JPH04322173A - Bridge type converter protection apparatus - Google Patents

Bridge type converter protection apparatus

Info

Publication number
JPH04322173A
JPH04322173A JP3088147A JP8814791A JPH04322173A JP H04322173 A JPH04322173 A JP H04322173A JP 3088147 A JP3088147 A JP 3088147A JP 8814791 A JP8814791 A JP 8814791A JP H04322173 A JPH04322173 A JP H04322173A
Authority
JP
Japan
Prior art keywords
channel igbt
current
channel
igbt
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3088147A
Other languages
Japanese (ja)
Other versions
JP3180961B2 (en
Inventor
Chihiro Okatsuchi
千尋 岡土
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba FA Systems Engineering Corp
Original Assignee
Toshiba Corp
Toshiba FA Systems Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba FA Systems Engineering Corp filed Critical Toshiba Corp
Priority to JP08814791A priority Critical patent/JP3180961B2/en
Publication of JPH04322173A publication Critical patent/JPH04322173A/en
Application granted granted Critical
Publication of JP3180961B2 publication Critical patent/JP3180961B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To safely cut off an over current by connecting in series a P-channel IGBT and an N-channel IGBT which ensures wider safe operation area than such P-channel IGBT and turning off the gates, if an over current is detected, of both P-channel IGBT and N-channel IGBT after limiting the over current with the N-channel IGBT. CONSTITUTION:Upon reception of an over current detecting signal el7, a gate control circuit 32 executes gate squeezing operation of N-channel IGBT (N) 22, 24, 26. Therefore, a current I is limited. During this period, a gate voltage is normally applied to the P-channel IGBT (P) 27, 28, 29. Accordingly, P27, 28, 29 are not deteriorated. Thereafter, a time delay circuit 31 outputs a signal e31, the gate voltages of N22, 24, 26 and P27, 28, 29 turn off and each element turns off to cut off an accident current. Thereby, since the current I is limited, P27, 28, 29 safely turn off.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は、自己消弧形素子の過電
流保護をより確実にするブリッジ形変換器の保護回路に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a protection circuit for a bridge type converter, which ensures more reliable overcurrent protection of self-extinguishing elements.

【0002】0002

【従来の技術】IGBTを使用した従来の電圧形インバ
ータの主回路と保護回路を図7に示し、以下に説明する
。直流電源1からNチャネルIGBT21〜26から成
るブリッジ回路により直流→交流変換を行い、電流検出
器3,4を介して電動機5に電力を供給する。
2. Description of the Related Art The main circuit and protection circuit of a conventional voltage source inverter using IGBTs are shown in FIG. 7 and will be described below. A bridge circuit consisting of N-channel IGBTs 21 to 26 performs DC to AC conversion from a DC power source 1, and supplies power to a motor 5 via current detectors 3 and 4.

【0003】IGBT21,23,25は駆動電源11
,12,13と駆動回路14,15,16により駆動さ
れ、IGBT22,24,26は駆動電源7を共通とし
て、それぞれ駆動回路8,9,10により駆動される。 過電流検出回路17は電流検出器3,4,6の出力を受
け、このレベルが設定値以上になると信号OCを出力し
保持する。
[0003] IGBTs 21, 23, 25 are driven by a drive power source 11.
, 12, 13 and drive circuits 14, 15, 16, and the IGBTs 22, 24, 26 share the drive power source 7 and are driven by drive circuits 8, 9, 10, respectively. The overcurrent detection circuit 17 receives the outputs of the current detectors 3, 4, and 6, and when this level exceeds a set value, outputs and holds the signal OC.

