JPH04315770A - Molten carbonate fuel cell - Google Patents

Molten carbonate fuel cell

Info

Publication number
JPH04315770A
JPH04315770A JP3082316A JP8231691A JPH04315770A JP H04315770 A JPH04315770 A JP H04315770A JP 3082316 A JP3082316 A JP 3082316A JP 8231691 A JP8231691 A JP 8231691A JP H04315770 A JPH04315770 A JP H04315770A
Authority
JP
Japan
Prior art keywords
gas
flow path
electrode
passageway
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3082316A
Other languages
Japanese (ja)
Inventor
Yoshihiro Akasaka
芳浩 赤坂
Hideyuki Ozu
秀行 大図
Hiroshi Tateishi
浩史 立石
Kazuaki Nakagawa
和明 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3082316A priority Critical patent/JPH04315770A/en
Publication of JPH04315770A publication Critical patent/JPH04315770A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To uniform the gas concentration and temperature distribution of an electrode surface so as to make it easy to process a molten carbonate fuel cell during manufacture by providing openings each of which connects a separator side passageway to an electrode side passageway, and blocking that portion of the separator side gas passageway which is located behind the openings. CONSTITUTION:Openings 11,12 of diameter 2mmphi are provided in a position 50cm away from gas-passageway inlets provided at both side faces of the corrugated projecting portion of a passageway plate 10, and the outlet of a gas passageway 14b provided on the side of a separator 13 is blocked. When fed in the direction indicated by the arrow, fuel gas is first allowed to flow through a fuel-electrode side gas passageway 14a partitioned by the plate 10, a fuel electrode and the separator 13 and through a separator side passageway 14b, and hydrogen is consumed inside the passageway 14a. Therefore, water and carbon dioxide are generated from the electrode surface and hydrogen concentration is gradually decreased, but since the gas allowed to flow through the passageway 14b is allowed out of the openings 11,12 at a portion 50cm away from the fuel gas inlets and flows through the passageway 4a, the concentration of the hydrogen gas is raised again. Gas concentration and current density on the electrode surface are thereby uniformed so as to achieve high performance of a molten carbonate fuel cell and to facilitate the manufacture of the fuel cell.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は、ガス流路構造を改善し
、電池性能を向上した溶融炭酸塩型燃料電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a molten carbonate fuel cell having an improved gas flow path structure and improved cell performance.

【0002】0002

【従来の技術】図10に溶融炭酸塩型燃料電池の基本構
成を示す。図10において、1は燃料極(陰極)、2は
酸化剤極(陽極)である。また、これら燃料極1と酸化
剤極2の間に電解質板3が配置されている。電解質板3
は、電解質を保持している。これらの燃料極1と、酸化
剤極2と、電解質板3とを単位セルとし、複数の単位セ
ルがセパレータ4を挟んで積層されている。
2. Description of the Related Art FIG. 10 shows the basic structure of a molten carbonate fuel cell. In FIG. 10, 1 is a fuel electrode (cathode), and 2 is an oxidizer electrode (anode). Furthermore, an electrolyte plate 3 is arranged between the fuel electrode 1 and the oxidizer electrode 2. Electrolyte plate 3
holds electrolytes. These fuel electrodes 1, oxidizer electrodes 2, and electrolyte plates 3 are used as unit cells, and a plurality of unit cells are stacked with separators 4 in between.

【0003】電解質板3に上面に配置された燃料極1は
、電解質板3の縁部から所望距離隔てて位置している。 電解質板3とセパレータ4の間で陰極1が存在しない部
分にはエッジシール板5aが配置されている。燃料極1
とセパレータ4の間には集電板である孔開き板6a、お
よび流路板7aが、燃料極1側から順次積層されている
[0003] The fuel electrode 1 disposed on the upper surface of the electrolyte plate 3 is spaced a desired distance from the edge of the electrolyte plate 3. An edge seal plate 5a is arranged between the electrolyte plate 3 and the separator 4 in a portion where the cathode 1 is not present. Fuel electrode 1
A perforated plate 6a, which is a current collector plate, and a channel plate 7a are laminated in order from the fuel electrode 1 side between the fuel electrode 1 and the separator 4.

