JPH04325616A - Method for operating bottom blowing converter - Google Patents

Method for operating bottom blowing converter

Info

Publication number
JPH04325616A
JPH04325616A JP12191391A JP12191391A JPH04325616A JP H04325616 A JPH04325616 A JP H04325616A JP 12191391 A JP12191391 A JP 12191391A JP 12191391 A JP12191391 A JP 12191391A JP H04325616 A JPH04325616 A JP H04325616A
Authority
JP
Japan
Prior art keywords
tuyere
condition
blowing
bottom blowing
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12191391A
Other languages
Japanese (ja)
Inventor
Michihide Ando
道英 安藤
Hikofumi Taniishi
彦文 谷石
Hideyuki Ando
秀行 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Plant Designing Corp
Original Assignee
Nittetsu Plant Designing Corp
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Plant Designing Corp, Nippon Steel Corp filed Critical Nittetsu Plant Designing Corp
Priority to JP12191391A priority Critical patent/JPH04325616A/en
Publication of JPH04325616A publication Critical patent/JPH04325616A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To enable the adjustment of the charging quantity of a slag coating material by recognizing the erosion condition of refractories around a tuyere and to perfectly eliminate operational trouble due to the refractory erosion around the tuyere with a technique enabling labor-saving. CONSTITUTION:In the operational method for restraining refractory erosion around the bottom blowing tuyere in a bottom blowing converter, a thermocouple is embedded in the vicinity of the bottom blowing tuyere, and besides the max. temp. in the bottom blowing converter operation from the thermocouple, steel tapping temp. and killing time are used as the furnace operational condition, and the furnace operational condition, membership function at a consequence part and theoretical matrix at condition and the consequence are stored in a calculator and corrected in the weight relation indicating the influenced degree of various operational condition of the furnace to the tuyere condition to obtain the tuyere condition from the composed result.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、底吹き転炉で底吹き羽
口まわりの耐火物溶損を抑制する操業方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operating method for suppressing erosion of refractories around a bottom-blowing tuyere in a bottom-blowing converter.

【0002】0002

【従来の技術】従来、底吹き転炉の操業方法で炉内に溶
銑を入れ、上吹きランスと底吹き羽口とからガスを吹込
み吹錬し、その後合金調整後、出鋼するわけであるが、
出鋼から炉内に溶銑を入れる間に底吹き羽口まわりに、
羽口まわりの耐火物保護のため一定量のスラグコーティ
ング材を付着展開するか吹き付けることが一般的である
。しかしながら、その作業の程度方法については、オペ
レーターの知識ベースをもとに判断され実行されており
、従来統一したパラメーターのもとに管理されてはいな
いのが実状である。ところで最近、人間の経験的知識を
有効に信用するシステム技術として知識工学が注目を浴
びている。これを応用したES(エキスパートシステム
)には、従来のシステム技術を補完する次の如き特徴、
■人間の経験的知識を知識ベースとして格納できる、■
知識を断片的に扱い易いので知識の追加、修正が容易で
ある、などがある。このような知識ベースを用いて結果
を推論する方法としては周知の演繹的推論があり、これ
はXがAならYはBである(知識)、XはAである(事
実)、それならYはBである(結論)というものである
が、これはあいまいさを含んでいる知識、事実には適用
しにくい(条件部のマッチングがとれずに結論の導出が
不可能、になりやすい)。これに対してはファジィ推論
という手法が検討されている。ファジイ推論ではXがA
ならYはBである(知識)、XはA′である(事実)、
それならYはB′である(結論)とする。ここでA、A
′、B、B′は境界のあいまいな言語情報(ファジイ集
合)である。ファジイ集合は図4の如きメンバーシップ
関数で表現される。
[Prior Art] Conventionally, in the operating method of a bottom-blowing converter, hot metal is charged into the furnace, gas is blown into the furnace through the top-blowing lance and the bottom-blowing tuyere, and then the alloy is adjusted before being tapped. Yes, but
While pouring hot metal into the furnace after tapping, around the bottom blowing tuyere,
To protect the refractories around the tuyeres, it is common to deposit or spray a certain amount of slag coating material. However, the extent of the work is determined and executed based on the operator's knowledge base, and the reality is that it has not been managed based on conventionally unified parameters. Recently, knowledge engineering has been attracting attention as a system technology that effectively relies on human experiential knowledge. The ES (Expert System) that applies this technology has the following features that complement conventional system technology:
■Human experiential knowledge can be stored as a knowledge base,■
It is easy to add and modify knowledge because it is easy to treat knowledge in fragments. A well-known method for inferring results using such a knowledge base is deductive reasoning, which states that if X is A, then Y is B (knowledge), X is A (fact), then Y is B (conclusion), but this is difficult to apply to knowledge or facts that contain ambiguity (it is likely that the conditional parts cannot be matched, making it impossible to draw a conclusion). For this purpose, a method called fuzzy inference is being considered. In fuzzy reasoning, X is A
Then Y is B (knowledge), X is A' (fact),
Then, it is assumed that Y is B' (conclusion). Here A, A
', B, and B' are linguistic information (fuzzy set) with ambiguous boundaries. A fuzzy set is expressed by a membership function as shown in FIG.