【0004】過電流検出回路17が過電流を検出してい
ない場合は、アンドゲート19はPWM制御回路18の
信号を駆動回路に伝達しIGBTブリッジ回路をスイッ
チングして電動機5を駆動する。過電流を検出した場合
は信号OCによりアンドゲート19はすべてのPWM信
号をオフしてIGBTブリッジをオフすることにより保
護を行っている。
When the overcurrent detection circuit 17 does not detect an overcurrent, the AND gate 19 transmits the signal from the PWM control circuit 18 to the drive circuit, switches the IGBT bridge circuit, and drives the motor 5. When an overcurrent is detected, the AND gate 19 turns off all PWM signals and turns off the IGBT bridge in response to the signal OC, thereby providing protection.

【0005】[0005]

【発明が解決しようとする課題】図7のブリッジ回路で
負側のIGBT22,24,26に対しては1個の駆動
電源7で駆動できるが、正側のIGBT21,23,2
5に対しては3個の絶縁した駆動電源11,12,13
が必要である。この事は比較的小容量の変換器ではコス
トが高くなる。そこで正側の3個のIGBT21,23
,25としてPチャネルの素子を使用し負側と同様に駆
動電源を共通化することが考えられる。
[Problem to be Solved by the Invention] In the bridge circuit of FIG. 7, the negative side IGBTs 22, 24, and 26 can be driven by one drive power supply 7, but the positive side IGBTs 21, 23, and 2
5, three insulated drive power supplies 11, 12, 13
is necessary. This increases cost for relatively small capacity converters. Therefore, the three IGBTs 21 and 23 on the positive side
, 25, it is conceivable to use P-channel elements and share the driving power source as in the negative side.

【0006】しかし、PチャネルのIGBTは安全動作
領域が狭い欠点が原理的にある。図8にNチャネルIG
BTとPチャネルIGBTの安全動作領域の特性例を示
す。NチャネルIGBTでは負荷短絡状態でも10μs
程度の時間以内にターンオフさせれば素子を保護するこ
とができる。しかしPチャネルIGBTでは図8に示す
ように素子定格電流の200 %を超えた電流をターン
オフさせると素子が劣化する。
However, P-channel IGBTs fundamentally have the disadvantage of having a narrow safe operating area. Figure 8 shows the N-channel IG
An example of the characteristics of the safe operating area of BT and P-channel IGBT is shown. For N-channel IGBT, 10μs even in load short-circuit condition
If the device is turned off within a certain amount of time, the device can be protected. However, in a P-channel IGBT, as shown in FIG. 8, if a current exceeding 200% of the device rated current is turned off, the device deteriorates.

【0007】このようにPチャネルIGBTとNチャネ
ルIGBTをブリッジの一相分の直列に接続すると、負
荷短絡などの場合PチャネルIGBTの安全動作領域が
狭く保護が困難で信頼性を悪化させていた。
[0007] When a P-channel IGBT and an N-channel IGBT are connected in series for one phase of a bridge in this way, the safe operating area of the P-channel IGBT is narrow in the event of a load short circuit, and protection is difficult and reliability deteriorates. .

【0008】本発明は上述の問題に鑑みてなされたもの
でPチャネルIGBTの安全動作領域の狭さをカバーし
て過電流から保護できる経済的なブリッジ形変換器の保
護装置を提供することを目的とする。 [発明の構成]
The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to provide an economical protection device for a bridge type converter that can cover the narrow safe operation area of a P-channel IGBT and protect it from overcurrent. purpose. [Structure of the invention]

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
、本発明は第1の自己消弧形素子と駆動信号に応じて電
流制限され該第1の自己消弧形素子より安全動作領域の
広い第2の自己消弧形素子を直列接続して成るブリッジ
形変換器と、該直列回路の過電流が検出されたとき、該
第2の自己消弧形素子の駆動信号により該過電流を限流
した後、該第1の自己消弧形素子及び第2の自己消弧形
素子をオフさせる手段を設ける。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a first self-extinguishing element and a current-limited device according to a drive signal, which is within a safe operating area than the first self-extinguishing element. When an overcurrent in the series circuit is detected, the overcurrent is suppressed by a drive signal of the second self-extinguishing element. A means is provided for turning off the first self-arc-extinguishing element and the second self-arc-extinguishing element after the current is limited.