【0004】電解質板3の下面に配置された酸化剤極2
は、電解質板3の縁部から所望距離隔てて位置している
。電解質板3とセパレータ4の間で酸化剤極2が存在し
ない部分には、エッジシール板5bが配置されている。 酸化剤極2とセパレータ4の間には集電板である孔開き
板6b、および、流路板7bが、酸化剤極2側から順次
積層されている。
[0004] Oxidizer electrode 2 placed on the bottom surface of electrolyte plate 3
is located a desired distance from the edge of the electrolyte plate 3. An edge seal plate 5b is arranged between the electrolyte plate 3 and the separator 4 in a portion where the oxidizer electrode 2 is not present. Between the oxidizing agent electrode 2 and the separator 4, a perforated plate 6b serving as a current collecting plate and a channel plate 7b are laminated in order from the oxidizing agent electrode 2 side.

【0005】流路板7aおよび7bは、波状板であり、
セパレータ4と燃料極1または、酸化剤極2の間にガス
流路を形成し、各々セパレータ側のガス流路と電極側の
ガス流路を分離している。上記のような複数の単位セル
が積層されたスタック発電要素は、ハウジング内に収納
されている。
[0005] The channel plates 7a and 7b are corrugated plates,
A gas flow path is formed between the separator 4 and the fuel electrode 1 or the oxidizer electrode 2, and the gas flow path on the separator side is separated from the gas flow path on the electrode side. A stack power generation element in which a plurality of unit cells as described above are stacked is housed in a housing.

【0006】燃料ガス(H2 ,CO2 )は、矢印8
に示す方向に供給され、流路板7aにより構成されるガ
ス流路に沿って流れ、そのうち電極側の流路を流れる燃
料ガスが燃料極1で電極反応を行う。同様に酸化剤ガス
(AIR,CO2 )は、矢印9に示す方向に供給され
、流路板7bにより構成されるガス流路に沿って流れ、
そのうち電極側のガス流路を流れる酸化剤ガスが酸化剤
極2で電極反応を行う。また、酸化剤ガスは、電池冷却
のための冷却ガスとしての役割も果たしている。(以下
燃料ガスと酸化剤ガスを総称して「ガス」とする。)
[0006] Fuel gas (H2, CO2) is
The fuel gas is supplied in the direction shown in and flows along the gas flow path formed by the flow path plate 7a, and the fuel gas flowing through the flow path on the electrode side undergoes an electrode reaction at the fuel electrode 1. Similarly, the oxidant gas (AIR, CO2) is supplied in the direction shown by the arrow 9 and flows along the gas flow path formed by the flow path plate 7b.
Among them, the oxidizing gas flowing through the gas flow path on the electrode side undergoes an electrode reaction at the oxidizing agent electrode 2. Further, the oxidant gas also plays a role as a cooling gas for cooling the battery. (Hereinafter, fuel gas and oxidizing gas will be collectively referred to as "gas.")


0007】しかし、上記の溶融炭酸塩型燃料電池に、ガ
スを供給する場合には、流路板により構成される電極側
のガス流路を通るガスのみが電極反応に使われ、セパレ
ータ側のガス流路を流れるガスは電極反応に使われるこ
となく通過していた。
[
However, when gas is supplied to the above-mentioned molten carbonate fuel cell, only the gas passing through the gas flow path on the electrode side constituted by the flow path plate is used for the electrode reaction, and the gas on the separator side is used for the electrode reaction. The gas flowing through the channel was passing through without being used in the electrode reaction.

【0008】また各電極では、電極全体にガスが回り込
む前に、電極のガス流路入口付近でガスと電極との電極
反応が起こり、ガスの大半が消費されてしまい、ガス流
路入口付近と比較して、ガス流路方向に向うにしたがっ
てガス濃度が低下し、電極反応は起こりにくくなる。つ
まり、電極の全面積でガスが電極反応に寄与する事は困
難であった。
[0008] Furthermore, in each electrode, before the gas circulates around the entire electrode, an electrode reaction between the gas and the electrode occurs near the gas flow path entrance of the electrode, and most of the gas is consumed. In comparison, the gas concentration decreases toward the gas flow path, making electrode reactions less likely to occur. In other words, it was difficult for the gas to contribute to the electrode reaction over the entire area of the electrode.

