JPH04316614A - Production of carbon fiber - Google Patents
Production of carbon fiberInfo
- Publication number
- JPH04316614A JPH04316614A JP10884791A JP10884791A JPH04316614A JP H04316614 A JPH04316614 A JP H04316614A JP 10884791 A JP10884791 A JP 10884791A JP 10884791 A JP10884791 A JP 10884791A JP H04316614 A JPH04316614 A JP H04316614A
- Authority
- JP
- Japan
- Prior art keywords
- pitch
- spinning
- carbon fiber
- carbon fibers
- melt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000049 Carbon (fiber) Polymers 0.000 title claims abstract description 57
- 239000004917 carbon fiber Substances 0.000 title claims abstract description 57
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 239000011295 pitch Substances 0.000 claims abstract description 80
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000002994 raw material Substances 0.000 claims abstract description 19
- 239000011302 mesophase pitch Substances 0.000 claims abstract description 18
- 238000003763 carbonization Methods 0.000 claims abstract description 14
- 238000002074 melt spinning Methods 0.000 claims abstract description 13
- 229910015900 BF3 Inorganic materials 0.000 claims abstract description 10
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229910000040 hydrogen fluoride Inorganic materials 0.000 claims abstract description 10
- -1 polycyclic hydrocarbon Chemical class 0.000 claims abstract description 10
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 9
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 5
- 238000009987 spinning Methods 0.000 claims description 39
- 239000000126 substance Substances 0.000 claims description 6
- 238000004804 winding Methods 0.000 claims description 6
- 230000000379 polymerizing effect Effects 0.000 claims description 5
- 239000000155 melt Substances 0.000 claims 1
- 238000006116 polymerization reaction Methods 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract 1
- 239000000835 fiber Substances 0.000 description 34
- 238000000034 method Methods 0.000 description 23
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 16
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 6
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 229920002239 polyacrylonitrile Polymers 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 230000000704 physical effect Effects 0.000 description 4
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- HXGDTGSAIMULJN-UHFFFAOYSA-N acetnaphthylene Natural products C1=CC(C=C2)=C3C2=CC=CC3=C1 HXGDTGSAIMULJN-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 238000010000 carbonizing Methods 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 description 2
- 238000005087 graphitization Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- 244000291564 Allium cepa Species 0.000 description 1
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 1
- 240000005220 Bischofia javanica Species 0.000 description 1
- 235000010893 Bischofia javanica Nutrition 0.000 description 1
- CWRYPZZKDGJXCA-UHFFFAOYSA-N acenaphthene Chemical compound C1=CC(CC2)=C3C2=CC=CC3=C1 CWRYPZZKDGJXCA-UHFFFAOYSA-N 0.000 description 1
- 125000004054 acenaphthylenyl group Chemical group C1(=CC2=CC=CC3=CC=CC1=C23)* 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010035 extrusion spinning Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Working-Up Tar And Pitch (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Inorganic Fibers (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は高性能炭素繊維の製造法
に関する。さらに詳しくは、優れた引張強度および破断
延度を有するピッチ系炭素繊維の製造法に関する。FIELD OF THE INVENTION This invention relates to a method for producing high performance carbon fibers. More specifically, the present invention relates to a method for producing pitch-based carbon fibers having excellent tensile strength and elongation at break.
【0002】0002
【従来の技術】高性能の炭素繊維は、一般に工業的にP
AN(ポリアクリロニトリル)を原料として製造されて
いる。しかしPANは高価であり、またその炭化収率が
低いことが欠点である。近年ピッチを原料にした場合に
も、PAN系のものと同等、もしくはそれ以上の特性を
持つ高性能炭素繊維を製造し得ることが見いだされ注目
されている。[Prior Art] High-performance carbon fibers are generally manufactured industrially using P.
Manufactured using AN (polyacrylonitrile) as a raw material. However, PAN is expensive and its carbonization yield is low. In recent years, it has been discovered that even when pitch is used as a raw material, it is possible to produce high-performance carbon fibers with properties equal to or better than those of PAN-based fibers, and this has attracted attention.
【0003】上記ピッチ系高性能炭素繊維の原料となる
紡糸用ピッチの調製法としては、特公昭59−3019
2号、特開昭54−160427号、特開昭57−11
9984号、特開昭58−18421号に記述された方
法などが知られているが、いずれの方法も煩雑なプロセ
スを経るために、得られるピッチが極めて高価になるの
みならず品質が安定しないという問題がある。[0003] As a method for preparing spinning pitch, which is a raw material for the pitch-based high-performance carbon fiber, there is a method disclosed in Japanese Patent Publication No. 59-3019
No. 2, JP-A-54-160427, JP-A-57-11
Methods such as those described in No. 9984 and Japanese Patent Application Laid-open No. 58-18421 are known, but since each method involves a complicated process, the pitch obtained is not only extremely expensive but also of unstable quality. There is a problem.
【0004】またナフタレンを塩化アルミニウムの存在
下重合することにより炭素繊維原料ピッチを調製する方
法も知られている(特開昭61−83317号、特開昭
61−83318号、特開昭61−83319号)。し
かしこれらの塩化アルミニウム触媒を用いる方法は、重
合して得られたピッチ中から塩化アルミニウム触媒を特
別な操作で除去することが必要であると共に、微量の塩
化アルミニウムまたはその誘導体が炭素繊維中に残存し
、炭素繊維の強度などの物性を著しく劣化させるという
問題がある。[0004] A method of preparing carbon fiber raw material pitch by polymerizing naphthalene in the presence of aluminum chloride is also known (JP-A-61-83317, JP-A-61-83318, JP-A-61-61). No. 83319). However, these methods using aluminum chloride catalysts require a special operation to remove the aluminum chloride catalyst from the pitch obtained by polymerization, and a trace amount of aluminum chloride or its derivatives remains in the carbon fiber. However, there is a problem in that physical properties such as strength of carbon fibers are significantly deteriorated.
