second reference beam condenser lens 7 having the same performance as the first reference beam condenser lens 3, and becomes a parallel beam, which forms an interference prism. 1.

【0010】一方、測長光束は、干渉プリズム1より主
集光レンズ2まで平行光束となり、該主集光レンズ2透
過後収束光となり被検面5の位置が焦点となる位置で反
射し、折り返す。この時の測長光軸の入反射角はθで、
前述の参照光束と同軸になる。折り返し主集光レンズ2
を通った光束は、平行光束となり、干渉プリズム1へ入
射する。
On the other hand, the length measurement light flux becomes a parallel light flux from the interference prism 1 to the main condenser lens 2, and after passing through the main condenser lens 2, it becomes a convergent light and is reflected at a position where the position of the test surface 5 is the focal point. Fold back. At this time, the angle of incidence and reflection of the length measurement optical axis is θ,
It becomes coaxial with the reference beam mentioned above. Folded main condenser lens 2
The light beam that passes through becomes a parallel light beam and enters the interference prism 1.

【0011】図1の例では、上述の経路を2回通り、そ
の検出信号により、被検面5の集光部の変位情報を高感
度に測定できる。2次元や3次元情報として得るには、
光束の被検面5上の集光点を被検面5で移動させて、走
査する事により得られるが、この時、移動・走査機構の
真直度が悪く、横ゆれを伴っていると、その被検面5と
垂直な方向の横ゆれは、従来法では完全にコモンモード
化できず、誤差として検出信号に重畳した。本発明では
、測長と参照の各光束が同軸であるため、横ゆれの被検
面5に垂直な変位成分が等価にかかるため、差動光学配
置により完全にキャンセルされる。
In the example shown in FIG. 1, the above-mentioned path is passed twice, and the displacement information of the condensing portion of the surface to be inspected 5 can be measured with high sensitivity based on the detection signal. To obtain 2D or 3D information,
This can be obtained by moving and scanning the condensing point of the light beam on the surface to be inspected 5, but at this time, if the straightness of the moving/scanning mechanism is poor and there is lateral wobbling, The lateral vibration in the direction perpendicular to the test surface 5 cannot be completely converted into a common mode using the conventional method, and is superimposed on the detection signal as an error. In the present invention, since the length measurement and reference light beams are coaxial, displacement components perpendicular to the test surface 5 due to lateral shaking are applied equally, and are completely canceled by the differential optical arrangement.

【0012】レーザー干渉測長器の差動型干渉プリズム
1は、図1のものでなくても良く、従来のものを用いて
も本発明の構成を用いて全く同様の効果を得られる。
The differential interference prism 1 of the laser interferometric length measuring device does not need to be the one shown in FIG. 1; even if a conventional one is used, exactly the same effect can be obtained using the configuration of the present invention.

【0013】[0013]

【発明の効果】本発明により、差動型レーザー干渉測長
器を用いて、被検物をレンズ光軸と直角方向に移動した
り走査したりして、光軸方向への横ゆれや、移動方向へ
のゆれがあったりしても、それ等のゆれに左右されるこ
となく正確な粗さの測定が安定して得られるようになっ
た。
Effects of the Invention According to the present invention, a differential laser interferometer is used to move or scan an object in a direction perpendicular to the optical axis of the lens, thereby preventing lateral vibration in the optical axis direction. Even if there is wobbling in the direction of movement, accurate roughness measurements can now be stably obtained without being affected by such wobbling.

【図面の簡単な説明】[Brief explanation of the drawing]

図1は本発明の1実施例の光学系を示す図。 図2は従来の粗さ計の光学系を示す図。 FIG. 1 is a diagram showing an optical system according to an embodiment of the present invention. FIG. 2 is a diagram showing the optical system of a conventional roughness meter.