【0009】また、セル上の温度分布を見ると、燃料ガ
ス流路の入口付近では燃料ガス濃度が高く、電極反応が
起こりやすいのでセル温度が高くなる。しかし酸化剤ガ
スは、冷却ガスとして作用するので、酸化剤ガス流路の
入口付近は低い温度となる。したがって、セル全体とし
ては、燃料ガス流路の入口に近く、かつ酸化剤ガス流路
入口から遠い部分が最も温度が高くなり、逆に、燃料ガ
ス流路入口に遠く、かつ酸化剤ガス流路入口から近い部
分が最も温度が低くなるという不均一な温度分布になる
。燃料電池において温度が高い部分は、熱応力が大きく
なり、電池の信頼性の低下の原因となる。また、部分的
に電解質の拡散が起こり電池寿命の低下の原因になる。
[0009] Furthermore, when looking at the temperature distribution on the cell, the fuel gas concentration is high near the entrance of the fuel gas flow path, and electrode reactions are likely to occur, resulting in a high cell temperature. However, since the oxidizing gas acts as a cooling gas, the temperature near the entrance of the oxidizing gas flow path is low. Therefore, for the entire cell, the temperature is highest in the part that is close to the inlet of the fuel gas flow path and far from the inlet of the oxidant gas flow path; This results in an uneven temperature distribution with the temperature being lowest in the area closest to the inlet. In a fuel cell, a portion of the fuel cell that has a high temperature is subject to large thermal stress, which causes a decrease in the reliability of the cell. In addition, electrolyte diffusion occurs partially, causing a reduction in battery life.

【0010】上記の問題を解決するために、従来は溶融
炭酸塩型燃料電池のガス流路構造において、波板状の流
路板を少なくとも2個に分離し、ガス流れ方向に直交す
るようにずらして設置し、電極側のガス流路がセパレー
タ側の流路に接続し、セパレータ側のガス流路が電極側
の流路に接続する方法が特開平1−140560号公報
に開示されている。
In order to solve the above problem, conventionally, in the gas flow path structure of a molten carbonate fuel cell, the corrugated flow path plate is separated into at least two pieces, and the corrugated flow path plate is divided into at least two parts, and the corrugated flow path plate is divided into at least two pieces, and the corrugated flow path plate is divided into at least two pieces, and the corrugated flow passage plate is divided into at least two parts, and the corrugated flow passage plate is divided into at least two parts, and the corrugated flow passage plate is divided into at least two parts, and the corrugated flow passage plate is separated into at least two pieces, and the corrugated flow passage plate is divided into at least two pieces in the gas flow passage structure of a molten carbonate fuel cell. Japanese Patent Laid-Open No. 1-140560 discloses a method in which the electrodes are installed in a staggered manner, and the gas flow path on the electrode side is connected to the flow path on the separator side, and the gas flow path on the separator side is connected to the flow path on the electrode side. .

【0011】[0011]

【発明が解決しようとする課題】しかしながら、上述し
たガス流路構造では少なくとも2個に分離した波板状の
流路板をセパレータに溶接したり、ろう付けするなどの
固定工程があり、製造工程が増え、コスト高になってし
まう。
[Problems to be Solved by the Invention] However, the above-mentioned gas flow path structure requires a fixing process such as welding or brazing at least two separated corrugated flow path plates to the separator. increases, leading to higher costs.

【0012】本発明は上記の問題に鑑み、電極表面のガ
ス濃度ができるだけ均一となり、また、温度分布をさら
に均一にし、かつ製造時に加工しやすいガス流路構造を
有する溶融炭酸塩型燃料電池を提供すること目的とする
。 [発明の構成]
In view of the above problems, the present invention provides a molten carbonate fuel cell that has a gas flow path structure that makes the gas concentration on the electrode surface as uniform as possible, makes the temperature distribution more uniform, and is easy to process during manufacturing. The purpose is to provide. [Structure of the invention]

【0013】[0013]

【課題を解決するための手段】上記の課題は、流路板の
ガス流路入口から所望距離離れた位置にセパレータ側の
流路と電極側の流路をつなぐ開孔部を設け、かつガスの
流れる方向において開孔部より後方のセパレータ側のガ
ス流路を閉塞することにより達成される。
[Means for solving the problem] The above problem is solved by providing an opening portion connecting the flow path on the separator side and the flow path on the electrode side at a position a desired distance from the gas flow path inlet of the flow path plate, and This is achieved by closing the gas flow path on the separator side behind the opening in the flow direction of the gas.