【0003】0003

【発明が解決しようとする課題】底吹き羽口まわりの耐
火物溶損状況は、溶鋼の成分系、吹錬中の溶鋼温度、処
理時間、溶鋼上に浮遊するスラグの成分系、残留スラグ
量等、種々な因子によって異なる。このような状況では
一定量のスラグコーティング材を単に付着展開するか吹
き付けるという点では底吹き羽口まわりの耐火物溶損状
況は改善せず、溶損過多による底吹き転炉下部より溶鋼
洩れが発生し、操業トラブルがさけられない状試である
[Problem to be solved by the invention] The state of corrosion of refractories around the bottom blowing tuyeres is determined by the composition of the molten steel, the temperature of the molten steel during blowing, the processing time, the composition of the slag floating on the molten steel, and the amount of residual slag. etc., depending on various factors. In such a situation, simply depositing or spraying a certain amount of slag coating material will not improve the corrosion of the refractory around the bottom blowing tuyere, and excessive melting will cause molten steel to leak from the bottom of the bottom blowing converter. This is a situation where operational troubles cannot be avoided.

【0004】(実施例及び作用)図1は本発明の実施例
における実施態様例を示す上底吹き転炉の概要図である
。上底吹き転炉は鉄皮3の内部に耐火物1があって、底
吹き羽口耐火物2から、Ar、CO2、N2及びO2ガ
スを吹き込む。合せて、上吹きランス10よりO2を吹
き込む。底吹き供給ガス配管4に設置した圧力計5と流
量計6から供給ガスの状態を監視し、羽口に埋設した熱
電対7からのデーターを採取することで、鋼浴11の温
度分布又サブランス12にて溶鋼温度を求め演算器8で
、底吹き羽口耐火物上に敷設するスラグコーティング材
の量を求める。
(Embodiment and operation) FIG. 1 is a schematic diagram of a top-bottom blowing converter showing an embodiment of the present invention. A top-bottom blowing converter has a refractory 1 inside a steel shell 3, and Ar, CO2, N2, and O2 gases are blown into it from a bottom-blowing tuyere refractory 2. At the same time, O2 is blown in from the top blow lance 10. By monitoring the condition of the supply gas from the pressure gauge 5 and flowmeter 6 installed in the bottom blowing supply gas piping 4, and by collecting data from the thermocouple 7 buried in the tuyere, the temperature distribution of the steel bath 11 and the sub-balance can be determined. At step 12, the temperature of the molten steel is determined, and at the calculator 8, the amount of slag coating material to be laid on the bottom-blown tuyere refractory is determined.

