JPH04323831A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04323831A
JPH04323831A JP9221991A JP9221991A JPH04323831A JP H04323831 A JPH04323831 A JP H04323831A JP 9221991 A JP9221991 A JP 9221991A JP 9221991 A JP9221991 A JP 9221991A JP H04323831 A JPH04323831 A JP H04323831A
Authority
JP
Japan
Prior art keywords
wiring
stress
film
melting point
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9221991A
Other languages
Japanese (ja)
Inventor
Eiichi Umemura
梅村 栄一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP9221991A priority Critical patent/JPH04323831A/en
Publication of JPH04323831A publication Critical patent/JPH04323831A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To reduce open circuits, fusion and resistance increase in the wiring structure of a semiconductor device. CONSTITUTION:A tensile stress tungsten film 23 which does not create a silicidation reaction with a foundation layer is formed and a neutral stress tungsten film 24 which has a lower resistance than the film 23 is formed on the film 23 to provide a laminated structure wiring.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、半導体装置において高
融点材料を使用した配線部の形成方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of forming wiring portions using high melting point materials in semiconductor devices.

【0002】0002

【従来の技術】これまで半導体素子の配線材料としてA
l−Si,Al−Si−Cu合金単層が用いられてきた
。しかし配線の微細化に伴い信頼性を劣化させる問題、
すなわち電流ストレスで不良を招くエレクトロマイグレ
ーション、膜ストレスによるストレスマイグレーション
が発生してきた。従って、半導体素子の微細化による素
子の性能確保が実現不可能となる。これに対しAl−S
i,Al−Si−Cu合金と高融点材料との積層構造配
線を用いることによりAl−Si,Al−Si−Cu単
層配線よりも信頼性を向上させる方法がある。下層高融
点材料としてはTiW、TiN、WSix等が用いられ
ている。また高融点単層配線で信頼性を向上させる方法
がある。
[Prior Art] Until now, A
l-Si, Al-Si-Cu alloy monolayers have been used. However, as wiring becomes finer, reliability deteriorates.
In other words, electromigration that causes defects due to current stress and stress migration due to membrane stress have occurred. Therefore, it becomes impossible to ensure the performance of semiconductor elements by miniaturizing them. On the other hand, Al-S
There is a method of improving reliability compared to single layer wiring of Al-Si or Al-Si-Cu by using a layered wiring structure of an Al-Si-Cu alloy and a high melting point material. TiW, TiN, WSix, etc. are used as the lower layer high melting point material. There is also a method to improve reliability using a high melting point single layer wiring.

【0003】0003

【発明が解決しようとする課題】しかし以上述べた方法
であっても、積層構造における上層Al−Si,Al−
Si−Cu配線が断線しやすいことには変わりない。上
層Al−Si,Al−Si−Cu合金が断線すると下層
高融点配線に電流が流れる。一般に下層高融点配線に用
いられる材料は抵抗が高い。従って電流が流れる時に発
生するジュール熱が大きく溶断する。さらに、Alとの
反応を起こしやすく相互拡散あるいは化合物の生成等に
よる抵抗増大が発生する。従ってAl−Si,Al−S
i−Cu合金と高融点材料との積層構造配線であっても
、Al−Si,Al−Si−Cu合金単層配線よりは信
頼性は向上するものの、根本的な配線の信頼性を向上さ
せる方法ではない。また、高融点単層配線においてはタ
ングステンが一般的であるが、通常スパッタ法で形成し
た場合、圧縮応力膜となりその後の熱処理によりシリサ
イド化が生じ抵抗増加が生じる。
[Problems to be Solved by the Invention] However, even with the method described above, the upper layer Al-Si, Al-
There is no change in the fact that Si-Cu wiring is easily disconnected. When the upper layer Al-Si or Al-Si-Cu alloy is disconnected, current flows to the lower layer high melting point wiring. Generally, the materials used for the lower layer high melting point wiring have high resistance. Therefore, the Joule heat generated when current flows causes a large amount of melting. Furthermore, it tends to react with Al, resulting in an increase in resistance due to mutual diffusion or the formation of compounds. Therefore, Al-Si, Al-S
Even if the wiring has a laminated structure of i-Cu alloy and high melting point material, the reliability will be better than single layer wiring of Al-Si or Al-Si-Cu alloy, but the fundamental reliability of the wiring will be improved. Not the method. Furthermore, tungsten is commonly used in high-melting point single-layer interconnects, but when formed by normal sputtering, it becomes a compressive stress film and becomes silicided during subsequent heat treatment, resulting in an increase in resistance.

