JPH04325621A - Method for smelting extremely low carbon steel - Google Patents

Method for smelting extremely low carbon steel

Info

Publication number
JPH04325621A
JPH04325621A JP12279791A JP12279791A JPH04325621A JP H04325621 A JPH04325621 A JP H04325621A JP 12279791 A JP12279791 A JP 12279791A JP 12279791 A JP12279791 A JP 12279791A JP H04325621 A JPH04325621 A JP H04325621A
Authority
JP
Japan
Prior art keywords
gas
extremely low
low carbon
carbon steel
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12279791A
Other languages
Japanese (ja)
Inventor
Hidemi Watanabe
秀美 渡辺
Nobuhiro Takagi
信浩 高木
Hideki Yamauchi
秀樹 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12279791A priority Critical patent/JPH04325621A/en
Publication of JPH04325621A publication Critical patent/JPH04325621A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To provide a method for quickly mass-smelting a steel having extremely low carbon and extremely low contents of gaseous impurities of nitrogen, hydrogen, etc., in a vacuum degassing treatment device of RH, DH, etc. CONSTITUTION:In the method for smelting the extremely low carbon steel by executing refining while sucking up the molten steel into a vacuum vessel, inert gas is injected like compression waves from one or two or more of immersion pipe tuyeres in the vacuum vessel. Further, injecting gas pressures in two or more of the immersion pipe tuyeres are made in two or more different steps at high and low, and by changing bubble arrival distance in each tuyere, fine bubbles can be formed and further, since the bubble arrival distance can be adjusted, the high speed treatment of the extremely low carbon steel can be attained with the increases of the circulating molten steel flow rate and gas- liquid interface.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はRH,DH等の真空脱ガ
ス処理装置において、極低炭素で窒素、水素等ガス不純
物が極く少ない鋼を迅速に且つ大量に溶製する方法に関
するものである。
[Industrial Application Field] The present invention relates to a method for quickly and large quantities of steel having extremely low carbon and containing very few gaseous impurities such as nitrogen and hydrogen in vacuum degassing equipment such as RH and DH. be.

【0002】0002

【従来の技術】連続焼鈍プロセスによる冷延鋼板に対す
る高加工性の要求の増大、メッキ鋼板における良メッキ
性確保の観点より、これに適合する素材として炭素含有
量10ppmないし数ppmの極低炭素鋼が要求される
ようになった。またフェライト系ステンレス鋼において
は極低炭素(30ppm以下)、窒素(50ppm以下
)にすれば耐食性が飛躍的に向上することが知られてい
る。
[Prior Art] From the viewpoint of increasing demands for high workability for cold-rolled steel sheets through continuous annealing processes and ensuring good plating properties for plated steel sheets, ultra-low carbon steel with a carbon content of 10 ppm to several ppm is suitable as a material. is now required. It is also known that in ferritic stainless steel, corrosion resistance can be dramatically improved by using extremely low carbon (30 ppm or less) and nitrogen (50 ppm or less).

【0003】従来から極低炭素鋼はRH,DH等の真空
脱ガス装置により溶製されてきた。図4は従来からのR
H脱ガス装置を示す説明図である。溶鋼鍋11中の溶鋼
10は上昇管3に設けられたガス吹き込みノズル2から
の不活性ガスにより真空槽8に吸引される。真空槽中の
溶鋼は下降管12を通して溶鋼鍋に戻るがこの間に脱炭
反応や脱ガス反応が行なわれる。
Conventionally, ultra-low carbon steels have been produced using vacuum degassing equipment such as RH and DH. Figure 4 shows the conventional R
It is an explanatory view showing an H degassing device. Molten steel 10 in molten steel ladle 11 is sucked into vacuum chamber 8 by inert gas from gas blowing nozzle 2 provided in riser pipe 3. The molten steel in the vacuum tank returns to the molten steel ladle through the downcomer pipe 12, during which decarburization and degassing reactions take place.