【0005】図2(a),(b),(c),(d),(
e)は本発明による底吹きガス羽口の状態を示す図であ
る。パターン1については羽口の状態はマッシュルーム
13が健全で羽口15および羽口周囲16が溶損されて
いないが全体がスラグでおおわれておりこの状態のまま
スラグコーティングを行いつづけると、羽口からのガス
が羽口先端のマッシュルーム13を通らず周囲レンガ1
6とスラグ14の間を通り鋼浴11の上部へガスが抜け
、冶金効果を落としたり、レンガのスポーリング損耗等
の問題を招く。パターン2については羽口の状態はマッ
シュルーム13が健全で羽口15および羽口周囲16が
溶損されていない時でスラグ14が適度にコーティング
されている。この状態がベストである。そのために前チ
ャージの溶融スラグを適量残し数回程度炉を振りコーテ
ィングする。この作業を以下スラグコーティング作業と
いう。パターン3については羽口の状態はマッシュルー
ム13は健全であるが羽口15および羽口周囲16が露
出しており溶損される直前の状態でスラグ14のコーテ
ィング層が全くない。そのためにスラグコーティング作
業時、スラグの粘性向上のため生石灰、軽ドロを適量添
加する。パターン4については羽口の状態はマッシュル
ーム13は溶損し、欠落、かつ羽口周囲16が溶損され
17、羽口15は溶損直前の状態で、このまま放置する
と羽口の大溶損、欠落を招く。そのためにスラグコーテ
ィング作業時、生石灰、軽ドロ、生ドロを適量添加する
。充分かつ適切な補修が必要である。パターン5につい
てはマッシュルーム13もなく、羽口15、炉底および
羽口まわりレンガの溶損部17が局部的に進行しており
、このまま放置すると炉底からの溶鋼もれという重大事
故を招く。そのためにスラグコーティング作業時、生石
灰、軽ドロ、生ドロを多量に添加し、かつ羽口15より
不活性ガスを流し羽口埋りを防止しながら、17の炉底
および羽口まわりレンガの溶損部を補修する。
FIGS. 2(a), (b), (c), (d), (
e) is a diagram showing the state of the bottom-blown gas tuyere according to the invention. Regarding pattern 1, the mushroom 13 is in good condition, and the tuyere 15 and the area around the tuyere 16 are not melted and damaged, but the entire tuyere is covered with slag, and if slag coating is continued in this state, the tuyere The gas does not pass through the mushroom 13 at the tip of the tuyere and the surrounding brick 1
Gas escapes to the upper part of the steel bath 11 through the gap between the steel bath 11 and the slag 14, reducing the metallurgical effect and causing problems such as spalling and wear of the bricks. Regarding pattern 2, the mushroom 13 is in good health, the tuyere 15 and the area around the tuyere 16 are not melted, and the tuyere is appropriately coated with slag 14. This condition is the best. To do this, leave an appropriate amount of molten slag from the previous charge and shake the furnace several times to coat it. This work is hereinafter referred to as slag coating work. Regarding pattern 3, the mushroom 13 is in a healthy state, but the tuyere 15 and the tuyere periphery 16 are exposed, and there is no coating layer of slag 14 at all, just before being melted away. For this reason, during slag coating work, appropriate amounts of quicklime and light mud are added to improve the viscosity of the slag. Regarding pattern 4, the state of the tuyere is that the mushroom 13 is melted and damaged, the area around the tuyere 16 is melted and damaged 17, and the tuyere 15 is in a state just before melting, and if left as it is, the tuyere will be severely damaged and missing. invite. For this purpose, appropriate amounts of quicklime, light mud, and fresh mud are added during slag coating work. Sufficient and appropriate repairs are required. Regarding pattern 5, there are no mushrooms 13, and the tuyeres 15, the hearth bottom, and the melted parts 17 of the bricks around the tuyeres have progressed locally, and if left as is, it will lead to a serious accident of molten steel leaking from the hearth bottom. For this purpose, during the slag coating work, a large amount of quicklime, light sludge, and green sludge are added, and while inert gas is flowed from the tuyere 15 to prevent tuyere burying, the melting of the bricks at the hearth bottom and around the tuyeres in 17 is carried out. Repair the damaged part.