【0004】この方法は以上述べたAl−Si,Al−
Si−Cu合金単層配線の断線とAl−Si,Al−S
i−Cu合金と高融点材料との積層構造配線における断
線、溶断、抵抗増大の問題を除去するため、タングステ
ン膜のストレスを制御して堆積し、配線を形成すること
によりシリサイド化が生じず低抵抗で高信頼性の配線を
提供することを目的とする。
[0004] This method is applicable to the above-mentioned Al-Si, Al-
Disconnection of Si-Cu alloy single layer wiring and Al-Si, Al-S
In order to eliminate the problems of disconnection, melting, and increased resistance in laminated interconnects made of i-Cu alloy and high-melting point materials, the stress of the tungsten film is controlled and deposited to form interconnects, thereby reducing silicidation. The purpose is to provide highly reliable wiring using resistors.

【0005】[0005]

【課題を解決するための手段】この発明は前述の課題解
決のため、半導体素子の配線形成方法において、スパッ
タ条件により応力制御を行い、引張り応力とニュートラ
ル応力の高融点金属膜を積層形成するようにしたもので
ある。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present invention provides a method for forming interconnections of semiconductor devices in which stress is controlled by sputtering conditions and high melting point metal films with tensile stress and neutral stress are laminated. This is what I did.

【0006】[0006]

【作用】本発明は前述のように、スパッタ条件により応
力を制御し、下地材料とシリサイド化反応の生じない引
張り応力の高融点金属膜(例えばタングステン)と、そ
の膜より低抵抗のニュートラル応力の高融点金属膜との
積層構造の配線としたので、低抵抗で高信頼性の配線を
実現できる。
[Operation] As described above, the present invention controls stress by sputtering conditions, and combines a high melting point metal film (such as tungsten) with a tensile stress that does not cause a silicidation reaction with the underlying material and a neutral stress film with a lower resistance than that film. Since the wiring has a laminated structure with a high melting point metal film, it is possible to realize wiring with low resistance and high reliability.

【0007】[0007]

【実施例】図2はスパッタ条件により応力を制御したタ
ングステン膜の応力と比抵抗との関係を示す図である。 この図から解るように、ニュートラル(X軸の0点)で
比抵抗は最小値を示し引張り応力、圧縮応力が大きくな
るにつれて比抵抗は大きくなる。本発明は、このスパッ
タ条件による応力制御を利用して配線を形成するもので
あり、その実施例の製造工程を図1に示し、以下に説明
する。
EXAMPLE FIG. 2 is a diagram showing the relationship between stress and specific resistance of a tungsten film whose stress was controlled by sputtering conditions. As can be seen from this figure, the specific resistance has a minimum value at neutral (0 point on the X axis), and increases as the tensile stress and compressive stress increase. The present invention forms wiring by utilizing stress control based on the sputtering conditions, and the manufacturing process of an embodiment thereof is shown in FIG. 1 and will be described below.

【0008】まず、図1(a)に示すように、IC基板
21上に形成された絶縁膜22上に、スパッタ法により
DCパワー1kW、アルゴン圧15mTorrの条件で
下地絶縁膜22とシリサイド化反応を生じない引張り応
力のタングステン膜23を約100nm推積させる。続
いて図1(b)のように、DCパワー2kW、アルゴン
圧17.5mToorの条件で比抵抗が引張り応力タン
グステン膜より小さい前記ニュートラル応力のタングス
テン膜24を約200nm堆積させる。その後図1(c
)のように、ホトリソグラフィ・エッチング技術を利用
して配線25を形成する。最後に保護膜26を形成して
完成する(図1(d))。
First, as shown in FIG. 1A, a silicidation reaction is performed on an insulating film 22 formed on an IC substrate 21 with a base insulating film 22 by sputtering under conditions of a DC power of 1 kW and an argon pressure of 15 mTorr. The tungsten film 23 with a tensile stress that does not cause any stress is estimated to be approximately 100 nm thick. Subsequently, as shown in FIG. 1B, about 200 nm of the neutral stress tungsten film 24 having a resistivity smaller than the tensile stress tungsten film is deposited under the conditions of DC power of 2 kW and argon pressure of 17.5 mToor. After that, Figure 1(c)
), the wiring 25 is formed using photolithography and etching technology. Finally, a protective film 26 is formed to complete the process (FIG. 1(d)).