【0014】すなわち、本発明は燃料極と、前記燃料極
に対向する酸化剤極と、前記燃料極と前記酸化剤極との
間に介在する電解質板とを備える複数の単位セルと;前
記単位セルを積層する際に各単位セル間に介在するセパ
レータと;前記セパレータと対向する電極と前記セパレ
ータの間にガス流路を形成し、前記セパレータ側のガス
流路と電極側のガス流路を分離する流路板とを備える溶
融炭酸塩型燃料電池において、前記流路板がセパレータ
側のガス流路と電極側のガス流路をつなぐ開孔部を有し
、かつ、ガス流れ方向に対しセパレータ側のガス流路の
前記開孔部より後方が閉塞されていることを特徴とする
溶融炭酸塩型燃料電池である。
That is, the present invention provides a plurality of unit cells comprising a fuel electrode, an oxidizer electrode facing the fuel electrode, and an electrolyte plate interposed between the fuel electrode and the oxidizer electrode; A separator interposed between each unit cell when stacking cells; A gas flow path is formed between an electrode facing the separator and the separator, and a gas flow path on the separator side and a gas flow path on the electrode side are formed. In a molten carbonate fuel cell comprising a separating flow path plate, the flow path plate has an opening that connects a gas flow path on the separator side and a gas flow path on the electrode side, and This is a molten carbonate fuel cell characterized in that the gas flow path on the separator side is closed at the rear of the opening.

【0015】本発明の燃料電池におけるガス流路構造は
、酸化剤極側ガス流路と燃料極側のガス流路のどちらか
に適用すれば効果は得られる。しかし実用上好ましくは
、燃料極側に適用する方がよい。それは燃料ガス中の水
素濃度が、酸化剤ガスの電極反応成分に比べて濃度が低
くても、燃料ガス中の水素を有効に利用することができ
るためである。さらに好ましくは酸化剤極側ガス流路と
燃料極側のガス流路両方共に適用するのがよい。それに
より、ガスも有効に利用でき、電極上の温度分布も均一
となり電池性能が向上に適している。
[0015] The gas flow path structure in the fuel cell of the present invention can be effectively applied to either the gas flow path on the oxidant electrode side or the gas flow path on the fuel electrode side. However, it is practically preferable to apply it to the fuel electrode side. This is because even if the hydrogen concentration in the fuel gas is lower than the electrode reaction component of the oxidant gas, the hydrogen in the fuel gas can be used effectively. More preferably, both the oxidant electrode side gas flow path and the fuel electrode side gas flow path are applied. As a result, gas can be used effectively, and the temperature distribution on the electrodes becomes uniform, which is suitable for improving battery performance.

【0016】一方、本発明の燃料電池において流路板を
閉塞する際は、その閉塞方法を問わない。金属や、セラ
ミックスなどのような燃料電池の運転温度での耐熱性を
有する物質を充填することにより閉塞しても良いし、流
路板の一部を折ることにより閉塞しても良い。流路板の
一部を折ることにより閉塞部を形成したほうが簡便で、
製造工程も少なく、製法上有利である。
On the other hand, when closing the channel plate in the fuel cell of the present invention, any method of closing may be used. The channel plate may be closed by being filled with a substance having heat resistance at the operating temperature of the fuel cell, such as metal or ceramics, or by folding a part of the channel plate. It is easier to form a blockage by folding a part of the channel plate.
It requires fewer manufacturing steps and is advantageous in terms of manufacturing method.

【0017】また、流路板を閉塞する位置は、ガス流れ
方向に対しセパレータ側のガス流路の開孔部より後方で
あれば、流路板中のどこでも良いが、開孔部の直後を閉
塞するほうが、ガスがセパレータ側流路から電極側の流
路に移動しやすいので好ましい。
[0017] The passage plate may be closed at any position in the passage plate as long as it is behind the opening of the gas passage on the separator side in the gas flow direction, but it may be placed immediately after the opening. It is preferable to close the channel because gas can more easily move from the separator side channel to the electrode side channel.