【0005】このような問題点を解決するためにナフタ
レン、アントラセン、フェナントレン、アセナフテン、
アセナフチレン、ピレン等の縮合多環炭化水素またはこ
れを含有する物質を、フッ化水素、三フッ化ホウ素の存
在下重合すると、■メソフェーズ含有量が高く、■紡糸
時の熱安定性が高く、■不融化性が高く、■炭化収率が
高いことを特徴とする、高性能炭素繊維の原料として好
適なメソフェーズピッチを安価に安定して調製できるこ
とが報告されている(特開昭63−146920号、
特開平1−139621号、 特開平1−254796
号)。In order to solve these problems, naphthalene, anthracene, phenanthrene, acenaphthene,
When fused polycyclic hydrocarbons such as acenaphthylene and pyrene or substances containing them are polymerized in the presence of hydrogen fluoride and boron trifluoride, ■ high mesophase content, ■ high thermal stability during spinning, and ■ It has been reported that mesophase pitch, which is suitable as a raw material for high-performance carbon fiber and is characterized by high infusibility and high carbonization yield, can be stably prepared at low cost (Japanese Patent Laid-Open No. 146920/1983). ,
JP-A-1-139621, JP-A-1-254796
issue).
【0006】上記のいずれの方法によって得られたピッ
チも、メソフェーズピッチであるかまたは潜在的メソフ
ェーズピッチ、プリメソフェーズピッチ等と呼ばれるピ
ッチであり、ピッチの発達した芳香族平面分子が溶融紡
糸の際に繊維軸に平行な方向に配列する。この配向構造
はその後の酸化性雰囲気流通下で徐々に昇温して表面を
酸化する不融化処理の際にも維持され、さらに不活性雰
囲気中で加熱処理する炭素化処理の際の最高処理温度に
応じて発達するため、配向度の高い高引張強度、高引張
弾性率の炭素繊維が得られると考えられている。しかし
、このピッチ分子の繊維軸方向への配向が過剰になると
、炭素繊維製造段階において繊維軸に沿ってクラックが
発生し、またクラックが発生しなくとも繊維内の粒界部
に存在するミクロボイドが巨大化するため炭素繊維が極
めて脆くなり、PAN系炭素繊維を凌ぐ高引張強度、高
引張弾性率を得ることが困難である。[0006] The pitch obtained by any of the above methods is a pitch called mesophase pitch, latent mesophase pitch, pre-mesophase pitch, etc., and aromatic planar molecules with developed pitch are formed during melt spinning. Arrange in a direction parallel to the fiber axis. This oriented structure is maintained even during the subsequent infusibility treatment in which the surface is oxidized by gradually increasing the temperature under an oxidizing atmosphere, and is further maintained at the maximum treatment temperature during the carbonization treatment in which the surface is heated in an inert atmosphere. It is thought that carbon fibers with a high degree of orientation, high tensile strength, and high tensile modulus can be obtained because the carbon fibers develop according to the However, if the orientation of pitch molecules in the fiber axis direction becomes excessive, cracks will occur along the fiber axis during the carbon fiber manufacturing stage, and even if no cracks occur, microvoids that exist at the grain boundaries within the fiber will occur. Due to their large size, carbon fibers become extremely brittle, making it difficult to obtain high tensile strength and high tensile modulus that exceed those of PAN-based carbon fibers.
【0007】これに対し、これまでにまず繊維の横断面
内のピッチ分子の配向構造を制御することにより炭素繊
維の物性を改善することが試みられた。すなわち上述の
クラックの発生や繊維の脆化は繊維横断面のマクロ構造
がいわゆるラジアル構造であることに起因するとの考え
から、ラジアル構造を回避するための種々の提案がなさ
れている。例えば特開昭59−76925号、特開昭5
9−168124号、特開昭61−167019号等で
は、紡糸条件、すなわちノズル口金孔内でのピッチの粘
度、ピッチの受ける剪断応力または剪断速度等を適正化
しており、特開昭59−168127号、特開昭60−
104528号等のように紡糸ノズルの形状を特定する
ことにより、ランダム構造やオニオン構造の炭素繊維を
得ようとしている。また特開昭61−12919号、特
開昭61−201021号、特開昭61−258024
号等は、紡糸ノズルの直前に充填材層を設けるものであ
り、特開昭61−167022号、特開昭62−177
222号、特開昭63−75119号、特開昭63−3
03119号、特開平2−6628号等では紡糸ノズル
上に静的または動的攪拌装置を設置することにより、ラ
ンダム構造等の炭素繊維を得ている。しかしこれらの方
法により得られた非ラジアル構造の炭素繊維はラジアル
構造のものに比べて必ずしも引張強度が高いとはいえず
、また紡糸時のピッチ粘度が極めて低いために紡糸が不
安定で糸切れが生じ易かったり、ノズルの構造が複雑な
ためにノズルの製作、保守点検が容易でないなどの理由
で工業的な生産の際に不利であるという問題点を有する
。In response, attempts have been made to improve the physical properties of carbon fibers by first controlling the orientation structure of pitch molecules within the cross section of the fibers. That is, based on the idea that the above-mentioned occurrence of cracks and embrittlement of fibers are caused by the macrostructure of the fiber cross section being a so-called radial structure, various proposals have been made to avoid the radial structure. For example, JP-A No. 59-76925, JP-A No. 5
9-168124, JP-A No. 61-167019, etc., the spinning conditions, i.e., the viscosity of the pitch in the nozzle mouth hole, the shear stress or shear rate that the pitch receives, etc., are optimized, and JP-A-59-168127 No., Japanese Patent Application Publication No. 1986-
By specifying the shape of the spinning nozzle, as in No. 104528, attempts are made to obtain carbon fibers with a random structure or an onion structure. Also, JP-A-61-12919, JP-A-61-201021, JP-A-61-258024
JP-A-61-167022 and JP-A-62-177 disclose a method in which a filler layer is provided immediately before the spinning nozzle.
No. 222, JP-A-63-75119, JP-A-63-3
No. 03119, JP-A No. 2-6628, etc., carbon fibers having a random structure or the like are obtained by installing a static or dynamic stirring device on a spinning nozzle. However, carbon fibers with a non-radial structure obtained by these methods do not necessarily have higher tensile strength than those with a radial structure, and the pitch viscosity during spinning is extremely low, resulting in unstable spinning and fiber breakage. This method has problems in that it is disadvantageous in industrial production because it is easy to cause problems and the structure of the nozzle is complicated, making it difficult to manufacture and maintain the nozzle.