【0010】0010

【作用】過電流検出時、上記手段は第2の自己消弧形素
子のゲート電圧を絞って過電流を限流した後、第1の自
己消弧形素子と第2の自己消弧形素子の双方のゲートを
オフ状態にして過電流を安全に遮断する。
[Operation] When an overcurrent is detected, the above means reduces the gate voltage of the second self-arc-extinguishing element to limit the overcurrent, and then the first self-arc-extinguishing element and the second self-arc-extinguishing element Both gates are turned off to safely cut off overcurrent.

【0011】[0011]

【実施例】本発明の一実施例を図1に示し、以下に説明
する。なお、図7と重複する部分は同一番号を記し説明
を省略する。
Embodiment An embodiment of the present invention is shown in FIG. 1 and will be described below. Note that parts that overlap with those in FIG. 7 are denoted by the same numbers, and explanations thereof will be omitted.

【0012】図1において、直流電源1の正側にPチャ
ネルIGBT27,28,29を接続し、負側にはNチ
ャネルIGBT22,24,26を接続した3相インバ
ータブリッジを構成する。駆動電源20により駆動回路
14,15,16はPチャネルIGBT27,28,2
9をそれぞれ駆動する。
In FIG. 1, a three-phase inverter bridge is constructed in which P-channel IGBTs 27, 28, and 29 are connected to the positive side of DC power supply 1, and N-channel IGBTs 22, 24, and 26 are connected to the negative side. Drive circuits 14, 15, 16 are connected to P-channel IGBTs 27, 28, 2 by drive power supply 20.
9 respectively.

【0013】過電流検出回路17が過電流信号e17を
出力し、ゲート絞り回路30が信号e30を出力しゲー
ト制御回路32を介しNチャネルIGBT22,24,
26のゲート電圧を制御する。
The overcurrent detection circuit 17 outputs an overcurrent signal e17, the gate aperture circuit 30 outputs a signal e30, and the N-channel IGBTs 22, 24,
26 gate voltages are controlled.

【0014】e17信号後タイムディレイ回路31を介
してe31を出力しアンドゲート19によりPWM制御
回路18からの出力と論理積を取ってゲート制御回路3
3と32へPWM信号の送出を止める。ゲート制御回路
33は駆動回路14,15,16を介してPチャネルI
GBT27,28,29をオンオフさせる。本発明の保
護動作を図2を用いて説明する。
After the e17 signal, e31 is outputted via the time delay circuit 31, and the AND gate 19 performs a logical product with the output from the PWM control circuit 18, and outputs the signal e31 to the gate control circuit 3.
Stop sending PWM signals to 3 and 32. The gate control circuit 33 connects the P channel I via the drive circuits 14, 15, 16.
Turns GBT27, 28, and 29 on and off. The protection operation of the present invention will be explained using FIG. 2.

【0015】今、負荷に直列なNチャネルIGBTとP
チャネルIGBTにそれぞれ図2に示すVGE−N,V
GE−Pなるゲート信号を加えられ、負荷が短絡してい
たと仮定すると、時刻t0 の時点でIGBTに流れる
電流Iは図2に示すように破線の方向に上昇する。Pチ
ャネルIGBTのラッチアップ破壊点がIlpであると
すると、この電流以上をゲートで遮断すると素子は劣化
する。
Now, the N-channel IGBT and P
VGE-N and V shown in FIG. 2 respectively in the channel IGBT.
Assuming that a gate signal GE-P is applied and the load is short-circuited, the current I flowing through the IGBT at time t0 increases in the direction of the broken line as shown in FIG. Assuming that the latch-up breakdown point of a P-channel IGBT is Ilp, if a current exceeding this current is blocked by the gate, the element will deteriorate.