【0018】[0018]

【作用】本発明の溶融炭酸塩型燃料電池においては、ガ
ス流路入口において供給される燃料ガスまたは酸化剤ガ
スの半分は、電極側ガス流路を流れ、残りの半分はセパ
レータ側のガス流路を流れる。電極側のガス流路を流れ
るガスは、電極表面で電気化学反応を生じ、ガスの成分
は途中でほとんどが消費される。一方セパレータ側のガ
ス流路を流れるガスは、電気化学反応には関与せず、組
成変化を生じずに流れる。しかし、流路板の、ガス流路
入口からある距離離れた位置に設けられたセパレータ側
のガス流路と電極側のガス流路をつなぐ開孔部からセパ
レータ側を流れていた未反応のガスが電極側のガス流路
に流れだす。それにより、電極側のガス流路のガスの反
応成分の濃度が上がり、電極反応が起こりやすくなる。 また、セパレータ側の流路の開孔部より後方は閉塞され
ていることにより、セパレータ側のガスの出口は開孔部
のみになるので、結果としてセパレータ側流路から電極
側流路へガスが流出しやすくなる。ここで閉塞部は、必
ずしも完全に密閉閉塞されていなくとも本発明の効果を
得ることができる。
[Operation] In the molten carbonate fuel cell of the present invention, half of the fuel gas or oxidant gas supplied at the gas flow path inlet flows through the gas flow path on the electrode side, and the remaining half flows through the gas flow on the separator side. flowing down the road. The gas flowing through the gas flow path on the electrode side causes an electrochemical reaction on the electrode surface, and most of the gas components are consumed along the way. On the other hand, the gas flowing through the gas flow path on the separator side does not participate in electrochemical reactions and flows without any change in composition. However, the unreacted gas that was flowing on the separator side from the opening in the channel plate that connects the gas channel on the separator side and the gas channel on the electrode side, which was provided at a certain distance from the gas channel inlet. begins to flow into the gas flow path on the electrode side. This increases the concentration of reactive components in the gas in the gas flow path on the electrode side, making it easier for electrode reactions to occur. In addition, since the rear part of the flow path on the separator side is closed off, the only outlet for the gas on the separator side is the opening, and as a result, gas flows from the separator side flow path to the electrode side flow path. It becomes easier to leak. Here, the effects of the present invention can be obtained even if the closed portion is not necessarily completely sealed.

【0019】以上のようなガス流路構造を設けることに
より、ガス流路の長手方向における濃度不均一による電
極表面のガス濃度低下が改善され、電極とガスを有効に
使え、電池性能を向上させることができる。
[0019] By providing the gas flow path structure as described above, the decrease in gas concentration on the electrode surface due to non-uniform concentration in the longitudinal direction of the gas flow path is improved, the electrode and gas can be used effectively, and battery performance is improved. be able to.

【0020】また、本発明においては、流路板に開孔部
と閉塞部を設ける際には、2個以上の流路板をセパレー
タへの接着などの固定工程が必要ないため、製造上有利
である。
[0020] Furthermore, in the present invention, when providing the apertures and the closed portions in the channel plate, there is no need for a fixing process such as gluing two or more channel plates to the separator, which is advantageous in manufacturing. It is.

【0021】また、本発明においては、流路板のガス流
路入口から開孔部までの距離を任意に変化させて設けて
も良い。開孔部を設けガスが新しく導入されるところは
、ガス濃度が高くなり、電極反応が起こりやすくなるの
で温度も高くなる。ゆえに任意の位置に開孔部を設ける
ことにより、セル上の温度分布を平均化することができ
、電池の高性能化を図ることができる。以下の実施例に
より本発明を詳しく説明する。
Further, in the present invention, the distance from the gas flow path inlet to the opening of the flow path plate may be arbitrarily changed. In areas where openings are provided and gas is newly introduced, the gas concentration is high, electrode reactions are more likely to occur, and the temperature is also high. Therefore, by providing an opening at an arbitrary position, the temperature distribution on the cell can be averaged, and the performance of the battery can be improved. The invention will be explained in detail by the following examples.

【0022】[0022]

【実施例】【Example】

(実施例1) (Example 1)

【0023】以下に示すようなガス流路構造を燃料側ガ
ス流路および酸化剤極側ガス流路に持つ溶融炭酸塩型燃
料電池の単位セルを作成した。単位セルの面積は1×1
04 cm2 の正方形であった。
A unit cell of a molten carbonate fuel cell having a gas flow path structure as shown below in the fuel side gas flow path and the oxidant electrode side gas flow path was prepared. The area of the unit cell is 1×1
It was a square of 0.4 cm2.