【0008】また繊維軸に平行な方向へのピッチ分子の
配向度自体を制御してクラック発生や繊維の脆化を防止
し、炭素繊維の高強度化を図る試みもなされている。例
えば特開昭59−53717号、特開平1−28231
7号等ではドラフト比やノズル口金孔内でのピッチの粘
度を適正化することにより配向構造を制御しており、特
開昭62−104926号はピッチのドメイン径に基づ
いてノズル口金孔内でのピッチの粘度を適正化すること
により配向構造を制御している。また特開昭60−27
12号はノズル口金を出てからのピッチの粘度を適正化
することにより配向構造を制御している。しかしこれら
のいずれの方法においても充分満足できるものではなく
、これらの方法に従えば構造制御によるクラック発生の
抑制は可能であるかもしれないが、得られる炭素繊維の
引張強度、引張弾性率は必ずしも高い値を示さないとい
う問題点を有する。Attempts have also been made to increase the strength of carbon fibers by controlling the degree of orientation of pitch molecules in the direction parallel to the fiber axis to prevent cracking and embrittlement of the fibers. For example, JP-A-59-53717, JP-A-1-28231
In No. 7, etc., the orientation structure is controlled by optimizing the draft ratio and the viscosity of the pitch in the nozzle orifice, and in JP-A-62-104926, the orientation structure is controlled by optimizing the draft ratio and the viscosity of the pitch in the nozzle orifice. The alignment structure is controlled by optimizing the viscosity of the pitch. Also, JP-A-60-27
No. 12 controls the orientation structure by optimizing the viscosity of the pitch after it leaves the nozzle mouthpiece. However, none of these methods are fully satisfactory; although it may be possible to suppress crack generation by structural control, the tensile strength and tensile modulus of the resulting carbon fibers are not necessarily satisfactory. The problem is that it does not show a high value.
【0009】[0009]
【発明が解決しようとする課題】以上の如くピッチ系炭
素繊維について種々の改良が行われているが、その性能
は未だ十分でない。しかも上記の公知の方法のいずれを
用いても高強度が発現するのは約1500℃以上の高温
で黒鉛化処理を行った場合に限られる。このため高コス
トになるのみならず、得られる黒鉛化繊維の引張弾性率
は高いものの、破断伸度が十分でなく、PAN系汎用品
に匹敵するような高引張強度、高破断伸度の炭素繊維を
安価に製造することができない。本発明の目的は、上記
ピッチ系炭素繊維の従来技術の問題点を解消し、PAN
系汎用品に匹敵する高引張強度、高破断伸度という特性
を有する炭素繊維を安価に製造する方法を提供すること
にある。Although various improvements have been made to pitch-based carbon fibers as described above, their performance is still not sufficient. Moreover, no matter which of the above-mentioned known methods is used, high strength is only achieved when the graphitization treatment is performed at a high temperature of about 1500° C. or higher. This not only results in high costs, but also the resulting graphitized fibers have a high tensile modulus but do not have sufficient elongation at break. Fibers cannot be manufactured cheaply. The purpose of the present invention is to solve the above-mentioned problems of the conventional pitch-based carbon fiber, and to
The object of the present invention is to provide a method for manufacturing carbon fiber at low cost, which has properties such as high tensile strength and high elongation at break comparable to general-purpose products.
【0010】0010
【課題を解決するための手段】本発明者は上記の目的を
達成するために鋭意検討した結果、ピッチを溶融紡糸し
、不融化処理、炭素化処理することにより炭素繊維を製
造する方法において、原料ピッチとして縮合多環炭化水
素から得られる特定のメソフェーズピッチを用い、かつ
特定条件下で溶融紡糸と炭素化を行うことにより、引張
強度および破断伸度の優れた炭素繊維を安価に製造でき
ることを見い出し、本発明の完成に至った。[Means for Solving the Problems] As a result of intensive studies to achieve the above object, the present inventors have found that a method for producing carbon fibers by melt spinning pitch, infusibility treatment, and carbonization treatment. We have demonstrated that carbon fibers with excellent tensile strength and elongation at break can be manufactured at low cost by using a specific mesophase pitch obtained from condensed polycyclic hydrocarbons as the raw material pitch and by performing melt spinning and carbonization under specific conditions. This heading led to the completion of the present invention.
【0011】すなわち本発明は、フッ化水素、三フッ化
ホウ素の存在下、縮合多環炭化水素または、これを含有
する物質を重合させて得られたメソフェーズピッチを原
料として、溶融紡糸した後不融化処理、炭素化処理する
ことにより炭素繊維を製造する方法において、溶融紡糸
を下記の(1)式の条件を満足するドラフト比(Ve/
Vo)で行い、炭素化処理を800〜1400℃の温度
範囲で行うことを特徴とする炭素繊維の製造方法である
。That is, the present invention uses mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same in the presence of hydrogen fluoride or boron trifluoride as a raw material, melt-spun it, and then produces a nonwoven fabric. In the method of manufacturing carbon fibers by melting treatment and carbonization treatment, melt spinning is carried out at a draft ratio (Ve/
This is a method for producing carbon fibers, characterized in that the carbonization treatment is carried out at a temperature range of 800 to 1400°C.
【0012】
28(τD/L)−0.65 ≦Ve/Vo≦
115(τD/L)−0.98 (1)ただし、
τ:溶融ピッチが紡糸ノズルキャピラリー壁面から受け
る剪断応力(kgf/cm2)
D:紡糸ノズルキャピラリーの直径(mm)L:紡糸ノ
ズルキャピラリーの長さ(mm)Ve: 巻取速度(
m/min)
Vo: 溶融ピッチのキャピラリー内での平均速度(
m/min)
を表す。以下、本発明の内容について詳しく説明する。28(τD/L)−0.65≦Ve/Vo≦
115 (τD/L) - 0.98 (1) However, τ: Shear stress that the molten pitch receives from the wall of the spinning nozzle capillary (kgf/cm2) D: Diameter of the spinning nozzle capillary (mm) L: Length of the spinning nozzle capillary Size (mm) Ve: Winding speed (
m/min) Vo: Average velocity of the molten pitch in the capillary (
m/min). Hereinafter, the content of the present invention will be explained in detail.