【0004】これらの装置では通常1Torr以下の真
空度で処理が行なわれている。真空脱ガス装置における
脱炭素のメカニズムは真空槽内CO分圧が極度に低いた
め(約0.002Torr以下)溶鋼中の酸素と炭素が
結びつきCOガスとなり、排ガスとして排出され、結果
として溶鋼中の炭素濃度が低下する。さらには溶鋼中に
不活性ガスを吹き込むことによりCO分圧ゼロの不活性
ガス気泡界面でも下記反応が進行するため脱炭素反応が
促進される。また窒素、水素も雰囲気中のこれらガスの
分圧が低下することにより同時に鋼中から除去される。
[0004] These devices usually perform processing at a vacuum level of 1 Torr or less. The mechanism of decarbonization in vacuum degassing equipment is that because the partial pressure of CO in the vacuum chamber is extremely low (approximately 0.002 Torr or less), oxygen and carbon in the molten steel combine to form CO gas, which is discharged as exhaust gas. Carbon concentration decreases. Furthermore, by blowing an inert gas into the molten steel, the following reaction proceeds even at the inert gas bubble interface where the CO partial pressure is zero, so that the decarbonization reaction is promoted. Further, nitrogen and hydrogen are simultaneously removed from the steel as the partial pressure of these gases in the atmosphere decreases.

【化1】[Chemical formula 1]

【0005】現状の真空脱ガス装置における脱炭処理は
槽内の真空度と溶鋼循環用のアルゴンガスによるもので
あり、400ppmの溶鋼中炭素を約15分で約30p
pmまで低下させる能力を有する。しかしながら、前記
の極低炭素鋼大量溶製の要求に対応するためにはさらな
る脱炭促進技術が、特に脱炭反応速度の低下する30p
pm以下の脱炭処理においては必須となる。
[0005] The decarburization process in the current vacuum degassing equipment is based on the degree of vacuum in the tank and the use of argon gas for circulation of molten steel, and 400 ppm of carbon in molten steel is reduced to about 30 ppm in about 15 minutes.
It has the ability to reduce to pm. However, in order to meet the demand for mass production of ultra-low carbon steel, further decarburization promotion technology is needed, especially at 30p, which reduces the decarburization reaction rate.
It is essential in decarburization treatment below pm.

【0006】脱炭反応速度をより大きくするには反応界
面積を大きくとるか、真空脱ガス装置における溶鋼循環
量を大きくとることが重要となる。しかしながら溶鋼循
環量を大きくするためにアルゴンガスを大量に吹込むと
図4に示すように槽内のスプラッシュ9が激しくなり地
金付着13により操業困難な状態になる。これらの問題
点に対し特開平2−213410号公報にあるように脱
ガス槽下部側壁において不活性ガスを複数の小径羽口よ
り吹込み溶鋼に有効な攪拌を与え、反応界面積を増大し
、目詰まりなく吹込む方法がある。
[0006] In order to further increase the decarburization reaction rate, it is important to increase the reaction interfacial area or to increase the amount of molten steel circulating in the vacuum degasser. However, if a large amount of argon gas is blown in to increase the amount of molten steel circulating, as shown in FIG. 4, the splash 9 in the tank becomes intense and the base metal adhesion 13 makes operation difficult. To solve these problems, as disclosed in Japanese Patent Application Laid-Open No. 2-213410, inert gas is blown into the lower side wall of the degassing tank through a plurality of small-diameter tuyeres to provide effective stirring to the molten steel and increase the reaction interface area. There is a way to blow in without clogging.