【0006】上記の羽口状態を、推定する手段について
以下に説明する。オペレーターから得られる羽口状態を
判断する知識は、例えば羽口温度が高いと、羽口状態は
パターン4である。といった類のものである。この様に
羽口状態に影響を及ぼす各種操炉条件についての判断用
知識を示したものが、表1の論理マトリックスである。 この表で左端の列は羽口状態に影響を及ぼす操炉条件群
を示し、最上段はこれらの操炉条件の程度を表わしてい
る。VS、S、M、L、VLはそれぞれの操炉条件にお
いて、図4(a),(b),(c)に示されるメンバー
シップ関数で定義されるものである。それぞれの定義と
しては、下記としている。
The means for estimating the above-mentioned tuyere condition will be explained below. The knowledge for determining the tuyere condition obtained from the operator is, for example, if the tuyere temperature is high, the tuyere condition is pattern 4. It is something like that. The logical matrix in Table 1 shows the knowledge for making decisions about various operating conditions that affect the tuyere condition. In this table, the leftmost column shows a group of furnace operation conditions that affect the tuyere condition, and the top row shows the degree of these furnace operation conditions. VS, S, M, L, and VL are defined by the membership functions shown in FIGS. 4(a), (b), and (c) under each furnace operation condition. The definition of each is as follows.

【0007】[0007]

【表1】[Table 1]

【0008】図4(a)は羽口温度のメンバーシップ関
数の形状を表わす。VSは「より低い」、Sは「低い」
、Mは「普通」、Lは「高い」、VLは「より高い」で
ある。横軸は羽口で0〜1100℃、縦軸は確信度で0
〜1.0を表わす。図4(b)は出鋼温度のメンバーシ
ップ関数の形状を表わす。VSは「より低い」、Sは「
低い」、Mは「普通」、Lは「高い」、VLは「より高
い」である。横軸は出鋼温度で1600〜1750℃、
縦軸は確信度で0〜1.0を表わす。図4(c)は鎮静
時間メンバーシップ関数の形状を表わす。 VSは「より短い」、Sは「短い」、Mは「普通」、L
は「長い」、VLは「より長い」である。横軸は鎮静時
間で0〜15分、縦軸は確信度で0〜1.0を表わす。 表1におけるマトリックス中の1、2、3、4、5は羽
口状態を表わしており、前述の図2に於けるパターン1
の図2(a)は1を、パターン2の図2(b)は2を、
パターン3の図2(c)は3を、パターン4の図2(d
)は4を、パターン5の図2(e)は5と対応している
。図4(d)は上記羽口状態を表わす帰結部メンバーシ
ップ関数である。1は図2(a)パターン1、2は同じ
く図2(b)パターン2、3は図2(c)パターン3、
4は図2(d)パターン4、5は図2(e)パターン5
である。横軸は羽口状態をパラメーター化したもの、縦
軸は確信度で0〜1.0である。
FIG. 4(a) shows the shape of the membership function of tuyere temperature. VS is "lower", S is "lower"
, M is "normal", L is "high", and VL is "higher". The horizontal axis is 0 to 1100℃ at the tuyere, and the vertical axis is the confidence level of 0.
~1.0. FIG. 4(b) shows the shape of the membership function of tapping temperature. VS is “lower” and S is “lower”.
M is "normal", L is "high", and VL is "higher". The horizontal axis is the tapping temperature of 1600 to 1750℃,
The vertical axis represents the confidence level from 0 to 1.0. FIG. 4(c) represents the shape of the sedation time membership function. VS is “shorter”, S is “shorter”, M is “normal”, L
is “longer” and VL is “longer”. The horizontal axis represents sedation time from 0 to 15 minutes, and the vertical axis represents confidence from 0 to 1.0. 1, 2, 3, 4, and 5 in the matrix in Table 1 represent the tuyere conditions, and pattern 1 in FIG.
Figure 2(a) of pattern 2 shows 1, Figure 2(b) of pattern 2 shows 2,
Figure 2(c) of pattern 3 shows 3, and Figure 2(d) of pattern 4 shows 3.
) corresponds to 4, and pattern 5 in FIG. 2(e) corresponds to 5. FIG. 4(d) is a consequent membership function representing the above-mentioned tuyere state. 1 is Fig. 2(a) pattern 1, 2 is also Fig. 2(b) pattern 2, 3 is Fig. 2(c) pattern 3,
4 is Fig. 2(d) pattern 4, 5 is Fig. 2(e) pattern 5
It is. The horizontal axis represents the parameterization of the tuyere state, and the vertical axis represents the confidence level from 0 to 1.0.