【0013】本発明の方法で原料に用いられるメソフェ
ーズピッチは、縮合多環炭化水素またはこれを含有する
物質を重合させて得られたピッチである。すなわちこの
メソフェーズピッチは、特開昭63−146920号、
特開平1−139621号、 特開平1−25479
6号に示される如く、ナフタレン、アントラセン、フェ
ナントレン、アセナフテン、アセナフチレン、ピレン等
並びにこれらの骨格を有する縮合多環炭化水素、及びこ
れらの混合物ないしこれらを含有する物質から合成され
たピッチである。The mesophase pitch used as a raw material in the method of the present invention is a pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing the same. In other words, this mesophase pitch is disclosed in Japanese Patent Application Laid-open No. 146920/1983.
JP-A-1-139621, JP-A-1-25479
As shown in No. 6, pitch is synthesized from naphthalene, anthracene, phenanthrene, acenaphthene, acenaphthylene, pyrene, etc., condensed polycyclic hydrocarbons having these skeletons, mixtures thereof, or substances containing these.
【0014】またこのメソフェーズピッチは、縮合多環
炭化水素またはこれを含有する物質をフッ化水素、三フ
ッ化ホウ素の存在下で重合させて得られたピッチである
。この重合は、ピッチ原料1モルに対し、重合触媒とし
てフッ化水素0.1〜20モル、三フッ化ホウ素0.0
5〜1.0モルを使用し、180〜400℃、5〜10
0気圧の条件で5〜300分反応させることにより行わ
れる。The mesophase pitch is a pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing it in the presence of hydrogen fluoride or boron trifluoride. In this polymerization, 0.1 to 20 mol of hydrogen fluoride and 0.0 mol of boron trifluoride are used as polymerization catalysts for 1 mol of pitch raw material.
Use 5-1.0 mol, 180-400°C, 5-10
The reaction is carried out under conditions of 0 atmospheric pressure for 5 to 300 minutes.
【0015】この合成方法によれば、重合条件を適切に
組み合わせることにより、0〜100%の任意の光学的
異方性相含有率を有し、180〜400℃の任意の軟化
点を有するピッチを調製することができるが、本発明で
用いるピッチは光学的異方性相含有率が90%以上、特
に実質100%であることが好ましく、軟化点が205
〜255℃であることが好ましい。光学的異方性相含有
率が低い場合、溶融状態で異方性相と等方性相が分離し
、紡糸操作を妨害するのみならず、得られる炭素繊維の
引張強度、弾性率などが低くなる。また軟化点が低いと
ピッチ中の低分子量成分が紡糸時に揮発するため、ある
いは軟化点が高いと高温での紡糸が必要となり、ピッチ
の熱分解、熱縮合反応が起こり易くなるために安定な紡
糸を長時間継続することが困難である。According to this synthesis method, by appropriately combining polymerization conditions, a pitch having an arbitrary optically anisotropic phase content of 0 to 100% and an arbitrary softening point of 180 to 400°C can be produced. However, it is preferable that the pitch used in the present invention has an optically anisotropic phase content of 90% or more, particularly substantially 100%, and a softening point of 205%.
It is preferable that it is -255 degreeC. If the content of the optically anisotropic phase is low, the anisotropic phase and isotropic phase will separate in the molten state, which will not only hinder the spinning operation but also cause the resulting carbon fiber to have low tensile strength, low elastic modulus, etc. Become. In addition, if the softening point is low, the low molecular weight components in the pitch will volatilize during spinning, or if the softening point is high, spinning will be required at high temperatures, making pitch thermal decomposition and thermal condensation reactions more likely to occur, resulting in stable spinning. It is difficult to continue for a long time.
【0016】なお本明細書において「光学的異方性相」
とは、常温近くで固化したピッチ塊の断面を研磨し、反
射型光学顕微鏡で直交ニコル下で観察したとき、試料ま
たは直交ニコルを回転して光輝が認められ、すなわち光
学的異方性である部分を意味し、「光学的異方性相含有
率」とは、顕微鏡で観察した際のこの光学的異方性相の
面積分率を意味する。「メソフェーズピッチ」とはこの
ような光学的異方性相を含むピッチのことである。また
「ピッチの軟化点」は、高化式フローテスターにより測
定されたピッチの固−液転移温度を指す。[0016] In this specification, "optically anisotropic phase"
When a cross section of a pitch lump solidified near room temperature is polished and observed under crossed nicols using a reflection optical microscope, brightness is observed when the sample or crossed nicols are rotated, that is, optical anisotropy. "Optically anisotropic phase content" means the area fraction of this optically anisotropic phase when observed with a microscope. "Mesophase pitch" refers to a pitch containing such an optically anisotropic phase. Moreover, "softening point of pitch" refers to the solid-liquid transition temperature of pitch measured by a Koka type flow tester.
【0017】このようにして得られたメソフェーズピッ
チは、炭素に対する水素の原子比が0.5〜1.0であ
る。炭素に対する水素の原子比がこのように高いために
不融化時の酸素との反応性が高く、不融化処理を短時間
で終了することができる。そのためこのピッチを用いる
ことにより、炭素繊維製造工程の中でコストアップの要
因とされてきた不融化工程を大幅に短縮化できるという
特徴を持つ。The mesophase pitch thus obtained has an atomic ratio of hydrogen to carbon of 0.5 to 1.0. Since the atomic ratio of hydrogen to carbon is thus high, the reactivity with oxygen during infusibility is high, and the infusibility treatment can be completed in a short time. Therefore, by using this pitch, it is possible to significantly shorten the infusibility process, which has been considered to be a factor in increasing costs in the carbon fiber manufacturing process.