【0007】また、特開平2−80507号公報にある
ように浸漬管に径の異なるガス吹込み羽口を複数個設け
、気泡の到達距離を制御し、ガスを循環させる能力すな
わちガスリフト力を向上させ還流量を増加させる方法が
ある。さらにまた、特開平2−173205号公報にあ
るように浸漬管のガス吹込み羽口近傍の浸漬管周囲に超
音波加振子を設け、吹込み不活性ガスを微細化し、ガス
リフト効果を向上させる方法もある。
Furthermore, as disclosed in Japanese Patent Application Laid-Open No. 2-80507, a plurality of gas blowing tuyeres with different diameters are provided in the immersion pipe to control the distance that bubbles reach and improve the ability to circulate the gas, that is, the gas lift force. There is a method to increase the reflux amount. Furthermore, as disclosed in Japanese Unexamined Patent Publication No. 2-173205, an ultrasonic vibrator is provided around the immersion tube near the gas injection tuyere of the immersion tube to make the blown inert gas finer and improve the gas lift effect. There is also.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
方法では吹込みガス気泡径を微細化する場合、吹込み羽
口を小径化するか、吹込みガスを高圧下で吹き込むか、
吹込んだガスを超音波等で微細化するかである。吹込み
羽口を3mm以下に小径化すると微細化はするもののノ
ズル詰まり等の問題により長期間の安定吹込みが困難で
ある。また小径化に伴い吹込み圧力が増加し、配管の高
圧化による設備費の増加につながる。また超音波により
吹込み気泡を微細化する場合振動子の耐熱性等解決すべ
き問題がある。
[Problems to be Solved by the Invention] However, in the conventional method, when making the diameter of the blown gas bubbles finer, it is necessary to either reduce the diameter of the blowing tuyere or blow the blown gas under high pressure.
Either the injected gas can be atomized using ultrasonic waves, etc. If the diameter of the blowing tuyere is reduced to 3 mm or less, although it becomes finer, stable blowing over a long period of time is difficult due to problems such as nozzle clogging. In addition, the blowing pressure increases as the diameter becomes smaller, leading to an increase in equipment costs due to higher pressure in the piping. Furthermore, when blowing bubbles into fine particles using ultrasonic waves, there are problems to be solved, such as the heat resistance of the vibrator.

【0009】[0009]

【課題を解決するための手段】本発明は前記従来技術の
問題点を有利に解決するためのものであって、RH,D
H等の真空槽に溶鋼を吸上げて精練を行なう極低炭素鋼
の溶製方法において、真空槽の1または2以上の浸漬管
羽口より不活性ガスを粗密波状に吹込むことを特徴とす
る。また、2以上の浸漬管羽口の吹込みガス圧を高低2
段階またはそれ以上の段階で異ならせ、気泡到達距離を
羽口によって変えることを特徴とする。
[Means for Solving the Problems] The present invention is intended to advantageously solve the problems of the prior art, and provides RH, D
A method for producing ultra-low carbon steel in which molten steel is sucked up into a vacuum tank such as H for scouring, and is characterized by blowing inert gas in a dense wave form from one or more immersion tube tuyeres of the vacuum tank. do. In addition, the blowing gas pressure of two or more immersion tube tuyeres can be adjusted to high or low.
It is characterized by having different stages or higher stages, and changing the bubble reach distance depending on the tuyere.

【0010】0010

【作用】図3は上昇管の側壁に設けられた浸漬管羽口1
を示す断面図であって4は耐火物、5は鉄皮である。従
来の方法でガスを吹込む場合には、図3示すように浸漬
管羽口1から溶融金属10中にガス15が気泡16とな
って離脱するとき、膨らんで表面張力の平衡が保たれな
くなったところで切れる。ところが本発明の方法によれ
ば、図2に示すようにガス15が粗密波Wとなって浸漬
管羽口1から出るので細かい気泡となって溶融金属中に
離脱する。すなわち密な部分では圧力が高く粗な部分で
は圧力が低くなっているので、粗密波の圧力の振幅が十
分大きければ粗な部分ではいわばくさび効果により羽口
で流れが切られ細かい気泡を形成できる。
[Function] Figure 3 shows the immersion pipe tuyere 1 installed on the side wall of the riser pipe.
4 is a cross-sectional view showing a refractory, and 5 is an iron skin. When gas is blown using the conventional method, as shown in FIG. 3, when the gas 15 leaves the immersion tube tuyere 1 into the molten metal 10 as bubbles 16, they expand and the surface tension balance is no longer maintained. It breaks at certain places. However, according to the method of the present invention, as shown in FIG. 2, the gas 15 exits from the immersion tube tuyere 1 in the form of a compression wave W, so that it becomes fine bubbles and separates into the molten metal. In other words, the pressure is high in dense areas and low in rough areas, so if the pressure amplitude of the compression wave is large enough, the flow is cut off at the tuyeres in rough areas due to a so-called wedge effect, forming fine bubbles. .