【0009】図4及び表1は操業者が経験的に取得して
いるものをとりまとめることで作成できる。これらメン
バーシップ関数及び論理マトリックスはあらかじめ計算
機に格納されている。図3は実際の計算フローを示した
ものです。データー取込みでは、1チャージにおける羽
口温度、鎮静時間、出鋼温度の3つのデータを取込む。 羽口温度は、吹錬開始から出鋼終了までを約30秒毎に
収録されたものの内最大値をとるものとする。鎮静時間
は吹錬終了から出鋼終了までの時間とする。出鋼温度は
、当該チャージにおける最終溶鋼測定温度とする。
[0009] FIG. 4 and Table 1 can be created by compiling what the operator has obtained empirically. These membership functions and logical matrices are stored in the computer in advance. Figure 3 shows the actual calculation flow. During data acquisition, three data items are acquired: tuyere temperature, settling time, and tapping temperature for one charge. The tuyere temperature shall be the maximum value recorded every 30 seconds from the start of blowing to the end of tapping. The sedation time is the time from the end of blowing to the end of tapping. The tapping temperature shall be the final molten steel measurement temperature in the relevant charge.

【0010】次に、メンバーシップ関数を使った羽口状
態の推定を行なう。説明では羽口温度と羽口状態の関係
を示す論理式を例に行なう。図5に示すように羽口温度
が550℃であったとすると、同図5(b)の「普通」
に関するその条件部メンバーシップ関数から、羽口温度
の確からしさは0.75であり、同図5(c)における
「高い」に関するその条件部メンバーシップ関数から羽
口温度の確からしさは0.25でありその他の条件部メ
ンバーシップ関数からの羽口温度の確からしさはすべて
0となる。この様にして求められた、条件部の確からし
さ(確信度)は各々の帰結部のメンバーシップ関数に乗
じられ、同図(d)(e)が得られる。すなわち表1の
論力式マトリックスより、羽口温度が普通(M)のとき
羽口状態はパターン3であるから、そのパターン3の帰
結部メンバーシップ関数に0.75を乗じると(d)の
実線が得られる。点線は乗じる前の、または羽口温度の
普通の確からしさが1.0のときの帰結部メンバーシッ
プ関数である。同様に羽口温度が高い(L)のときの、
羽口状態パターンの4メンバーシップ関数に0.25を
乗じると、図5(e)の実線が得られる。図5(f)は
、同図(d)(e)を集めたもの(帰結部メンバーシッ
プ関数を合成したもの)であり、この面積の重心の横軸
パラメータ値を、羽口温度における羽口状態値とする。 表1に示す鎮静時間、溶鋼温度に関しても同様な処理を
行ない、各々の羽口状態を求める。そして、各々の羽口
状態値に対し、表1に示した重みを、加えて荷重平均し
、その荷重平均値を、最終の羽口状態値とする。その結
果は図1中の画面に表示される。図6は本発明法と従来
法に関する羽口損耗速度の関係を示す説明図である。こ
の図によれば、本発明法は従来法に比較して、極めて羽
口損耗速度が遅いことが明確にわかる。
Next, the tuyere state is estimated using the membership function. In the explanation, a logical equation showing the relationship between tuyere temperature and tuyere condition will be used as an example. Assuming that the tuyere temperature is 550°C as shown in Figure 5, "normal" in Figure 5(b)
The probability of the tuyere temperature is 0.75 from the conditional membership function for "high" in Figure 5(c), and the probability of the tuyere temperature is 0.25 from the conditional membership function for "high" in Figure 5(c). , and the certainty of the tuyere temperature from other conditional membership functions is all zero. The probability (confidence) of the conditional part obtained in this way is multiplied by the membership function of each consequent part, and the results shown in FIGS. In other words, from the logic equation matrix in Table 1, when the tuyere temperature is normal (M), the tuyere state is pattern 3, so multiplying the consequent membership function of pattern 3 by 0.75 yields (d). A solid line is obtained. The dotted line is the consequent membership function before multiplication, or when the ordinary certainty of the tuyere temperature is 1.0. Similarly, when the tuyere temperature is high (L),
Multiplying the 4-membership function of the tuyere state pattern by 0.25 yields the solid line in Figure 5(e). Figure 5(f) is a collection of (d) and (e) in the same figure (a composite of the consequent membership functions), and the horizontal axis parameter value of the center of gravity of this area is expressed as Use as status value. Similar processing was performed regarding the settling time and molten steel temperature shown in Table 1, and the respective tuyere conditions were determined. Then, the weights shown in Table 1 are added to each tuyere condition value, and the weighted average value is taken as the final tuyere condition value. The results are displayed on the screen shown in FIG. FIG. 6 is an explanatory diagram showing the relationship between the tuyere wear rate for the method of the present invention and the conventional method. According to this figure, it is clearly seen that the method of the present invention has an extremely slow tuyere wear rate compared to the conventional method.