【0018】発明者等はかかる特徴を有したメソフェー
ズピッチを用いて溶融紡糸して炭素繊維を製造する方法
を検討した結果、このメソフェーズピッチを前述の(1
)式で規定されるドラフト比(キャピラリー内速度Vo
と巻取速度Veの比率)で紡糸した後、不融化し、80
0〜1400℃で炭素化することにより、従来のピッチ
系炭素繊維をはるかに凌ぎ、さらにPAN系高強度炭素
繊維に匹敵する高引張強度、高破断伸度を示す炭素繊維
を得ることができることを見い出した。The inventors investigated a method for manufacturing carbon fiber by melt spinning using mesophase pitch having such characteristics.
) Draft ratio (capillary internal speed Vo
After spinning at a ratio of winding speed Ve to
By carbonizing at 0 to 1400°C, it is possible to obtain carbon fibers that far exceed conventional pitch-based carbon fibers and exhibit high tensile strength and high elongation at break that are comparable to PAN-based high-strength carbon fibers. I found it.
【0019】(1)式によるドラフト比は、横軸にτD
/Lの対数を、縦軸にドラフト比の対数を採ることによ
り図1に示す2本の直線に挟まれる範囲に示される。こ
の範囲よりドラフト比が小さいと、引張弾性率は高いも
のの破断伸度が小さくなりすぎて高引張強度は得られな
い。逆にこの範囲よりドラフト比が大きいと、破断伸度
は大きいものの引張弾性率が低くなり高引張強度が得ら
れない。The draft ratio according to equation (1) is expressed by τD on the horizontal axis.
By taking the logarithm of /L and the logarithm of the draft ratio on the vertical axis, it is shown in the range sandwiched between the two straight lines shown in FIG. If the draft ratio is smaller than this range, although the tensile modulus is high, the elongation at break becomes too small and high tensile strength cannot be obtained. Conversely, if the draft ratio is greater than this range, the elongation at break is high but the tensile modulus is low and high tensile strength cannot be obtained.
【0020】ここでτD/Lは次の(2)式で定義され
、使用するノズルの形状やピッチ粘度、ピッチ吐出量の
組合せにより変化させることができる。
τD/L=(PD2 )/(4L2 )
=5.44×10−4(Qη)/(
πD2L) =1.36×10
−8(Voη)/L =8.1
6×10−10 η/t
(2)ただし、
P:溶融ピッチ吐出圧力(kgf/cm2)D:紡糸ノ
ズルキャピラリーの直径(mm)L:紡糸ノズルキャピ
ラリーの長さ(mm)Vo:溶融ピッチのキャピラリー
内での平均速度(m/min)
Q:溶融ピッチ吐出速度(ml/min)η:溶融ピッ
チの粘度(poise)
t:溶融ピッチのキャピラリー内平均滞留時間(sec
)である。Here, τD/L is defined by the following equation (2), and can be changed by the combination of the shape of the nozzle used, pitch viscosity, and pitch discharge amount. τD/L=(PD2)/(4L2)
=5.44×10-4(Qη)/(
πD2L) =1.36×10
−8(Voη)/L =8.1
6×10-10 η/t
(2) However, P: Molten pitch discharge pressure (kgf/cm2) D: Diameter of spinning nozzle capillary (mm) L: Length of spinning nozzle capillary (mm) Vo: Average velocity of molten pitch within the capillary (m /min) Q: Melt pitch discharge rate (ml/min) η: Melt pitch viscosity (poise) t: Melt pitch average residence time in the capillary (sec
).
【0021】なお、本発明の方法における溶融紡糸は、
押し出し紡糸、吹き出し紡糸、遠心紡糸等のいずれを用
いてもよい。また使用する紡糸ノズルの形状は、一般の
溶融紡糸に用いられるノズルと同じものでよく特に制限
はない。[0021] The melt spinning in the method of the present invention is
Any of extrusion spinning, blow spinning, centrifugal spinning, etc. may be used. Further, the shape of the spinning nozzle to be used may be the same as the nozzle used in general melt spinning and is not particularly limited.
【0022】このような条件下で紡糸されたピッチ繊維
は常法により不融化処理された後、800〜1400℃
において不活性雰囲気下で炭素化される。炭素化温度が
800℃より低い場合は黒鉛結晶の成長が不十分である
ために破断伸度は大きいものの引張弾性率が引くすぎて
高引張強度は得られない。逆に炭素化温度が1400℃
より高い場合には、黒鉛化による黒鉛結晶の成長が進行
し引張強度は向上する場合もあるが、高破断伸度の炭素
繊維を得ることができない。The pitch fibers spun under these conditions are infusible by a conventional method, and then heated at 800 to 1400°C.
carbonized under an inert atmosphere. If the carbonization temperature is lower than 800° C., the growth of graphite crystals is insufficient, so although the elongation at break is large, the tensile modulus is too low and high tensile strength cannot be obtained. On the other hand, the carbonization temperature is 1400℃
If it is higher, the growth of graphite crystals due to graphitization may progress and the tensile strength may be improved, but carbon fibers with a high elongation at break cannot be obtained.
【0023】本発明で調製された炭素繊維が極めて高い
引張強度、破断伸度を示すという作用機構の詳細は明確
ではないが、以下のように推察される。まず原料ピッチ
として特殊な分子構造、分子量分布を持つメソフェーズ
ピッチを用い、上記の条件下で溶融紡糸を行うことによ
り、ピッチ分子が繊維軸方向に好適に配向したピッチ繊
維が得られる。このピッチ繊維においては、繊維横断面
内でもピッチ分子が好適に配向、積層している。このよ
うなピッチ繊維を不融化後、さらに特定温度範囲で炭素
化することにより黒鉛結晶の過剰成長が抑制されること
により、繊維内の粒界部に存在するミクロボイドが微細
に分散している炭素繊維が得られる。またこの炭素繊維
では繊維軸方向への黒鉛結晶の配向度が充分高いので、
結果として高引張強度、高破断伸度を有する炭素繊維が
得られると考えられる。Although the details of the mechanism by which the carbon fibers prepared according to the present invention exhibit extremely high tensile strength and elongation at break are not clear, it is inferred as follows. First, by using mesophase pitch having a special molecular structure and molecular weight distribution as the raw material pitch and performing melt spinning under the above conditions, pitch fibers in which pitch molecules are suitably oriented in the fiber axis direction can be obtained. In this pitch fiber, pitch molecules are suitably oriented and laminated even within the cross section of the fiber. After making such pitch fibers infusible, the excessive growth of graphite crystals is suppressed by carbonizing them at a specific temperature range, resulting in carbon in which microvoids present in the grain boundaries within the fibers are finely dispersed. Fiber is obtained. In addition, this carbon fiber has a sufficiently high degree of orientation of graphite crystals in the fiber axis direction, so
It is thought that as a result, carbon fibers having high tensile strength and high elongation at break can be obtained.