【0024】図1は本発明の実施例による溶融炭酸塩型
燃料電池の燃料電極側のガス流路構造を示す斜視図であ
る。図2は図1と同じガス流路構造を示し、図1の線A
−A´で流路構造を切ったときの断面図である。図1お
よび図2において、流路板10は従来の流路板に用いら
れているものと同様の金属の波状板である。流路板10
の波状凸部の両側面のガス流路入口より50cmの位置
に直径2mmφの開孔部11と開孔部12を設けた。さ
らにセパレータ13側のガス流路14bの出口を閉塞し
た。 燃料ガスは矢印15に示す方向に供給した。
FIG. 1 is a perspective view showing a gas passage structure on the fuel electrode side of a molten carbonate fuel cell according to an embodiment of the present invention. FIG. 2 shows the same gas flow path structure as FIG. 1, and the line A in FIG.
It is a sectional view when the channel structure is cut at -A'. 1 and 2, channel plate 10 is a corrugated metal plate similar to those used in conventional channel plates. Channel plate 10
A hole 11 and a hole 12 each having a diameter of 2 mmφ were provided at a position 50 cm from the gas flow path inlet on both sides of the wavy convex portion. Furthermore, the outlet of the gas flow path 14b on the separator 13 side was closed. Fuel gas was supplied in the direction shown by arrow 15.

【0025】はじめ燃料ガスは流路板10と燃料極16
(燃料極16は図2にのみ図示してある。)およびセパ
レータ13により区切られた燃料極16側のガス流路1
4aと、セパレータ側のガス流路14bを流れることに
なる。燃料ガスのうち約半分は、ガス流路14aを流れ
、燃料極16において電気化学反応を生じ、ガス流路1
4a内で水素が消費され、電極表面からは生成ガスであ
る水と炭酸ガスを生じ、水素濃度は徐々に低くなる。 しかしながら、残り半分の燃料ガスはガス流路14bを
流れるため反応は起こらず、入口と同じ組成である。
Initially, the fuel gas flows through the channel plate 10 and the fuel electrode 16.
(The fuel electrode 16 is shown only in FIG. 2.) and the gas flow path 1 on the fuel electrode 16 side separated by the separator 13.
4a and the gas flow path 14b on the separator side. Approximately half of the fuel gas flows through the gas flow path 14a, causes an electrochemical reaction at the fuel electrode 16, and flows through the gas flow path 1.
Hydrogen is consumed within 4a, and produced gases, water and carbon dioxide, are produced from the electrode surface, and the hydrogen concentration gradually decreases. However, since the remaining half of the fuel gas flows through the gas flow path 14b, no reaction occurs and it has the same composition as the inlet.

【0026】燃料ガスの入口から50cmのところで、
先のガス流路14bを流れたガスは開孔部11および開
孔部12を出て今度は燃料極側ガス流路であるガス流路
14aを流れる。このため、流路14aでいったん低く
なったガス流路14aの水素ガス濃度は、再び上昇し、
燃料極16で電気化学反応を行う。上記実施例は燃料極
側ガス流路に適用した例について述べたが、酸化剤極側
ガス流路にも同様に適用した。
[0026] At 50 cm from the fuel gas inlet,
The gas that previously flowed through the gas flow path 14b exits the openings 11 and 12 and now flows through the gas flow path 14a, which is the fuel electrode side gas flow path. Therefore, the hydrogen gas concentration in the gas flow path 14a, which once became low in the flow path 14a, increases again.
An electrochemical reaction is performed at the fuel electrode 16. In the above embodiment, an example was described in which the present invention was applied to the gas flow path on the fuel electrode side, but the present invention was similarly applied to the gas flow path on the oxidizer electrode side.

【0027】本実施例で用いた流路板は次のように製造
した。図3に本実施例で用いた流路板の一部の展開図を
示す。流路板を作る際は、まず金属板を図3のようにガ
ス流路となる開孔部11および開孔部12と、閉塞部と
なる凸部分17を有するように裁断した。閉塞部となる
凸部分17はガス流路の断面の形状とした。その後上記
に示すように裁断した金属板を波状にプレス加工した。 そして凸部分17をガス流路を塞ぐように折り曲げるこ
とにより閉塞部とした。上記のように流路板に閉塞部と
開孔部を設けることにより、各電極上のガスの濃度分布
が改善されることになり、電池性能が向上する。上記の
溶融炭酸塩型燃料電池を用いて650℃において発電試
験を行った。図4にセルのガス流路入口からの距離と電
流密度の関係を示す。
The channel plate used in this example was manufactured as follows. FIG. 3 shows a partially exploded view of the channel plate used in this example. When making the channel plate, first, a metal plate was cut to have apertures 11 and 12 that would serve as gas flow channels, and a convex portion 17 that would serve as a closing part, as shown in FIG. The convex portion 17 serving as the closing portion has a cross-sectional shape of the gas flow path. Thereafter, the cut metal plate was pressed into a wave shape as shown above. Then, the convex portion 17 was bent to close the gas flow path, thereby forming a closed portion. By providing the closed portions and the open holes in the channel plate as described above, the concentration distribution of gas on each electrode is improved, and battery performance is improved. A power generation test was conducted at 650° C. using the above molten carbonate fuel cell. FIG. 4 shows the relationship between the distance from the gas flow path entrance of the cell and the current density.