【0016】時刻t1 において過電流検出信号e17
を受けてゲート制御回路32はVGE−Nを低下させN
チャネルIGBTのゲート絞り動作を行なわせる。図9
のIGBTのVCE−Ic 特性から明らかなようにV
GEを下げるとVCEが増加し、Ic がリミットされ
て電流Iは限流される。この間PチャネルIGBTには
VGE−Pが正規に加えられているのでPチャネルIG
BTのVCEは低くなり、PチャネルIGBTは劣化し
ない。
At time t1, overcurrent detection signal e17
In response, the gate control circuit 32 lowers VGE-N to N
A gate narrowing operation of the channel IGBT is performed. Figure 9
As is clear from the VCE-Ic characteristics of the IGBT, V
When GE is lowered, VCE increases, Ic is limited, and current I is limited. During this period, VGE-P is normally added to the P-channel IGBT, so the P-channel IGBT
The VCE of BT becomes low and the P-channel IGBT does not deteriorate.

【0017】その後、時刻t2 においてタイムディレ
イ回路31から信号e31が出力され、NチャネルIG
BTとPチャネルIGBTのゲート電圧VGE−N、V
GE−Pは共にオフ状態となり各素子はターンオフとし
て事故電流を遮断する。この場合電流Iが限流されてい
るのでPチャネルIGBTは安全にターンオフする。
Thereafter, at time t2, the time delay circuit 31 outputs the signal e31, and the N-channel IG
Gate voltage of BT and P-channel IGBT VGE-N, V
Both GE-Ps are turned off, and each element is turned off to cut off the fault current. In this case, since the current I is limited, the P-channel IGBT is safely turned off.

【0018】図2ではIのピーク値がIlp以下になっ
ているが、実際の回路ではノイズ防止の目的で過電流検
出回路17にフイルタを設けたり信号の伝達遅れなどで
I(電流)がIlp以上になる場合もあるがPチャネル
IGBTの駆動信号はオンのままNチャネルIGBTの
ゲート電圧を下げて電流を限流しIlp以下になった時
点でPチャネルIGBTとNチャネルIGBTを同時に
オフさせる事により安全なターンオフが可能である。
In FIG. 2, the peak value of I is less than Ilp, but in actual circuits, a filter is provided in the overcurrent detection circuit 17 for the purpose of noise prevention, and due to signal transmission delays, etc., I (current) becomes less than Ilp. In some cases, the drive signal of the P-channel IGBT remains on, and the gate voltage of the N-channel IGBT is lowered to limit the current, and when the current becomes less than Ilp, the P-channel IGBT and N-channel IGBT are simultaneously turned off. Safe turn-off is possible.

【0019】本発明によれば安全動作領域の狭いPチャ
ネルIGBTの過電流を安全動作領域の広いNチャネル
IGBTのゲート電圧絞りにより電流を限流した後に両
IGBTをターンオフするので安全で信頼性が良いこと
、及びPチャネルとNチャネルIGBTを使うことによ
り駆動電源を従来の4個から2個に低減することにより
、小形で経済的なブリッジ変換器の保護回路を確立する
ことができる。
According to the present invention, both IGBTs are turned off after the overcurrent in the P-channel IGBT, which has a narrow safe operating area, is limited by the gate voltage restriction of the N-channel IGBT, which has a wide safe operating area, resulting in safety and reliability. The good news is that by using P-channel and N-channel IGBTs and reducing the driving power supplies from the conventional four to two, a compact and economical bridge converter protection circuit can be established.

【0020】図3は図1の変形例で、過電流検出信号e
17を受けて、ワンショット回路40の出力により保護
回路41,42によりアンドゲート19を介してPWM
制御回路18の出力を一時的にホールドするよう構成し
ている。
FIG. 3 shows a modification of FIG. 1, in which the overcurrent detection signal e
17, the output of the one-shot circuit 40 causes the protection circuits 41 and 42 to output PWM via the AND gate 19.
It is configured to temporarily hold the output of the control circuit 18.