【0024】[0024]
【実施例】次に実施例により本発明をさらに具体的に説
明する。もちろん本発明はこれらの実施例により制限さ
れるものではない。EXAMPLES Next, the present invention will be explained in more detail with reference to Examples. Of course, the present invention is not limited to these examples.
【0025】実施例1
ナフタレン1モル、フッ化水素0.5モル、三フッ化ホ
ウ素0.2モルを500ミリリットルの耐酸オートクレ
ーブに仕込み、反応圧力を25kgf/cm2に保ちな
がら260℃に昇温後、2時間反応した。その後オート
クレーブの放出弁を開け、常圧において実質的に全量の
フッ化水素、三フッ化ホウ素をガス状で回収した後、窒
素を吹き込み、低沸点成分を除去したピッチを得た。得
られたピッチの収率は原料ナフタレンに対する重量比で
76%であった。またこのピッチの光学的異方性相含有
率は100%であり、軟化点は231℃、H/C原子比
は0.67であった。Example 1 1 mole of naphthalene, 0.5 mole of hydrogen fluoride, and 0.2 mole of boron trifluoride were charged into a 500 ml acid-resistant autoclave, and the temperature was raised to 260° C. while maintaining the reaction pressure at 25 kgf/cm2. , reacted for 2 hours. Thereafter, the discharge valve of the autoclave was opened, and substantially all of the hydrogen fluoride and boron trifluoride were recovered in gaseous form at normal pressure, and then nitrogen was blown into the autoclave to obtain pitch from which low-boiling components had been removed. The yield of the pitch obtained was 76% by weight based on the raw material naphthalene. The optically anisotropic phase content of this pitch was 100%, the softening point was 231° C., and the H/C atomic ratio was 0.67.
【0026】このメソフェーズピッチを、D=0.15
mmφ、L/D=3の単孔ノズルを有する溶融紡糸器に
入れ310℃に昇温後、14kgf/cm2の圧力をか
けて押し出し、240m/minで巻取ることにより直
径d=12×10−3mmφのピッチ繊維を得た。この
時の剪断応力はτ=1.16kgf/cm2であり、ド
ラフト比はVe/Vo=156であるので、この紡糸条
件は前述の好適範囲に含まれる。このようにして得られ
たピッチ繊維を空気中で5℃/minの昇温速度で28
0℃まで昇温することにより不融化した後、アルゴン雰
囲気下20℃/minの昇温速度で1000℃まで昇温
することにより炭素繊維を得た。得られた炭素繊維の引
張強度は340kgf/mm2、引張弾性率は20tf
/mm2 、破断伸度は1.7%であり、高強度、高破
断伸度であった。[0026] This mesophase pitch is set to D=0.15.
mmφ, L/D=3, placed in a melt spinning machine with a single-hole nozzle, heated to 310°C, extruded with a pressure of 14 kgf/cm2, and wound at 240 m/min to obtain a fiber with a diameter d=12×10− A pitch fiber with a diameter of 3 mm was obtained. The shear stress at this time is τ = 1.16 kgf/cm2, and the draft ratio is Ve/Vo = 156, so these spinning conditions are within the above-mentioned preferred range. The pitch fiber thus obtained was heated to 28 °C in air at a heating rate of 5 °C/min.
After making it infusible by raising the temperature to 0°C, carbon fibers were obtained by raising the temperature to 1000°C at a rate of 20°C/min in an argon atmosphere. The obtained carbon fiber had a tensile strength of 340 kgf/mm2 and a tensile modulus of 20 tf.
/mm2, and the elongation at break was 1.7%, indicating high strength and high elongation at break.
【0027】比較例1
実施例1で用いたものと同じ原料ピッチ、紡糸ノズル、
紡糸器を使用し、320℃に昇温後、2kgf/cm2
の圧力をかけて押し出し、70m/minで巻取ること
により直径d=12×10−3mmφのピッチ繊維を得
た。このときのドラフト比はVe/Vo=156であり
、実施例1と同じであるが剪断応力がτ=0.17kg
f/cm2と小さいために、前述の好適範囲から外れて
いる。このピッチ繊維から実施例1と同じ方法により炭
素繊維を得た。得られた炭素繊維の引張強度は230k
gf/mm2、引張弾性率は22tf/mm2 、破断
伸度は1.1%であった。Comparative Example 1 The same raw material pitch, spinning nozzle, and
Using a spinning machine, after raising the temperature to 320℃, 2kgf/cm2
Pitch fibers having a diameter d=12×10 −3 mmφ were obtained by extruding the fibers under a pressure of 100 m/min and winding them at a speed of 70 m/min. The draft ratio at this time is Ve/Vo=156, which is the same as in Example 1, but the shear stress is τ=0.17 kg.
Since it is as small as f/cm2, it is out of the above-mentioned preferred range. Carbon fibers were obtained from this pitch fiber by the same method as in Example 1. The tensile strength of the obtained carbon fiber is 230k
gf/mm2, tensile modulus was 22tf/mm2, and elongation at break was 1.1%.
【0028】比較例2
実施例1で用いたものと同じ原料ピッチ、紡糸ノズル、
紡糸器を使用し、300℃に昇温後、50kgf/cm
2の圧力をかけて押し出し、270m/minで巻取る
ことにより直径d=12×10−3mmφのピッチ繊維
を得た。このときのドラフト比はVe/Vo=156で
あり、実施例1と同じであるが剪断応力がτ=4.17
kgf/cm2と大きいために、前述の好適範囲から外
れている。このピッチ繊維から実施例1と同じ方法によ
り炭素繊維を得た。得られた炭素繊維の引張強度は26
0kgf/mm2、引張弾性率は26tf/mm2、破
断伸度は1.6%であった。Comparative Example 2 The same raw material pitch, spinning nozzle, and
Using a spinning machine, after raising the temperature to 300℃, 50kgf/cm
Pitch fibers having a diameter d=12×10 −3 mmφ were obtained by extruding by applying a pressure of 2 and winding at 270 m/min. The draft ratio at this time is Ve/Vo=156, which is the same as in Example 1, but the shear stress is τ=4.17.