【0009】[0009]

【発明の効果】以上のようにこの発明の製造方法によれ
ば、スパッタ条件により応力を制御し、下地材料とシリ
サイド化反応の生じない引張り応力のタングステンと引
張り応力のタングステンより低抵抗のニュートラル応力
のタングステンとの積層高融点配線としたので、低抵抗
で断線、溶断が発生しにくい高信頼性の配線の実現が期
待できる。
As described above, according to the manufacturing method of the present invention, stress can be controlled by sputtering conditions, and tungsten with tensile stress that does not cause a silicidation reaction with the underlying material and neutral stress with a lower resistance than tungsten with tensile stress can be produced. Since this layered high-melting-point wiring is made with tungsten, it is expected that high-reliability wiring with low resistance and less chance of disconnection or melting will occur.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の実施例の製造工程断面図[Fig. 1] Cross-sectional view of the manufacturing process of an embodiment of the present invention

【図2】W膜
の比抵抗−応力関係図
[Figure 2] Specific resistance-stress relationship diagram of W film

【符号の説明】[Explanation of symbols]

21    IC基板 22    絶縁膜 23    引張り応力W膜 24    ニュートラル応力W膜 25    配線 26    保護膜 21 IC board 22 Insulating film 23 Tensile stress W film 24 Neutral stress W film 25 Wiring 26 Protective film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  半導体装置の配線形成に当たって、(
a)半導体基板上に、下地材料とシリサイド化を生じな
い引張り応力を有する第1の高融点金属膜を堆積する工
程と、(b)前記第1の高融点金属膜の上に該膜より低
抵抗のニュートラル応力を有する第2の高融点金属膜を
堆積する工程と、を含み配線部を形成することを特徴と
する半導体装置の製造方法。
[Claim 1] When forming wiring of a semiconductor device, (
a) depositing on the semiconductor substrate a first high melting point metal film having a tensile stress that does not cause silicidation with the underlying material; 1. A method of manufacturing a semiconductor device, comprising the step of depositing a second high melting point metal film having a resistance neutral stress to form a wiring portion.
【請求項2】  請求項1記載の半導体装置の製造方法
において前記第1及び第2の高融点金属をタングステン
とし、その堆積方法をスパッタ法としたことを特徴とす
る半導体装置の製造方法。
2. The method of manufacturing a semiconductor device according to claim 1, wherein the first and second high melting point metals are tungsten and the deposition method thereof is a sputtering method.
JP9221991A 1991-04-23 1991-04-23 Manufacture of semiconductor device Pending JPH04323831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9221991A JPH04323831A (en) 1991-04-23 1991-04-23 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9221991A JPH04323831A (en) 1991-04-23 1991-04-23 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04323831A true JPH04323831A (en) 1992-11-13

Family

ID=14048338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9221991A Pending JPH04323831A (en) 1991-04-23 1991-04-23 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04323831A (en)

Similar Documents

Publication Publication Date Title
JPH05190549A (en) Semiconductor device and manufacture thereof
JPH0653163A (en) Integrated-circuit barrier structure and its manufacture
EP0307272A2 (en) Aluminum alloy semiconductor interconnections having high purity titanium or niobium barrier layer
JPH05211147A (en) Aluminum wiring and its forming method
JPH0212859A (en) Formation of multilayer interconnection
JPH04323831A (en) Manufacture of semiconductor device
JP2757796B2 (en) Semiconductor integrated circuit device
JPH04242960A (en) Wiring of integrated circuit
JPH03274732A (en) Semiconductor integrated circuit device
JPS63174336A (en) Formation of diffusion barrier layer in contact between multilayer interconnections
JPS61242039A (en) Semiconductor device
JP2655504B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH0418760A (en) Semiconductor device
JP3014887B2 (en) Semiconductor device and manufacturing method thereof
JPH0417338A (en) Semiconductor device
JPH07183377A (en) Semiconductor device
JPH02125431A (en) Semiconductor device
US20020014701A1 (en) Interconnect structure for semiconductor device and method of fabrication
JPH03262125A (en) Semiconductor device
JPH04298029A (en) Method of manufacturing semiconductor device
WO1997022995A1 (en) Semiconductor device containing two or more metallic wiring layers and method for manufacturing the same
JPH05243229A (en) Semiconductor integrated circuit device
JPH05152445A (en) Multilayer interconnections and forming method thereof
JPH0334545A (en) Manufacture of semiconductor device
JP2001068473A (en) Semiconductor device and manufacture thereof