【0021】この理由は図2の時刻t1 付近でPWM
信号によりPチャネルIGBTにオフ信号が入ると過電
流を限流しない状態でターンオフ動作に入り、Pチャネ
ルIGBTを劣化させる危険性をさけるためで、より安
全性が高い。なお、Nチャネル側の保護回路42は必ず
しも必要とはしない。
[0021] The reason for this is that PWM
This is to avoid the risk of deteriorating the P-channel IGBT by entering a turn-off operation without limiting the overcurrent when an off signal is input to the P-channel IGBT, resulting in higher safety. Note that the protection circuit 42 on the N-channel side is not necessarily required.

【0022】また、図4に示すようにPチャネルIGB
TとNチャネルIGBTを正負逆に接続することにより
駆動電源7a,7bを共用してゲートに正負の極性のバ
イアスを加えることが可能となる。さらに、図5に示す
ようにMCT52とNチャネルIGBT22の組合せも
可能である。
Furthermore, as shown in FIG.
By connecting the T and N-channel IGBTs in reverse polarity, it becomes possible to apply positive and negative polarity biases to the gates by sharing the drive power supplies 7a and 7b. Furthermore, as shown in FIG. 5, a combination of MCT 52 and N-channel IGBT 22 is also possible.

【0023】MCTのオン電圧特性を図6に示す。MC
Tはサイリスタ動作を行うのでオン電圧が1〜1.5 
V程度と低く導通時の損失は低いが最大ターンオフ電流
の制限があり、それ以上の電流をターンオフできない欠
点がある。なお、IGBT以外にも駆動信号により限流
作用がある素子としてFET,SIT,バイポーラトン
ジスタ等のトランジスタがある。
FIG. 6 shows the on-voltage characteristics of the MCT. M.C.
Since T performs thyristor operation, the on-voltage is 1 to 1.5.
Although the loss during conduction is low, as low as V, there is a limit to the maximum turn-off current, and there is a drawback that a current beyond this cannot be turned off. In addition to IGBTs, there are transistors such as FETs, SITs, and bipolar transistors as elements that have a current-limiting effect depending on drive signals.

【0024】サイリスタ形の自己消弧素子は一般にオフ
電圧は低いが最大ターンオフ電流に制限がある。これら
の素子にはSITH,GTOなどがあり、これらを組合
せ得ることは説明するまでもない。また、2ケ直列のイ
ンバータについて説明したが、素子の直列個数やブリッ
ジの構成方法について制限が無いのは言うまでもない。 さらにまた、過電流検出は、IGBTやFETの電極間
電圧が飽和する特性を利用して、この電圧を検出するこ
とも可能である。
Thyristor-type self-extinguishing elements generally have a low off-state voltage, but have a limited maximum turn-off current. These elements include SITH, GTO, etc., and it goes without saying that these elements can be combined. Further, although the description has been made regarding two inverters connected in series, it goes without saying that there are no restrictions on the number of elements connected in series or the method of configuring the bridge. Furthermore, overcurrent detection can also be performed by utilizing the characteristic that the voltage between the electrodes of an IGBT or FET is saturated.

【0025】[0025]

【発明の効果】本発明によれば、PチャネルIGBTの
ように安全動作領域の狭い素子や、MCT等のサイリス
タ特性を有しオン損失は少ないが最大ターンオフ電流の
制限がある素子と安全動作領域の広いトランジスタ(I
GBT)等の駆動信号の大きさで電流が制限される素子
を直列にしたブリッジ変換器を構成し過電流検出後、安
全動作領域の広い素子の駆動信号を絞り事故電流を限流
した後、全素子をオフ状態にすることにより、小形,軽
量,低損失のブリッジ変換器を安全に保護することがで
きるブリッジ変換器の保護回路を提供することができる
Effects of the Invention According to the present invention, devices with a narrow safe operating area such as P-channel IGBTs, and elements with thyristor characteristics such as MCTs with low on-loss but limited maximum turn-off current and safe operating area wide transistor (I
A bridge converter is constructed by arranging elements in series whose current is limited by the magnitude of the drive signal such as GBT). After detecting an overcurrent, the drive signal of the element with a wide safe operation area is throttled to limit the fault current. By turning off all elements, it is possible to provide a protection circuit for a bridge converter that can safely protect a small, lightweight, low-loss bridge converter.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例図。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】上記実施例の動作を説明するための波形図。FIG. 2 is a waveform diagram for explaining the operation of the above embodiment.