【符号の説明】[Explanation of symbols]

1…干渉プリズム                 
   2…主集光レンズ 3…第1の参照光束集光レンズ        4…第
1の反射鏡又はプリズム 5…被検面                    
      6…第2の反射鏡又はプリズム 7…第2の参照光束集光レンズ
1...Interference prism
2... Main condensing lens 3... First reference beam condensing lens 4... First reflecting mirror or prism 5... Test surface
6...Second reflecting mirror or prism 7...Second reference beam condensing lens

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】差動型レーザー干渉測長計の干渉プリズム
から平行に出射する測長光束と参照光束を設け、該測長
光束を主集光レンズを通して収束光束とし、被検面でそ
の収束点を反射させ戻り光束を該主集光レンズを通すこ
とで平行光束にすることと、もう一方の参照光束は、第
1の参照光束集光レンズを用いて前記主集光レンズの前
側焦点位置に集光させ、第1の反射鏡又はプリズムを用
いてその光束を前記収束光束の主光線と一致させて前記
主集光レンズに入射させ、平行光束として被検面で反射
折り返した後前記主集光レンズを通り収束光束に変換さ
れた後、その収束点を第2の反射鏡又はプリズムによっ
て方向を換え、前記第1の参照光束集光レンズと同様の
第2の参照光束集光レンズにより平行光束に戻され、他
の平行光束と平行にされるようにしたことを特徴とする
表面粗さ計。
[Claim 1] A length measurement light beam and a reference light beam are provided which are emitted in parallel from an interference prism of a differential laser interferometric length measurement meter, and the length measurement light beam is made into a convergent light beam through a main condensing lens, and its convergence point is on the surface to be measured. The returned light flux is made into a parallel light flux by passing through the main condenser lens, and the other reference light flux is brought to the front focal position of the main condenser lens using the first reference light condenser lens. The light beam is condensed and made to coincide with the chief ray of the convergent light beam using a first reflecting mirror or prism, and is made to enter the main condenser lens, and after being reflected and returned by the test surface as a parallel light beam, After passing through the optical lens and being converted into a convergent beam, the direction of the converging point is changed by a second reflecting mirror or prism, and the convergence point is changed into a parallel beam by a second reference beam condensing lens similar to the first reference beam condensing lens. A surface roughness meter characterized in that the beam is returned to the beam and made parallel to other parallel beams.
【請求項2】請求項1において、第1,第2の反射鏡又
はプリズムを前記前側焦点位置を示した主集光レンズよ
りも干渉プリズムに近く配したことを特徴とする表面粗
さ計。
2. The surface roughness meter according to claim 1, wherein the first and second reflecting mirrors or prisms are arranged closer to the interference prism than the main condenser lens indicating the front focal position.
JP3098953A 1991-04-30 1991-04-30 Surface roughness meter Pending JPH04328409A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3098953A JPH04328409A (en) 1991-04-30 1991-04-30 Surface roughness meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3098953A JPH04328409A (en) 1991-04-30 1991-04-30 Surface roughness meter

Publications (1)

Publication Number Publication Date
JPH04328409A true JPH04328409A (en) 1992-11-17

Family

ID=14233459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3098953A Pending JPH04328409A (en) 1991-04-30 1991-04-30 Surface roughness meter

Country Status (1)

Country Link
JP (1) JPH04328409A (en)

Similar Documents

Publication Publication Date Title
US6122058A (en) Interferometer system with two wavelengths, and lithographic apparatus provided with such a system
JP2913984B2 (en) Tilt angle measuring device
US8345260B2 (en) Method of detecting a movement of a measuring probe and measuring instrument
US7158236B2 (en) Heterodyne laser interferometer for measuring wafer stage translation
US7542149B2 (en) Optics system for an interferometer that uses a measuring mirror, a reference mirror and a beam deflector
EP0208276A1 (en) Optical measuring device
JPH02161332A (en) Device and method for measuring radius of curvature
JP3073268B2 (en) Small displacement detection method
JPS5979104A (en) Optical device
US6483593B1 (en) Hetrodyne interferometer and associated interferometric method
US5033855A (en) Fizeau interference measuring method and apparatus therefor
US4105335A (en) Interferometric optical phase discrimination apparatus
JPH04328409A (en) Surface roughness meter
JPH04130239A (en) Apparatus for measuring outward position and inward position of dynamic surface
JPH05500853A (en) Method and apparatus for determining glass tube wall thickness
JP2591143B2 (en) 3D shape measuring device
JP2966950B2 (en) Sample displacement measuring device
JPS60211304A (en) Measuring instrument for parallelism
JPS6123902A (en) Interferometer for coordinate axis setting
JPH04307316A (en) Surface roughness tester
JPH0599612A (en) Laser interferometer
JPH0334002B2 (en)
JPH05340726A (en) Noncontact probe for three-dimensional shape measuring instrument
JP3393910B2 (en) Surface shape measurement method
JPH09126712A (en) Laser length measuring machine