【0011】本発明の方法を実施するためにはガスの流
れに粗密波を発生する手段が必要である。粗密波は音波
に他ならないから、単純にいえば「笛」を羽口への配管
途中に置けばよい。しかしながら羽口で気泡を確実に細
かくするには粗密の圧力差が十分に大きい必要がある。 したがってガスの流れを効率よく粗密波に変換する機構
が必要となる。
In order to carry out the method of the present invention, means for generating compression waves in the gas flow is required. Compression waves are nothing but sound waves, so simply put, a ``whistle'' can be placed in the middle of the pipe to the tuyere. However, in order to reliably make the bubbles smaller at the tuyere, the pressure difference between the density and density needs to be sufficiently large. Therefore, a mechanism is required to efficiently convert the gas flow into compression waves.

【0012】本発明者等は粗密波発生のための装置をい
くつか開発したが、図1はそのうちの一例を適用した浸
漬管部を示したものである。図1に示すように環流用不
活性ガス吹込みノズルとして直交した円管ノズルを用い
、数気圧以上のガスを吹くことにより粗密波を吹込みガ
ス気流中に発生させる。すなわちノズル2のガス供給側
配管20と浸漬管羽口1に至る配管22とを交叉して結
合し、前記ガス供給側配管20を前記交叉した部分23
より延長して閉塞して共鳴管21とする。一方前記浸漬
管羽口1に至る配管22を前記交叉した部分23より延
長して閉塞し空間部24を形成する。
The present inventors have developed several devices for generating compressional waves, and FIG. 1 shows an immersion tube section to which one example of the devices is applied. As shown in FIG. 1, orthogonal circular pipe nozzles are used as inert gas injection nozzles for reflux, and compression waves are generated in the blown gas stream by blowing gas at several atmospheres or more. That is, the gas supply side piping 20 of the nozzle 2 and the piping 22 leading to the immersion tube tuyere 1 are crossed and connected, and the gas supply side piping 20 is connected to the crossed portion 23.
The resonance tube 21 is further extended and closed. On the other hand, the piping 22 leading to the immersion tube tuyere 1 is extended from the intersecting portion 23 and closed to form a space 24.

【0013】このガス吹込みノズルにおいて、ガス供給
側配管20から超音速で供給された不活性ガス15は交
叉した部分23において空間部24により広くなった空
間に開放される。これにより圧力の不安定現象を生じ粗
密波を発生する。このとき共鳴管21が設けられている
のでこれの寸法で定まる共鳴現象を生じ、強力な粗密波
を発生する。共鳴の周波数fは音速をc[m/s]、共
鳴管の長さ、径をそれぞれl、d[m]としたとき次式
で与えられる。
In this gas blowing nozzle, the inert gas 15 supplied from the gas supply pipe 20 at supersonic speed is released into a space expanded by a space 24 at the intersection 23 . This causes pressure instability and generates compression waves. At this time, since the resonance tube 21 is provided, a resonance phenomenon determined by the dimensions of the resonance tube 21 occurs, and a strong compressional wave is generated. The resonance frequency f is given by the following equation, where the speed of sound is c [m/s], and the length and diameter of the resonance tube are l and d [m], respectively.