【0028】図4に示すように、ガスの流れ方向に対し
て、ガス濃度の低下により電流密度は減少するが、流路
途中に設けられた開孔部からセパレータ側を流れた未反
応のガスが流れ出ることにより、ガス濃度が上昇し、電
極反応が起こりやすくなる。それにより電流密度が大き
くなり、性能が向上することになる。 (実施例2)
As shown in FIG. 4, the current density decreases due to the decrease in gas concentration in the gas flow direction, but the unreacted gas flows from the opening provided in the middle of the flow path to the separator side. As the gas flows out, the gas concentration increases, making it easier for electrode reactions to occur. This increases current density and improves performance. (Example 2)

【0029】燃料側ガス流路および酸化剤側ガス流路を
構成する流路板が、以下に示す構造であり、その他の条
件を実施例1と同様にした溶融炭酸塩型燃料電池の単位
セルを用い、650℃において発電試験を行った。流路
板は波状板の波状凸部側面に長さ5cm、幅2mmの開
孔部を設け、さらにガス出口側の凸部分の一部を閉塞し
てある。実施例1と同様に、閉塞部は流路板となる波状
板の端の凸部分を折り曲げることにより作られている。 図5に上記の溶融炭酸塩型燃料電池を用いて発電試験を
行った際の、セルにおけるガス流路入口からの距離と電
流密度の関係を示す。
[0029] A unit cell of a molten carbonate fuel cell in which the flow passage plates constituting the fuel side gas passage and the oxidant side gas passage have the structure shown below, and other conditions are the same as in Example 1. A power generation test was conducted at 650°C. The channel plate has an opening 5 cm long and 2 mm wide on the side surface of the wavy convex portion of the corrugated plate, and furthermore, a part of the convex portion on the gas outlet side is closed. As in Example 1, the closing portion is made by bending the convex portion at the end of the corrugated plate serving as the channel plate. FIG. 5 shows the relationship between the distance from the gas flow path entrance and the current density in the cell when a power generation test was conducted using the above molten carbonate fuel cell.

【0030】実施例1と同様に、開孔部を設けたことに
より、電流密度が途中で上昇し、性能が向上している。 また、実施例1に比べて開孔部が大きいので、セパレー
タ側から電極側に流出する未反応のガスが多くなるため
、電流密度の低下は、実施例1に比べて小さくなってい
る。 (比較例1)
[0030] As in Example 1, by providing the openings, the current density increases midway through, and the performance is improved. Furthermore, since the openings are larger than in Example 1, more unreacted gas flows out from the separator side to the electrode side, so the decrease in current density is smaller than in Example 1. (Comparative example 1)

【0031】燃料極側のガス流路および酸化剤極側のガ
ス流路を構成する流路板に開孔部と閉塞部をともに持た
ない波状板を用い、その他の条件が実施例1と同様であ
る溶融炭酸塩型燃料電池の単位セルにおいて、650℃
で発電試験を行った。図6にこのときのセルにおけるガ
ス流路入口からの距離と電流密度の関係を示す。図6に
示すように、ガスの流れ方向に対してガス濃度の低下に
より電流密度は減少し、回復することはない。実施例1
及び実施例2は、ともに比較例1に比べると平均の電流
密度が大きくなり、電池性能が向上している。また、本
実施例で用いた流路板は、セパレータに溶接や接着など
の固定工程が不要なので、製造上有利である。
[0031] The flow passage plate constituting the gas flow passage on the fuel electrode side and the gas flow passage on the oxidizer electrode side was a corrugated plate having neither openings nor blockages, and other conditions were the same as in Example 1. In the unit cell of a molten carbonate fuel cell, the temperature is 650°C.
A power generation test was conducted. FIG. 6 shows the relationship between the distance from the gas flow path entrance and the current density in the cell at this time. As shown in FIG. 6, the current density decreases due to a decrease in gas concentration in the gas flow direction, and does not recover. Example 1
Both Example 2 and Example 2 have higher average current densities than Comparative Example 1, and the battery performance is improved. Further, the channel plate used in this example does not require a fixing process such as welding or adhesion to the separator, which is advantageous in manufacturing.

