JPH04325622A - Production of ultralow carbon steel - Google Patents

Production of ultralow carbon steel

Info

Publication number
JPH04325622A
JPH04325622A JP12279891A JP12279891A JPH04325622A JP H04325622 A JPH04325622 A JP H04325622A JP 12279891 A JP12279891 A JP 12279891A JP 12279891 A JP12279891 A JP 12279891A JP H04325622 A JPH04325622 A JP H04325622A
Authority
JP
Japan
Prior art keywords
gas
carbon steel
vacuum
ultralow carbon
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12279891A
Other languages
Japanese (ja)
Inventor
Hidemi Watanabe
秀美 渡辺
Nobuhiro Takagi
信浩 高木
Tadashi Imai
正 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12279891A priority Critical patent/JPH04325622A/en
Publication of JPH04325622A publication Critical patent/JPH04325622A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To rapidly refine an ultralow carbon steel minimal in gaseous impurities, such as nitrogen and hydrogen, in large quantities in vacuum degassing treatment equipment by means of an RH process, a DH process, etc. CONSTITUTION:In an ultralow carbon steel refining method where a molten steel is sucked into a vacuum tank to undergo refining, fine bubbles can be formed by providing one or >=2 lower tank tuyeres on the side wall in the lower part of the vacuum tank and blowing inert gas into a state of compression waves, by which the high speed treatment for the ultralow carbon steel is made possible owing to the increase in the gas-liquid interface.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はRH,DH等の真空脱ガ
ス処理装置において、極低炭素で窒素、水素等ガス不純
物が極く少ない鋼を迅速に且つ大量に溶製する方法に関
するものである。
[Industrial Application Field] The present invention relates to a method for quickly and large quantities of steel having extremely low carbon and containing very few gaseous impurities such as nitrogen and hydrogen in vacuum degassing equipment such as RH and DH. be.

【0002】0002

【従来の技術】連続焼鈍プロセスによる冷延鋼板に対す
る高加工性の要求の増大、メッキ鋼板における良メッキ
性確保の観点より、これに適合する素材として炭素含有
量10ppmないし数ppmの極低炭素鋼が要求される
ようになった。またフェライト系ステンレス鋼において
は極低炭素(30ppm以下)、窒素(50ppm以下
)にすれば耐食性が飛躍的に向上することが知られてい
る。
[Prior Art] From the viewpoint of increasing demands for high workability for cold-rolled steel sheets through continuous annealing processes and ensuring good plating properties for plated steel sheets, ultra-low carbon steel with a carbon content of 10 ppm to several ppm is suitable as a material. is now required. It is also known that in ferritic stainless steel, corrosion resistance can be dramatically improved by using extremely low carbon (30 ppm or less) and nitrogen (50 ppm or less).

【0003】従来から極低炭素鋼はRH,DH等の真空
脱ガス装置により溶製されてきた。図4は従来からのR
H脱ガス装置を示す説明図である。溶鋼鍋11中の溶鋼
10は上昇管3に設けられたガス吹き込みノズル2から
の不活性ガスにより真空槽8に吸引される。真空槽中の
溶鋼は下降管12を通して溶鋼鍋に戻るがこの間に脱炭
反応や脱ガス反応が行なわれる。
Conventionally, ultra-low carbon steels have been produced using vacuum degassing equipment such as RH and DH. Figure 4 shows the conventional R
It is an explanatory view showing an H degassing device. The molten steel 10 in the molten steel ladle 11 is sucked into the vacuum chamber 8 by inert gas from the gas blowing nozzle 2 provided in the riser pipe 3. The molten steel in the vacuum tank returns to the molten steel ladle through the downcomer pipe 12, during which decarburization and degassing reactions take place.