【数1】[Math 1]

【0014】気泡の大きさはガスの共鳴周波数を高くす
る程小さくなるが、共鳴周波数は通常10から100k
Hz程度が望ましい。また吹込みガスの流速は2から3
マッハにすることが望ましい。また、従来の方法では浸
漬管羽口からの流量を増大させていくと、あるところか
らは脱炭反応速度向上効果がほとんど無くなる。これは
気泡同志が衝突合体して大きくなる現象が生じやすくな
ること、いわゆるエアカーテン現象を起こし気泡が羽口
から奥の方へは到達せずに上方へ吹き抜けてしまうこと
などによるものと考えられる。
The size of the bubble becomes smaller as the resonance frequency of the gas increases, but the resonance frequency is usually 10 to 100k.
A frequency of around Hz is desirable. Also, the flow rate of the blown gas is 2 to 3
Mach is desirable. Furthermore, in the conventional method, as the flow rate from the tuyere of the immersion tube is increased, the effect of improving the decarburization reaction rate becomes almost nonexistent after a certain point. This is thought to be due to the fact that bubbles tend to collide and coalesce and become larger, and the so-called air curtain phenomenon occurs, causing the bubbles to blow upward from the tuyere without reaching the inner part of the tuyere. .

【0015】これに対し本発明の2以上の浸漬管羽口の
吹込みガス圧を高低2段階またはそれ以上の段階で異な
らせる方法によれば上記問題を解決できる。すなわち図
5は上昇管を上方から見た図、図6はそのA−A’断面
図であるが、これで見るように気泡16の到達距離の大
きな羽口と小さな羽口とが交互に設けられている。これ
により上昇管内で気泡が一ヶ所に集中するのを防止でき
る。気泡の到達距離Lはガスの流速をV、羽口径をD、
係数をkとすると次式の関係にある。
On the other hand, the above-mentioned problem can be solved by the method of the present invention in which the pressure of the blown gas at two or more tuyeres of the immersion tube is varied in two or more levels of high and low levels. In other words, FIG. 5 is a view of the riser pipe viewed from above, and FIG. 6 is a cross-sectional view taken along line A-A'. It is being This prevents air bubbles from concentrating in one place within the riser pipe. The reach distance L of the bubble is determined by the gas flow velocity being V, the tuyer diameter being D,
When the coefficient is k, the relationship is as shown in the following equation.

【数2】[Math 2]

【0016】したがって、低圧側吹込み管26と高圧側
吹込み管27とを設け流速Vを変えれば気泡到達距離を
変えられる。本発明のガス吹込みノズルにおいては共鳴
管の長さlを変えれば粗密波の周波数が変わり気泡の大
きさも変わるので、lを調整できるようにしておけば気
泡の大きさと気泡到達距離は別個独立に変えられる。
Therefore, by providing the low-pressure side blowing pipe 26 and the high-pressure side blowing pipe 27 and changing the flow velocity V, the bubble reach distance can be changed. In the gas blowing nozzle of the present invention, changing the length l of the resonant tube changes the frequency of compression waves and changes the bubble size, so if l is adjustable, the bubble size and bubble reach distance are independent. can be changed to

【0017】このように複数のノズルの各々の気泡到達
距離を調整し、エアカーテン現象を抑制することにより
、循環溶鋼流量の増と気泡微細化による気液界面増によ
り数ppmの極低炭素鋼の高速処理が可能となる。この
方法は真空脱ガス炉としてよく知られているRH式真空
脱ガス装置、DH式真空脱ガス装置等の浸漬管に適用で
きる。
By adjusting the air bubble reach distance of each of the plurality of nozzles in this way and suppressing the air curtain phenomenon, it is possible to increase the flow rate of circulating molten steel and increase the gas-liquid interface by making the bubbles finer, thereby producing ultra-low carbon steel of several ppm. This enables high-speed processing. This method can be applied to immersion tubes such as RH type vacuum degassing equipment and DH type vacuum degassing equipment, which are well known as vacuum degassing furnaces.