Since it is as large as kgf/cm2, it is out of the above-mentioned preferred range. Carbon fibers were obtained from this pitch fiber by the same method as in Example 1. The tensile strength of the obtained carbon fiber was 26
The tensile modulus was 0 kgf/mm2, the tensile modulus was 26 tf/mm2, and the elongation at break was 1.6%.
【0029】実施例2
実施例1で用いたものと同じ原料ピッチを、D=0.3
5mmφ、L/D=3の単孔ノズルを有する紡糸器に入
れ、320℃に昇温後、1kgf/cm2の圧力をかけ
て押し出し、240m/minで巻取ることにより直径
d=12×10−3mmφのピッチ繊維を得た。この時
の剪断応力はτ=0.083kgf/cm2であり、ド
ラフト比はVe/Vo=851であるので、この紡糸条
件は前述の好適範囲に含まれる。このようにして得られ
たピッチ繊維を空気中で5℃/minの昇温速度で28
0℃まで昇温することにより不融化した後、窒素雰囲気
下20℃/minの昇温速度で1200℃まで昇温する
ことにより炭素繊維を得た。得られた炭素繊維の引張強
度は420kgf/mm2、引張弾性率は26tf/m
m2 、破断伸度は1.6%であり、高強度、高破断伸
度であった。Example 2 The same raw material pitch used in Example 1 was used at D=0.3.
It was placed in a spinning machine with a single-hole nozzle of 5 mmφ and L/D=3, heated to 320°C, extruded by applying a pressure of 1 kgf/cm2, and wound at 240 m/min to obtain a yarn with a diameter d=12×10−. A pitch fiber with a diameter of 3 mm was obtained. The shear stress at this time is τ = 0.083 kgf/cm2, and the draft ratio is Ve/Vo = 851, so these spinning conditions are within the above-mentioned preferred range. The pitch fiber thus obtained was heated to 28 °C in air at a heating rate of 5 °C/min.
After making it infusible by raising the temperature to 0°C, carbon fibers were obtained by raising the temperature to 1200°C at a rate of 20°C/min in a nitrogen atmosphere. The obtained carbon fiber had a tensile strength of 420 kgf/mm2 and a tensile modulus of 26 tf/m.
m2 and elongation at break were 1.6%, indicating high strength and high elongation at break.
【0030】実施例3〜6、比較例3〜7ナフタレン6
0モル、フッ化水素30モル、三フッ化ホウ素9モルを
43リットルの耐酸オートクレーブに仕込み、反応圧力
を25kgf/cm2に保ちながら260℃に昇温後2
時間反応した。その後オートクレーブの放出弁を開け、
常圧において実質的に全量のフッ化水素、三フッ化ホウ
素をガス状で回収した後、窒素を吹き込み、低沸点成分
を除去したピッチを得た。得られたピッチの収率は原料
ナフタレンに対する重量比で70%であった。またこの
ピッチの光学的異方性相含有率は100%であり、軟化
点は237℃、H/C原子比は0.66であった。Examples 3 to 6, Comparative Examples 3 to 7 Naphthalene 6
0 mol, hydrogen fluoride 30 mol, and boron trifluoride 9 mol were charged into a 43 liter acid-resistant autoclave, and the temperature was raised to 260°C while maintaining the reaction pressure at 25 kgf/cm2.
Time reacted. Then open the autoclave discharge valve and
After substantially all hydrogen fluoride and boron trifluoride were recovered in gaseous form at normal pressure, nitrogen was blown into the reactor to obtain pitch from which low-boiling components had been removed. The yield of the pitch obtained was 70% by weight based on the raw material naphthalene. The optically anisotropic phase content of this pitch was 100%, the softening point was 237° C., and the H/C atomic ratio was 0.66.
【0031】このメソフェーズピッチを、単孔ノズルを
有する紡糸器に入れ、表1に示す紡糸条件で溶融紡糸し
、直径d=12×10−3mmφのピッチ繊維を得た。
得られたピッチ繊維を空気中で5℃/minの昇温速度
で280℃まで昇温することにより不融化した後、窒素
雰囲気下20℃/minの昇温速度で1000℃まで昇
温することにより炭素繊維を得た。得られた炭素繊維の
物性を表1に示す。表1の実施例3〜6は紡糸条件が前
述の好適範囲に入っており、得られた炭素繊維は高引張
強度、高破断伸度を示すが、比較例3〜7の場合は紡糸
条件が好適範囲から外れているために炭素繊維の物性が
低い。This mesophase pitch was put into a spinning machine having a single-hole nozzle and melt-spun under the spinning conditions shown in Table 1 to obtain pitch fibers with a diameter d=12×10 −3 mmφ. The obtained pitch fibers are made infusible by heating up to 280°C at a heating rate of 5°C/min in air, and then heated to 1000°C at a heating rate of 20°C/min in a nitrogen atmosphere. Carbon fibers were obtained. Table 1 shows the physical properties of the obtained carbon fiber. In Examples 3 to 6 in Table 1, the spinning conditions were within the above-mentioned preferred range, and the obtained carbon fibers exhibited high tensile strength and high elongation at break. However, in the case of Comparative Examples 3 to 7, the spinning conditions were The physical properties of the carbon fiber are poor because it is outside the preferred range.