【0004】これらの装置では通常1Torr以下の真
空度で処理が行なわれている。真空脱ガス装置における
脱炭素のメカニズムは真空槽内CO分圧が極度に低いた
め(約0.002Torr以下)溶鋼中の酸素と炭素が
結びつきCOガスとなり、排ガスとして排出され、結果
として溶鋼中の炭素濃度が低下する。さらには溶鋼中に
不活性ガスを吹き込むことによりCO分圧ゼロの不活性
ガス気泡界面でも下記反応が進行するため脱炭素反応が
促進される。また窒素、水素も雰囲気中のこれらガスの
分圧が低下することにより同時に鋼中から除去される。
[0004] These devices usually perform processing at a vacuum level of 1 Torr or less. The mechanism of decarbonization in vacuum degassing equipment is that because the partial pressure of CO in the vacuum chamber is extremely low (approximately 0.002 Torr or less), oxygen and carbon in the molten steel combine to form CO gas, which is discharged as exhaust gas. Carbon concentration decreases. Furthermore, by blowing an inert gas into the molten steel, the following reaction proceeds even at the inert gas bubble interface where the CO partial pressure is zero, so that the decarbonization reaction is promoted. Further, nitrogen and hydrogen are simultaneously removed from the steel as the partial pressure of these gases in the atmosphere decreases.

【化1】[Chemical formula 1]

【0005】現状の真空脱ガス装置における脱炭処理は
槽内の真空度と溶鋼循環用のアルゴンガスによるもので
あり、400ppmの溶鋼中炭素を約15分で約30p
pmまで低下させる能力を有する。しかしながら、前記
の極低炭素鋼大量溶製の要求に対応するためにはさらな
る脱炭促進技術が、特に脱炭反応速度の低下する30p
pm以下の脱炭処理においては必須となる。
[0005] The decarburization process in the current vacuum degassing equipment is based on the degree of vacuum in the tank and the use of argon gas for circulation of molten steel, and 400 ppm of carbon in molten steel is reduced to about 30 ppm in about 15 minutes.
It has the ability to reduce to pm. However, in order to meet the demand for mass production of ultra-low carbon steel, further decarburization promotion technology is needed, especially at 30p, which reduces the decarburization reaction rate.
It is essential in decarburization treatment below pm.

【0006】脱炭反応速度をより大きくするには反応界
面積を大きくとるか、真空脱ガス装置における溶鋼循環
量を大きくとることが重要となる。しかしながら溶鋼循
環量を大きくするためにアルゴンガスを大量に吹込むと
図4に示すように槽内のスプラッシュ9が激しくなり地
金付着13により操業困難な状態になる。また浸漬管か
らの不活性ガス吹込み量をいかに多くしても真空槽内で
は気泡は上昇管近傍に集中するので真空槽内容積全体を
有効に利用するという点では不十分であるといえる。
[0006] In order to further increase the decarburization reaction rate, it is important to increase the reaction interfacial area or to increase the amount of molten steel circulating in the vacuum degasser. However, if a large amount of argon gas is blown in to increase the amount of molten steel circulating, as shown in FIG. 4, the splash 9 in the tank becomes intense and the base metal adhesion 13 makes operation difficult. Furthermore, no matter how large the amount of inert gas blown from the immersion tube is, bubbles in the vacuum chamber concentrate near the riser tube, so it can be said that this is insufficient in terms of effectively utilizing the entire internal volume of the vacuum chamber.