【図3】本発明の第2実施例図。FIG. 3 is a diagram showing a second embodiment of the present invention.

【図4】本発明の第3実施例図。FIG. 4 is a diagram showing a third embodiment of the present invention.

【図5】本発明の第4実施例図。FIG. 5 is a diagram showing a fourth embodiment of the present invention.

【図6】MCTの電圧−電流特性図。FIG. 6 is a voltage-current characteristic diagram of MCT.

【図7】従来装置の構成図。FIG. 7 is a configuration diagram of a conventional device.

【図8】IGBTの安全動作領域を示す特性図。FIG. 8 is a characteristic diagram showing a safe operating area of an IGBT.

【図9】IGBTのVGEをパラメータとしたIC −
VCE特性図。
[Figure 9] IC- with IGBT VGE as a parameter
VCE characteristic diagram.

【符号の説明】[Explanation of symbols]

1…直流電源、    5…電動機、    3,4,
6…電流検出器、7,11,12,13,20…駆動電
源、    8,9,10,14,15,16…駆動回
路、17…過電流検出回路、    18…PWM制御
回路、    19…アンドゲート、21〜26…Nチ
ャネルIGBT、    27,28,29…Pチャネ
ルIGBT、30…ゲート絞り回路、  31…タイム
ディレイ回路、  32,33…ゲート制御回路、  
40…ワンショット回路、  41,42…保持回路。
1... DC power supply, 5... Electric motor, 3, 4,
6... Current detector, 7, 11, 12, 13, 20... Drive power supply, 8, 9, 10, 14, 15, 16... Drive circuit, 17... Overcurrent detection circuit, 18... PWM control circuit, 19... And Gate, 21 to 26... N-channel IGBT, 27, 28, 29... P-channel IGBT, 30... Gate aperture circuit, 31... Time delay circuit, 32, 33... Gate control circuit,
40... One-shot circuit, 41, 42... Holding circuit.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  第1の自己消弧形素子と駆動信号に応
じて電流制限され該第1の自己消弧形素子より安全動作
領域の広い第2の自己消弧形素子を直列接続して成るブ
リッジ形変換器と、該直列回路の過電流が検出されたと
き、該第2の自己消弧形素子の駆動信号により該過電流
を限流した後、該第1の自己消弧形素子及び第2の自己
消弧形素子をオフさせる手段を設けたことを特徴とする
ブリッジ形変換器の保護装置。
1. A first self-extinguishing element and a second self-extinguishing element whose current is limited according to a drive signal and whose safe operating range is wider than that of the first self-extinguishing element are connected in series. When an overcurrent in the series circuit is detected, the overcurrent is limited by a drive signal of the second self-arc-extinguishing element, and then the first self-arc-extinguishing element and a means for turning off the second self-extinguishing element.
JP08814791A 1991-04-19 1991-04-19 Bridge converter protection device Expired - Lifetime JP3180961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08814791A JP3180961B2 (en) 1991-04-19 1991-04-19 Bridge converter protection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08814791A JP3180961B2 (en) 1991-04-19 1991-04-19 Bridge converter protection device

Publications (2)

Publication Number Publication Date
JPH04322173A true JPH04322173A (en) 1992-11-12
JP3180961B2 JP3180961B2 (en) 2001-07-03

Family

ID=13934823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08814791A Expired - Lifetime JP3180961B2 (en) 1991-04-19 1991-04-19 Bridge converter protection device