【0011】[0011]

【発明の効果】本発明によって、羽口まわりの耐火物の
溶損状況を把握しスラグコーティング材の投入量を調節
することで可能である。しかも省力化の可能な技術で羽
口まわりの耐火物溶損による操業トラブルを完全になく
すことが可能となる。従来法ではオペレーターの知識・
経験を基に販断・実行されており、オペレーターの質の
バラツキによって羽口の損耗速度のバラツキが大きく、
かつ絶対値も大きい。本発明法ではオペレーターのベス
トの状態を確保できかつバラツキが小さく安定した効果
がある。
According to the present invention, it is possible to ascertain the state of melting and damage of the refractory material around the tuyere and adjust the amount of slag coating material to be added. In addition, the labor-saving technology makes it possible to completely eliminate operational troubles caused by erosion of the refractories around the tuyeres. Conventional methods require operator knowledge and
Sales are cut and executed based on experience, and the rate of wear and tear on the tuyeres varies widely due to variations in the quality of the operator.
And the absolute value is also large. The method of the present invention can ensure the operator's best condition and has a stable effect with little variation.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施態様例を示す上底吹き転炉の概要
図、
FIG. 1 is a schematic diagram of a top-bottom blowing converter showing an embodiment of the present invention;

【図2】本発明による底吹きガス羽口の状態を示す図、
FIG. 2 is a diagram showing the state of the bottom-blown gas tuyere according to the present invention,

【図3】本発明による実際の計算フローを示す図、FIG. 3 is a diagram showing an actual calculation flow according to the present invention;

【図
4】本発明の操炉条件で実施するための説明図、
FIG. 4 is an explanatory diagram for implementing the present invention under the operating conditions;

【図5
】本発明のメンバーシップ関数を使った羽口状態の推定
図、
[Figure 5
] Estimated diagram of the tuyere state using the membership function of the present invention,

【図6】本発明法と従来法に関する羽口損耗速度の関係
を示す説明図である。
FIG. 6 is an explanatory diagram showing the relationship between the tuyere wear rate for the method of the present invention and the conventional method.

【符号の説明】[Explanation of symbols]

1  耐火物 2  底吹羽口耐火物 3  鉄皮 4  底吹供給ガス配管 5  圧力計 6  流量計 7  羽口埋設熱電対 8  演算器 9  表示装置 10  上吹ランス 11  鋼浴 12  サブランス 13  マッシュルーム 14  スラグ 15  羽口 16  羽口周囲炉底レンガ 1 Refractories 2 Bottom-blown tuyere refractories 3 Iron skin 4 Bottom-blown supply gas piping 5 Pressure gauge 6 Flow meter 7 Tuyere buried thermocouple 8 Arithmetic unit 9 Display device 10 Top blowing lance 11 Steel bath 12 Sublance 13 Mushroom 14 Slag 15 Tuyere 16 Hearth brick around tuyere