【0018】[0018]

【実施例】【Example】

実施例1 転炉にて吹錬を完了した炭素量400ppmの溶鋼25
0tを本発明の方法を適用したRH脱ガス装置で処理し
た。浸漬管の径は600ミリメートルで、羽口は3.5
ミリメートル径のものが8本ある。羽口ガス圧は7気圧
(ゲージ圧)でアルゴンガスを2500l/分吹込んだ
。気流マッハ数は約2で、粗密波の周波数は20kHz
である。ガス流を粗密波状にしない比較例とともに、結
果を実施例1として表1に示す。
Example 1 Molten steel 25 with a carbon content of 400 ppm that has been blown in a converter
0t was treated with an RH degasser to which the method of the present invention was applied. The diameter of the dip tube is 600 mm, and the tuyere is 3.5
There are 8 pieces of millimeter diameter. The tuyere gas pressure was 7 atmospheres (gauge pressure), and argon gas was blown at 2500 l/min. The airflow Mach number is approximately 2, and the compression wave frequency is 20kHz.
It is. The results are shown in Table 1 as Example 1 along with a comparative example in which the gas flow was not made into a corrugated shape.

【表1】[Table 1]

【0019】実施例2 吹込みガス圧を羽口によって高低2段階に変えた以外は
実施例1と同様の条件で実施した。すなわち8本の羽口
を4本ずつに分け、低圧側は5気圧、高圧側は9気圧と
した。流量は低圧側がマッハ1.7、高圧側がマッハ2
.3である。結果を表1に実施例2として示す。表1に
示すように本法により溶鋼の2次精練を行うと溶鋼の環
流量が増加しかつ吹込みガスが微細化されることで脱炭
反応が促進され、従来法に比べ短時間で10ppm以下
の極低炭素鋼を溶製することができた。
Example 2 The experiment was carried out under the same conditions as in Example 1, except that the blown gas pressure was changed to two levels, high and low, using the tuyere. That is, the eight tuyeres were divided into four tuyeres each, and the pressure was set at 5 atm on the low pressure side and 9 atm on the high pressure side. The flow rate is Mach 1.7 on the low pressure side and Mach 2 on the high pressure side.
.. It is 3. The results are shown in Table 1 as Example 2. As shown in Table 1, when secondary smelting of molten steel is performed using this method, the recirculation flow rate of molten steel increases and the blown gas becomes finer, thereby promoting the decarburization reaction and reducing the amount of molten steel to 10 ppm in a shorter time compared to the conventional method. We were able to produce the following ultra-low carbon steel.

【0020】[0020]

【発明の効果】以上述べてきたように、本発明によれば
真空脱ガス槽浸漬管より微細な気泡を浸漬管断面方向に
均一に吹込むことが可能となり、溶鋼循環量増、不活性
ガス気液界面積増により、溶鋼を迅速に極低炭素化する
ことが可能である。さらには気泡微細化により真空槽壁
への付着量も低減可能で安定して極低炭素鋼が溶製でき
る。
[Effects of the Invention] As described above, according to the present invention, it is possible to uniformly blow fine air bubbles in the cross-sectional direction of the immersion tube than in the immersion tube of a vacuum degassing tank, thereby increasing the circulation amount of molten steel and inert gas. By increasing the gas-liquid interface area, it is possible to quickly reduce the carbon content of molten steel to extremely low carbon. Furthermore, by making the bubbles finer, it is possible to reduce the amount of adhesion to the walls of the vacuum chamber, making it possible to stably produce ultra-low carbon steel.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明のガス吹込み方法を適用するための装置
を設けた上昇管断面図
[Fig. 1] A cross-sectional view of a riser pipe equipped with a device for applying the gas blowing method of the present invention.

【図2】本発明のガス吹込み方法による気泡の生成状態
を示す図
[Fig. 2] A diagram showing the state of bubble generation by the gas blowing method of the present invention.