Country Status (1)

Country Link
JP (1) JP3180961B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604670A (en) * 1994-08-15 1997-02-18 Kabushiki Kaisha Toshiba Power converting apparatus and control device for a power converting apparatus
US6396721B1 (en) 2000-02-03 2002-05-28 Kabushiki Kaisha Toshiba Power converter control device and power converter thereof
EP1710903A2 (en) * 2005-04-05 2006-10-11 International Rectifier Corporation Sensorless brushless direct current motor drive using pulse width modulation speed control at motor frequency
CN111952982A (en) * 2020-07-28 2020-11-17 中冶赛迪电气技术有限公司 Energy storage converter regulator saturation prevention control method during low voltage ride through recovery
WO2021014574A1 (en) * 2019-07-23 2021-01-28 東芝三菱電機産業システム株式会社 Multiplex power conversion system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI249287B (en) * 2003-06-25 2006-02-11 Matsushita Electric Works Ltd Electronic switch

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5604670A (en) * 1994-08-15 1997-02-18 Kabushiki Kaisha Toshiba Power converting apparatus and control device for a power converting apparatus
US6396721B1 (en) 2000-02-03 2002-05-28 Kabushiki Kaisha Toshiba Power converter control device and power converter thereof
EP1710903A2 (en) * 2005-04-05 2006-10-11 International Rectifier Corporation Sensorless brushless direct current motor drive using pulse width modulation speed control at motor frequency
EP1710903A3 (en) * 2005-04-05 2007-02-07 International Rectifier Corporation Sensorless brushless direct current motor drive using pulse width modulation speed control at motor frequency
US7321210B2 (en) 2005-04-05 2008-01-22 International Rectifier Corporation Sensorless brushless direct current motor drive using pulse width modulation speed control at motor frequency
WO2021014574A1 (en) * 2019-07-23 2021-01-28 東芝三菱電機産業システム株式会社 Multiplex power conversion system
JPWO2021014574A1 (en) * 2019-07-23 2021-01-28
CN111952982A (en) * 2020-07-28 2020-11-17 中冶赛迪电气技术有限公司 Energy storage converter regulator saturation prevention control method during low voltage ride through recovery

Also Published As

Publication number Publication date
JP3180961B2 (en) 2001-07-03

Similar Documents

Publication Publication Date Title
US6335608B1 (en) Fault protection circuitry for motor controllers
JP2669117B2 (en) Drive circuit for voltage-driven semiconductor devices
US7940503B2 (en) Power semiconductor arrangement including conditional active clamping
JP2001245466A (en) Electric power converter
SK10362000A3 (en) Method for symmetrizing asymmetric faults
EP2747260B1 (en) Method for operating an electrical power rectifier, and an electrical power rectifier
JP3780898B2 (en) Power device drive circuit
US4633381A (en) Inverter shoot-through protection circuit
JPH0923664A (en) Inverter device
KR930008838B1 (en) Guard system for inverter apparatus
JP3239728B2 (en) Semiconductor device protection method
JPH04322173A (en) Bridge type converter protection apparatus
JP2004236371A (en) Motor controller using inverter
JPH05218836A (en) Driving circuit for insulated gate element
JPH05219752A (en) Short circuit protecting device for power converter
JP2985431B2 (en) Transistor overcurrent protection circuit
JP3661813B2 (en) Drive circuit for voltage-driven semiconductor element
JP4449190B2 (en) Voltage-driven semiconductor device gate drive device
JPH10145206A (en) Protective circuit for semiconductor device
JP3463432B2 (en) Inverter drive
JP2000295838A (en) Drive circuit
JPH07250483A (en) Guidance system of electronic inverter
JP2004260981A (en) Power converting device and electric machine system utilizing it
JP4074991B2 (en) AC-AC power converter
JP3558324B2 (en) Gate drive device of voltage drive type device

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080420

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090420

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

EXPY Cancellation because of completion of term