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  底吹き転炉で底吹き羽口まわりの耐火
物溶損を抑制する操業方法において、上記羽口まわりの
耐火物の溶損状況に関する、上記底吹き羽口近傍に熱電
対を埋設し、該熱電対より底吹き転炉操業での最大温度
、吹錬終了時に測定される溶鋼の温度、及び吹錬終了後
から出鋼完了までの時間を操炉条件とし、条件部メンバ
ーシップ関数と、この帰結部メンバーシップ関数を計算
機に格納し、該各種操炉条件のVS、S、M、L、VL
のときの羽口状態のパターン1〜5の関係と、この各種
操炉条件の羽口状態への影響度合を示す重み関係を示す
論理式マトリックスを計算機に格納し、操業データとし
て得られた各々の操炉条件値について、条件部メンバー
シップ関数を用いVS、S、M、L、VLの程度を示す
値を求め、これらの値により前記論理をマトリックスよ
り得られた該当帰結部メンバーシップ関数を修正し、修
正した各帰結部メンバーシップ関数を合成し、その合成
結果より当該操業条件による羽口状態を求めることを特
徴とする底吹き転炉の操業方法。
Claim 1: An operating method for suppressing the erosion of refractories around the bottom blowing tuyere in a bottom blowing converter, wherein a thermocouple is installed near the bottom blowing tuyere in order to determine the erosion state of the refractory around the tuyere. The maximum temperature during bottom-blowing converter operation, the temperature of molten steel measured at the end of blowing, and the time from the end of blowing until the completion of tapping are the furnace operation conditions, and the condition section membership Store the function and its consequent membership function in a computer, and calculate VS, S, M, L, VL of the various furnace operating conditions.
A logical formula matrix showing the relationship between Patterns 1 to 5 of the tuyere condition at the time of For the furnace operation condition value, use the condition part membership function to find values indicating the degrees of VS, S, M, L, and VL, and use these values to calculate the corresponding consequent membership function obtained from the matrix using the above logic. A method for operating a bottom-blowing converter, characterized in that the modified membership functions of each consequential part are synthesized, and the tuyere state under the operating conditions is determined from the result of the synthesis.
JP12191391A 1991-04-25 1991-04-25 Method for operating bottom blowing converter Withdrawn JPH04325616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12191391A JPH04325616A (en) 1991-04-25 1991-04-25 Method for operating bottom blowing converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12191391A JPH04325616A (en) 1991-04-25 1991-04-25 Method for operating bottom blowing converter

Publications (1)

Publication Number Publication Date
JPH04325616A true JPH04325616A (en) 1992-11-16

Family

ID=14823016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12191391A Withdrawn JPH04325616A (en) 1991-04-25 1991-04-25 Method for operating bottom blowing converter

Country Status (1)

Country Link
JP (1) JPH04325616A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123795A (en) * 2020-02-03 2021-08-30 Jfeスチール株式会社 Static blowing control method, temperature correction term estimation device, and converter control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021123795A (en) * 2020-02-03 2021-08-30 Jfeスチール株式会社 Static blowing control method, temperature correction term estimation device, and converter control device

Similar Documents

Publication Publication Date Title
CN105821175B (en) A kind of protecting method with splash slag of control converter profile
CA2894813C (en) Method and device for predicting, controlling and/or regulating steelworks processes
JP2012136767A (en) Method for estimating phosphorus concentration in converter
CN103194574A (en) Dynamic regulation method of VOD refined end point carbon content prediction model
JPH04325616A (en) Method for operating bottom blowing converter
JPH05195034A (en) Method for operating refining furnace having bottom blowing tuyere
JP2584891B2 (en) Operating method of bottom blown converter
JP4689782B2 (en) Method for coating slag on converter furnace wall and method for managing converter furnace bottom during slag coating
US3719469A (en) Control for basic oxygen steelmaking furnace
CN104060019A (en) Steelmaking method with semi-steel
JP2669279B2 (en) Blast furnace operation method
JPS5933162B2 (en) Blast furnace operating method
CN117025883A (en) Automatic slag splashing control method and device for converter, computer equipment and storage medium
KR960006322B1 (en) Method for removing stuck material on furnace wall in blast-furnace
CN118028565A (en) Automatic slag splashing gun position control method and device for converter, electronic equipment and storage medium
JP2518753B2 (en) Blast furnace charge distribution control device
Brooks Development of Dynamic Process Models for Oxygen Steelmaking
JPH0967607A (en) Method for monitoring furnace bottom of blast furnace
JP2533815B2 (en) Operating method of bottom blown converter
RU2282666C1 (en) Device for control of converter steelmaking process
SU996457A1 (en) Method for blasting low-manganese cast iron
JPS6246606B2 (en)
GB2157713A (en) Production and/or refining of metal by top blowing in conjunction with a stirring gas
JPS6056004A (en) Repairing method of wall brick in bottom of blast furnace
JP2897363B2 (en) Hot metal production method

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711