【図3】従来のガス吹込み方法による気泡の生成状態を
示す図
[Fig. 3] Diagram showing the state of bubble generation by the conventional gas blowing method

【図4】従来からのRH真空脱ガス装置の断面図[Figure 4] Cross-sectional view of a conventional RH vacuum degassing device

【図5
】本発明のガス吹込み方法を適用するための装置を設け
た上昇管を上から見た図
[Figure 5
] A top view of a riser pipe equipped with a device for applying the gas blowing method of the present invention

【図6】図5のA−A’断面図[Figure 6] A-A' sectional view in Figure 5

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  真空槽に溶鋼を吸上げて精練を行なう
極低炭素鋼の溶製方法において、真空槽の1または2以
上の浸漬管羽口より不活性ガスを粗密波状に吹込むこと
を特徴とする極低炭素鋼の溶製方法。
Claim 1: In a method for producing ultra-low carbon steel in which molten steel is sucked up into a vacuum tank and smelted, an inert gas is blown into the vacuum tank in a dense wave form from one or more immersion tube tuyeres. Characteristic ultra-low carbon steel melting method.
【請求項2】  2以上の浸漬管羽口の吹込みガス圧を
高低2段階またはそれ以上の段階で異ならせ、気泡到達
距離を羽口によって変えることを特徴とする請求項1記
載の極低炭素鋼の溶製方法。
2. The ultra-low temperature control device according to claim 1, wherein the blowing gas pressure of two or more tuyeres of the immersion tube is varied in two or more levels of high and low levels, and the air bubble reach distance is varied depending on the tuyeres. Carbon steel melting method.
JP12279791A 1991-04-26 1991-04-26 Method for smelting extremely low carbon steel Withdrawn JPH04325621A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12279791A JPH04325621A (en) 1991-04-26 1991-04-26 Method for smelting extremely low carbon steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12279791A JPH04325621A (en) 1991-04-26 1991-04-26 Method for smelting extremely low carbon steel

Publications (1)

Publication Number Publication Date
JPH04325621A true JPH04325621A (en) 1992-11-16

Family

ID=14844872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12279791A Withdrawn JPH04325621A (en) 1991-04-26 1991-04-26 Method for smelting extremely low carbon steel

Country Status (1)

Country Link
JP (1) JPH04325621A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8669909B2 (en) 2011-11-30 2014-03-11 Panasonic Corporation Antenna, antenna apparatus, and communication apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8669909B2 (en) 2011-11-30 2014-03-11 Panasonic Corporation Antenna, antenna apparatus, and communication apparatus

Similar Documents

Publication Publication Date Title
JPH04325621A (en) Method for smelting extremely low carbon steel
JP2007031820A (en) Vacuum-degassing treating method for molten steel
JPH01127624A (en) Method and apparatus for refining molten metal by ultrasonic wave
JPH04325622A (en) Production of ultralow carbon steel
JP2582316B2 (en) Melting method of low carbon steel using vacuum refining furnace
JP2648769B2 (en) Vacuum refining method for molten steel
JP4466287B2 (en) Method of refining molten steel under reduced pressure and top blowing lance for refining
JP3377325B2 (en) Melting method of high cleanness ultra low carbon steel
JP2006070292A (en) Method for refining molten steel under reduced pressure and top-blowing lance for refining
JPH09209021A (en) Molten iron refining lance and method
JP2003041316A (en) Decompression refining method
JPH07238312A (en) Production of ultra low carbon steel and vacuum degassing equipment
JPH02173205A (en) Submerged tube for rh-degassing apparatus
JP4470673B2 (en) Vacuum decarburization refining method for molten steel
JPH07157816A (en) Method for refining moltenmetal
JPH0280507A (en) Submerged tube in vacuum degassing apparatus
JPH0480317A (en) Method and device for producing dead soft steel
JP2988737B2 (en) Manufacturing method of ultra-low carbon steel
JPH05339624A (en) Smelting method for dead soft steel by circular column type ladle degassing device
JP2001316719A (en) Method for melting extra-low carbon steel and facility therefor
JPS61270321A (en) Method for blowing gas to liquid
JP2000045013A (en) Rh vacuum refining method
JP3290794B2 (en) Molten steel refining method under reduced pressure
JPH0696738B2 (en) Vacuum degassing apparatus for ultra-low carbon steel production and operating method
JPH02145717A (en) Circulating flow type vacuum degassing apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711