【0007】そこで真空槽において対策を講じて反応界
面積を増大し、脱ガスを促進する方法が考えられる。こ
の方法として真空槽側壁に羽口を設け不活性ガスを吹込
む方法、特にこの場合羽口径を3ミリメートル以下とし
て吹込み圧力を20kgf/平方センチメートル以上と
高圧にするのが好ましいとする方法が特開平2−217
412号公報に開示されている。また真空槽底部の溶鋼
に接する位置に超音波加振子を設置し、真空槽内にすで
にある気泡を破砕微細化すると共にキャビテーション現
象により新たな気泡を生成せしめるという技術が特開平
2−173204号公報に開示されている。
[0007] Therefore, a method of increasing the reaction interfacial area by taking measures in a vacuum chamber to promote degassing has been considered. One method for this is to provide a tuyere on the side wall of the vacuum chamber and blow inert gas into it. In particular, in this case, it is preferable to set the tuyere diameter to 3 mm or less and set the blowing pressure to a high pressure of 20 kgf/cm2 or more. 2-217
It is disclosed in Japanese Patent No. 412. In addition, Japanese Patent Application Laid-Open No. 2-173204 discloses a technique in which an ultrasonic vibrator is installed at the bottom of the vacuum chamber in contact with the molten steel to crush and refine the bubbles already present in the vacuum chamber and generate new bubbles through the cavitation phenomenon. has been disclosed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、先にに
述べた真空槽底部側壁に羽口を設けて不活性ガスを吹込
む方法は微細な気泡を真空槽内全体にわたって吹込む必
要があり、これがため小径の羽口で高圧のガスを吹込む
ことを推奨している。しかし一方、小径の羽口は詰まり
を生じやすく、高圧ガス設備は設備保全のコストが増大
するという問題がある。また溶鋼中に超音波を入射させ
る方法は振動子の耐熱性、耐久性等解決すべき問題があ
る。
[Problems to be Solved by the Invention] However, the method described above for blowing inert gas by providing tuyeres on the bottom side wall of the vacuum chamber requires blowing fine air bubbles throughout the vacuum chamber; Therefore, it is recommended to inject high pressure gas through a small diameter tuyere. However, on the other hand, small-diameter tuyeres are prone to clogging, and high-pressure gas equipment has problems in that equipment maintenance costs increase. Furthermore, the method of injecting ultrasonic waves into molten steel has problems that need to be resolved, such as the heat resistance and durability of the vibrator.

【0009】[0009]

【課題を解決するための手段】本発明は前記従来技術の
問題点を有利に解決するためのものであって、RH、D
H等の真空槽に溶鋼を吸上げて精練を行なう極低炭素鋼
の溶製方法において、真空槽下部の側壁に1または2以
上の下部槽羽口を設け、不活性ガスを粗密波状に吹込む
ことを特徴とする。
[Means for Solving the Problems] The present invention is intended to advantageously solve the problems of the prior art, and provides RH, D
In a method for producing ultra-low carbon steel in which molten steel is sucked up into a vacuum tank such as H and smelted, one or more lower tank tuyeres are provided on the side wall of the lower part of the vacuum tank, and inert gas is blown in a dense wave pattern. It is characterized by being immersed.

【0010】0010

【作用】本発明の特徴の一つである羽口より不活性ガス
を粗密波状に吹込むことについてまず説明する。図3は
真空槽下部、いわゆる下部槽に設けられた下部槽羽口1
を示す断面図であって、5は鉄皮、4は耐火物である。 従来の方法でガスを吹込む場合には、図3示すように下
部槽羽口1から溶融金属10中にガス15が気泡16と
なって離脱するとき、膨らんで表面張力の平衡が保たれ
なくなったところで切れる。ところが本発明の方法によ
れば、図2に示すようにガス15が粗密波Wとなって下
部槽羽口1から出るので細かい気泡となって溶融金属中
に離脱する。すなわち密な部分では圧力が高く粗な部分
では圧力が低くなっているので、粗密波の圧力の振幅が
十分大きければ粗な部分ではいわばくさび効果により羽
口で流れが切られ細かい気泡を形成できる。
[Operation] First, one of the features of the present invention, in which the inert gas is blown into the tuyere in the form of dense waves, will be explained. Figure 3 shows the lower tank tuyere 1 installed in the lower part of the vacuum tank, the so-called lower tank.
5 is a cross-sectional view showing an iron skin, and 4 is a refractory. When gas is injected using the conventional method, as shown in FIG. 3, when the gas 15 leaves the molten metal 10 from the lower tank tuyere 1 as bubbles 16, they expand and the surface tension balance is no longer maintained. It breaks at certain places. However, according to the method of the present invention, as shown in FIG. 2, the gas 15 exits from the lower tank tuyere 1 in the form of a compression wave W, so that it becomes fine bubbles and separates into the molten metal. In other words, the pressure is high in dense areas and low in rough areas, so if the pressure amplitude of the compression wave is large enough, the flow is cut off at the tuyeres in rough areas due to a so-called wedge effect, forming fine bubbles. .