【0032】[0032]
【表1】[Table 1]
【0033】[0033]
【発明の効果】本発明の炭素繊維製造法は、ナフタレン
、アントラセン、フェナントレン等、及びこれらの縮合
多環炭化水素を含有する多様な原料から合成されたピッ
チを用いることができる。しかも本発明に用いるメソフ
ェーズピッチは酸素との反応性が高いため不融化工程を
著しく短縮化できる。さらにドラフト比を特定の範囲で
紡糸することにより、800〜1400℃の低温炭素化
でも、引張強度、破断伸度が格段に改善された高性能炭
素繊維が得られる。このように本発明の方法は、多様な
原料から合成されたピッチより高性能炭素繊維を短時間
で容易に製造できる経済的に優れた方法である。Effects of the Invention The carbon fiber manufacturing method of the present invention can use pitches synthesized from various raw materials containing naphthalene, anthracene, phenanthrene, etc., and condensed polycyclic hydrocarbons thereof. Moreover, since the mesophase pitch used in the present invention has high reactivity with oxygen, the infusibility process can be significantly shortened. Furthermore, by spinning at a draft ratio within a specific range, high-performance carbon fibers with significantly improved tensile strength and elongation at break can be obtained even during low-temperature carbonization of 800 to 1400°C. As described above, the method of the present invention is an economically superior method that can easily produce high-performance carbon fibers in a short time compared to pitches synthesized from various raw materials.
【0034】[0034]
第1図は本発明における紡糸時のドラフト比(Ve /
Vo )の好適な範囲を斜線で示したものである。
τ:溶融ピッチが紡糸ノズルキャピラリー壁面から受け
る剪断応力(kgf/cm2)
D:紡糸ノズルキャピラリーの直径(mm)L:紡糸ノ
ズルキャピラリーの長さ(mm)Ve: 巻取速度(
m/min)
Vo: 溶融ピッチのキャピラリー内での平均速度(
m/min)Figure 1 shows the draft ratio (Ve/
The preferred range of Vo ) is indicated by diagonal lines. τ: Shear stress that the molten pitch receives from the wall surface of the spinning nozzle capillary (kgf/cm2) D: Diameter of the spinning nozzle capillary (mm) L: Length of the spinning nozzle capillary (mm) Ve: Winding speed (
m/min) Vo: Average velocity of the molten pitch in the capillary (
m/min)
Claims (1)
合多環炭化水素または、これを含有する物質を重合させ
て得られたメソフェーズピッチを原料として、溶融紡糸
した後不融化処理、炭素化処理することにより炭素繊維
を製造する方法において、溶融紡糸を下記の条件を満足
するドラフト比(Ve/Vo)で行い、炭素化処理を8
00〜1400℃の温度範囲で行うことを特徴とする炭
素繊維の製造方法 28(τD/L)−0.65 ≦Ve/V
o≦ 115(τD/L)−0.98 ただし、 τ:溶融ピッチが紡糸ノズルキャピラリー壁面から受け
る剪断応力(kgf/cm2) D:紡糸ノズルキャピラリーの直径(mm)L:紡糸ノ
ズルキャピラリーの長さ(mm)Ve: 巻取速度(
m/min) Vo: 溶融ピッチのキャピラリー内での平均速度(
m/min) を表す。1. Melt-spinning mesophase pitch obtained by polymerizing a condensed polycyclic hydrocarbon or a substance containing it in the presence of hydrogen fluoride or boron trifluoride as a raw material, followed by infusibility treatment; In a method for producing carbon fibers by carbonization treatment, melt spinning is performed at a draft ratio (Ve/Vo) that satisfies the following conditions, and the carbonization treatment is carried out at a draft ratio (Ve/Vo) of 8.
Carbon fiber manufacturing method characterized by carrying out in a temperature range of 00 to 1400°C 28 (τD/L)-0.65 ≦Ve/V
o≦ 115 (τD/L) −0.98 However, τ: Shear stress (kgf/cm2) that the melt pitch receives from the wall surface of the spinning nozzle capillary D: Diameter of the spinning nozzle capillary (mm) L: Length of the spinning nozzle capillary (mm) Ve: Winding speed (
m/min) Vo: Average velocity of the molten pitch in the capillary (
m/min).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10884791A JPH04316614A (en) | 1991-04-12 | 1991-04-12 | Production of carbon fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10884791A JPH04316614A (en) | 1991-04-12 | 1991-04-12 | Production of carbon fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04316614A true JPH04316614A (en) | 1992-11-09 |
Family
ID=14495097
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10884791A Pending JPH04316614A (en) | 1991-04-12 | 1991-04-12 | Production of carbon fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04316614A (en) |
-
1991
- 1991-04-12 JP JP10884791A patent/JPH04316614A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4470960A (en) | Process for the production of pitch-derived carbon fibers | |
US4469667A (en) | Process for production of pitch-derived carbon fibers | |
JPS59163423A (en) | Spinning of carbon yarn | |
JPH0791372B2 (en) | Method for manufacturing raw material pitch for carbon material | |
JPS61132629A (en) | Production of nonwoven fabrics of pitch activated carbon fiber | |
US4356158A (en) | Process for producing carbon fibers | |
JPH04316614A (en) | Production of carbon fiber | |
JPH04316612A (en) | Production of graphite fiber | |
JPH04316613A (en) | Production of carbon fiber | |
JPS6256198B2 (en) | ||
JPS62170528A (en) | Carbon fiber and production thereof | |
US5470558A (en) | Process for producing pitch-based carbon fibers superior in compression characteristics | |
JPH0150275B2 (en) | ||
JPS6278220A (en) | Production of ribbon-like carbon fiber | |
JPS58101191A (en) | Preparation of mesophase pitch and carbon fiber from said pitch | |
JP2000319664A (en) | Mesophase pitch for carbon material and production of carbon fiber | |
WO2024181365A1 (en) | Mesophase pitch for carbon fiber and method for producing mesophase-pitch-based carbon fiber | |
JP2000017526A (en) | Production of carbon fiber | |
JP2689978B2 (en) | Carbon fiber production method | |
JPH04257321A (en) | Production of pitch carbon fiber having high tensile elastic modulus and high compression strength | |
JPH03279422A (en) | Production of hollow carbon fiber | |
JPS58167679A (en) | Pitch for carbon fiber | |
JPH06248520A (en) | Production of carbon fiber | |
JPH0827628A (en) | Method for producing carbon fiber | |
JPH04153326A (en) | Production of pitch-based carbon fiber |