【0011】本発明の方法を実施するためにはガスの流
れに粗密波を発生する手段が必要である。粗密波は音波
に他ならないから、単純にいえば「笛」を羽口への配管
途中に置けばよい。しかしながら羽口で気泡を確実に細
かくするには粗密の圧力差が十分に大きい必要がある。 したがってガスの流れを効率よく粗密波に変換する機構
が必要となる。
In order to carry out the method of the present invention, means for generating compression waves in the gas flow is required. Compression waves are nothing but sound waves, so simply put, a ``whistle'' can be placed in the middle of the pipe to the tuyere. However, in order to reliably make the bubbles smaller at the tuyere, the pressure difference between the density and density needs to be sufficiently large. Therefore, a mechanism is required to efficiently convert the gas flow into compression waves.

【0012】本発明者等は粗密波発生のための装置をい
くつか開発したが、そのうちの一例を図1に示す。ノズ
ル2のガス供給側配管20と下部槽羽口1に至る配管2
2とを交叉して結合し、前記ガス供給側配管20を前記
交叉した部分23より延長して閉塞して共鳴管21とす
る。一方前記浸漬管羽口1に至る配管22を前記交叉し
た部分23より延長して閉塞し空間部24を形成する。
The present inventors have developed several devices for generating compressional waves, one example of which is shown in FIG. Gas supply side piping 20 of nozzle 2 and piping 2 leading to lower tank tuyere 1
2 are crossed and combined, and the gas supply side pipe 20 is extended from the crossed portion 23 and closed to form a resonance tube 21. On the other hand, the piping 22 leading to the immersion tube tuyere 1 is extended from the intersecting portion 23 and closed to form a space 24.

【0013】このガス吹込みノズルにおいて、ガス供給
側配管20から超音速で供給された不活性ガス15は交
叉した部分23において空間部24により広くなった空
間に開放される。これにより圧力の不安定現象を生じ粗
密波を発生する。このとき共鳴管21が設けられている
のでこれの寸法で定まる共鳴現象を生じ、強力な粗密波
を発生する。共鳴の周波数fは音速をc[m/s]、共
鳴管の長さ、径をそれぞれl、d[m]としたとき次式
で与えられる。
In this gas blowing nozzle, the inert gas 15 supplied from the gas supply pipe 20 at supersonic speed is released into a space expanded by a space 24 at the intersection 23 . This causes pressure instability and generates compression waves. At this time, since the resonance tube 21 is provided, a resonance phenomenon determined by the dimensions of the resonance tube 21 occurs, and a strong compressional wave is generated. The resonance frequency f is given by the following equation, where the speed of sound is c [m/s], and the length and diameter of the resonance tube are l and d [m], respectively.

【数1】[Math 1]

【0014】気泡の大きさはガスの共鳴周波数を高くす
る程小さくなるが、共鳴周波数は通常10から100k
Hz程度が望ましい。また吹込みガスの流速は2から3
マッハにすることが望ましい。
The size of the bubble becomes smaller as the resonance frequency of the gas increases, but the resonance frequency is usually 10 to 100k.
A frequency of around Hz is desirable. Also, the flow rate of the blown gas is 2 to 3
Mach is desirable.

【0015】図5は本発明の方法を実施するためのRH
脱ガス装置の上昇管に沿って切断した断面図である。真
空槽の下部、いわゆる下部槽8Aに下部槽羽口1を設け
不活性ガスを粗密波状に吹込む。この装置の例において
は吹込みノズルは共鳴管21の長さをピストン機構26
とエアシリンダ27により自在に変えられるようになっ
ている。なお、RH脱ガス装置は上昇管3内にリフトガ
スを吹込むが、これのノズルもこの装置例においては粗
密波状に吹込むようになっている。
FIG. 5 shows an RH for carrying out the method of the present invention.
FIG. 3 is a cross-sectional view taken along the riser pipe of the degasser. A lower tank tuyere 1 is provided in the lower part of the vacuum tank, the so-called lower tank 8A, and inert gas is blown into it in the form of compression waves. In this example of the device, the blowing nozzle connects the length of the resonance tube 21 to the piston mechanism 26.
and can be freely changed using an air cylinder 27. Note that the RH degassing device blows lift gas into the riser pipe 3, and the nozzles of this device also blow the lift gas in a coarse wave shape in this device example.

【0016】図6は真空槽内部を上方から見た本発明の
実施状況を示す図であるが、8本の下部槽羽口が設けら
れており真空槽全体に気泡が分布している。気泡の到達
距離Lはガスの流速をV、羽口径をD、係数をkとする
と次式の関係にある。
FIG. 6 is a diagram illustrating the implementation of the present invention as viewed from above inside the vacuum chamber. Eight lower chamber tuyeres are provided, and air bubbles are distributed throughout the vacuum chamber. The distance L that the bubbles reach has the following relationship, where V is the gas flow velocity, D is the tuyer diameter, and k is the coefficient.

【数2】[Math 2]

【0017】したがって吹込みの流速Vを変えれば気泡
到達距離を変えられる。本発明のガス吹込みノズルにお
いては共鳴管の長さlを変えれば粗密波の周波数が変わ
り気泡の大きさも変わるので、先に述べたようにlを調
整できるようにしておけば気泡の大きさと気泡到達距離
は別個独立に変化する。
Therefore, by changing the blowing flow rate V, the bubble reach distance can be changed. In the gas injection nozzle of the present invention, changing the length l of the resonant tube changes the frequency of compression waves and changes the size of the bubbles, so as mentioned earlier, if l is adjustable, the size of the bubbles and The bubble reach distance varies independently.

【0018】[0018]

【実施例】転炉にて吹錬を完了した炭素量200ppm
の溶鋼250tを本発明の方法を適用したRH脱ガス装
置で処理した。下部槽羽口は8本あり、羽口径は3.5
ミリメートルで羽口ガス圧は9気圧(ゲージ圧)である
。アルゴンガス流量は3000l/分、気流マッハ数は
2.3で、粗密波の周波数は20kHzである。その他
に上昇管羽口からはリフトガスを吹込んでいるが、これ
は従来からのものでアルゴンガス流量は1500l/分
である。その結果を下部槽羽口からのアルゴンガス吹込
みを行なわない従来技術と対比して表1に示す。これで
わかるように本発明の方法によれば脱炭反応が促進され
、従来法に比べ短時間で10ppm以下の極低炭素鋼を
溶製することができた。
[Example] 200 ppm of carbon after blowing in a converter
250 tons of molten steel was treated with an RH degasser to which the method of the present invention was applied. There are 8 tuyeres in the lower tank, and the tuyere diameter is 3.5.
The tuyere gas pressure in millimeters is 9 atmospheres (gauge pressure). The argon gas flow rate was 3000 l/min, the air flow Mach number was 2.3, and the compression wave frequency was 20 kHz. In addition, lift gas is injected from the riser tuyeres, but this is a conventional method with an argon gas flow rate of 1500 l/min. The results are shown in Table 1 in comparison with the conventional technique in which argon gas is not blown from the lower tank tuyere. As can be seen, according to the method of the present invention, the decarburization reaction was promoted, and an extremely low carbon steel of 10 ppm or less could be produced in a shorter time than the conventional method.

【表1】[Table 1]

【0019】[0019]

【発明の効果】本発明によれば真空槽下部において不活
性ガスを粗密波状に吹込むので微細な気泡を真空槽内全
域に分布させることができ、溶鋼を迅速に極低炭素化す
ることが可能である。さらに気泡微細化によりスプラッ
シュが軽減され、下部槽付着地金量も低下させることが
できる。
[Effects of the Invention] According to the present invention, since the inert gas is blown into the lower part of the vacuum chamber in a wave pattern, fine air bubbles can be distributed throughout the vacuum chamber, and molten steel can be rapidly reduced to an extremely low carbon value. It is possible. Furthermore, by making the bubbles finer, splash can be reduced, and the amount of metal deposited in the lower tank can also be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のガス吹込み方法を実施するためのガス
吹込みノズルの一例を示す図
FIG. 1 is a diagram showing an example of a gas blowing nozzle for carrying out the gas blowing method of the present invention.

【図2】本発明のガス吹込み方法による気泡の生成状態
を示す図
[Fig. 2] A diagram showing the state of bubble generation by the gas blowing method of the present invention.

【図3】従来のガス吹込み方法による気泡の生成状態を
示す図
[Fig. 3] Diagram showing the state of bubble generation by the conventional gas blowing method

【図4】従来からのRH真空脱ガス装置の断面図[Figure 4] Cross-sectional view of a conventional RH vacuum degassing device

【図5
】本発明のガス吹込み方法を実施するための真空槽の断
面図
[Figure 5
] Cross-sectional view of a vacuum chamber for carrying out the gas blowing method of the present invention

【図6】本発明を実施したときの真空槽内部を上から見
た図
[Figure 6] A top view of the inside of the vacuum chamber when implementing the present invention

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  真空槽に溶鋼を吸上げて精練を行なう
極低炭素鋼の溶製方法において、真空槽下部の側壁に1
または2以上の下部槽羽口を設け、不活性ガスを粗密波
状に吹込むことを特徴とする極低炭素鋼の溶製方法。
Claim 1: In a method for producing ultra-low carbon steel in which molten steel is sucked up into a vacuum chamber and smelted, a
Alternatively, a method for producing ultra-low carbon steel, which is characterized by providing two or more lower tank tuyeres and blowing inert gas in a dense wave pattern.
JP12279891A 1991-04-26 1991-04-26 Production of ultralow carbon steel Withdrawn JPH04325622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12279891A JPH04325622A (en) 1991-04-26 1991-04-26 Production of ultralow carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12279891A JPH04325622A (en) 1991-04-26 1991-04-26 Production of ultralow carbon steel

Publications (1)

Publication Number Publication Date
JPH04325622A true JPH04325622A (en) 1992-11-16

Family

ID=14844899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12279891A Withdrawn JPH04325622A (en) 1991-04-26 1991-04-26 Production of ultralow carbon steel

Country Status (1)

Country Link
JP (1) JPH04325622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102816896A (en) * 2012-08-24 2012-12-12 马钢(集团)控股有限公司 Straight barrel type vacuum refining device and use method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102816896A (en) * 2012-08-24 2012-12-12 马钢(集团)控股有限公司 Straight barrel type vacuum refining device and use method
JP2015526598A (en) * 2012-08-24 2015-09-10 ▲馬▼▲鋼▼(集▲団▼)控股有限公司 Straight body type vacuum refining apparatus and method of using the same

Similar Documents

Publication Publication Date Title
JPH04325622A (en) Production of ultralow carbon steel
KR930011671B1 (en) Method of producting ultra-low-carbon steel
JPH01127624A (en) Method and apparatus for refining molten metal by ultrasonic wave
JPH04325621A (en) Method for smelting extremely low carbon steel
JP2582316B2 (en) Melting method of low carbon steel using vacuum refining furnace
JP2648769B2 (en) Vacuum refining method for molten steel
JP3377325B2 (en) Melting method of high cleanness ultra low carbon steel
EP0803579A1 (en) Process for the vacuum refining of metal and associated device
JP2001316719A (en) Method for melting extra-low carbon steel and facility therefor
JPH04325619A (en) Method for blowing gas into molten metal and gas blowing nozzle
JPS60141818A (en) Production of dead soft steel by vacuum degassing treatment
JPH0718322A (en) Method for refining highly clean aluminum-killed steel
JPH02145717A (en) Circulating flow type vacuum degassing apparatus
JP2002180124A (en) Method for refining molten metal
JP2000045013A (en) Rh vacuum refining method
SU1216218A1 (en) Method of outfurnace refining of metal melt
JP4466287B2 (en) Method of refining molten steel under reduced pressure and top blowing lance for refining
JPH08269534A (en) Vacuum degassing treatment device for molten steel
JP2006070292A (en) Method for refining molten steel under reduced pressure and top-blowing lance for refining
Shinme et al. Removal of Impurities in Molten Steel by the Powder Top Blowing Method Under Reduced Pressure
JPH0480317A (en) Method and device for producing dead soft steel
JPH05311226A (en) Reduced pressure-vacuum degassing refining method for molten metal
JPS57137415A (en) Steel making method for chromium-containing steel
JPH0499119A (en) Method and apparatus for producing dead soft steel
JPH02197515A (en) Smelting method for dead soft steel having high cleanness

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711