【0032】また、別の流路板加工法を下記に示す。図
7に流路板の展開図を示す。まず金属板に図7に示すよ
うな、一部を残した切り目を入れ、図7の線B−B´が
凸部頂上となるように波状にプレス加工した。そして、
切り目で囲まれた部分18を押し入れた。図8は以上の
方法で加工した流路板の一部を示す斜視図である。上記
の方法によれば、図8に示すように開孔部と閉塞部とを
同時に作ることができる。
[0032] Another method of processing a channel plate is shown below. Figure 7 shows a developed view of the channel plate. First, a cut was made in the metal plate, leaving a portion as shown in FIG. 7, and the cut was pressed into a wave shape so that the line BB' in FIG. 7 was the top of the convex portion. and,
The part 18 surrounded by the cut was inserted. FIG. 8 is a perspective view showing a part of the channel plate processed by the above method. According to the above method, the opening and the closing part can be made at the same time as shown in FIG.

【0033】一方、実施例1および実施例2に示した流
路板を応用した流路板を上方から見た平面図を図9に示
す。図9で19はセパレータ側のガス流路を示し、20
は電極側のガス流路を示す。セパレータ側のガス流路1
9および電極側のガス流路は板の凹凸によって作られて
いる。ガス入口から出口に近づくにしたがいセパレータ
側流路20は狭くなり、電極側流路20は広がっている
。開孔部21は電極側ガス流路を形成している流路板の
凸部側面に設けられている。また、セパレータ側のガス
流路19の出口は閉塞されている。
On the other hand, FIG. 9 shows a plan view from above of a channel plate to which the channel plates shown in Examples 1 and 2 are applied. In FIG. 9, 19 indicates the gas flow path on the separator side, and 20
indicates the gas flow path on the electrode side. Gas flow path 1 on separator side
9 and the gas flow path on the electrode side are formed by the unevenness of the plate. As the gas inlet approaches the outlet, the separator side flow path 20 becomes narrower, and the electrode side flow path 20 widens. The opening 21 is provided on the side surface of the convex portion of the flow path plate forming the electrode side gas flow path. Further, the outlet of the gas flow path 19 on the separator side is closed.

【0034】矢印の方向にガスが供給されたとき、セパ
レータ側流路19を流れたガスは、開孔部から電極側流
路20に移動する。電極側流路20はセパレータ側流路
19からガスが流れ込むことにより、ガス流量が増える
が、上記の構造にすることにより、電極側流路のガス圧
力が高くならず、セパレータ側流路からのガスの移動が
しやすくなる。
When gas is supplied in the direction of the arrow, the gas flowing through the separator side flow path 19 moves from the opening to the electrode side flow path 20. Gas flows into the electrode side flow path 20 from the separator side flow path 19, thereby increasing the gas flow rate. However, by adopting the above structure, the gas pressure in the electrode side flow path does not increase, and the gas flow from the separator side flow path increases. Gas moves more easily.

【0035】[0035]

【発明の効果】以上のように、本発明によれば、溶融炭
酸塩型燃料電池において、ガス流路内の長手方向におけ
る濃度不均一による電極表面のガス濃度低下および電流
密度不均一に伴う電流密度分布不均一および温度分布不
均一を改善することができ、溶融炭酸塩型燃料電池の高
性能化、長寿命化に極めて有利となる。また、流路板の
製造も容易に行うことができ、量産化および低コスト化
に適している。
As described above, according to the present invention, in a molten carbonate fuel cell, the gas concentration on the electrode surface decreases due to the concentration non-uniformity in the longitudinal direction within the gas flow path, and the current density decreases due to the current density non-uniformity. Non-uniform density distribution and non-uniform temperature distribution can be improved, which is extremely advantageous for improving the performance and extending the life of molten carbonate fuel cells. Furthermore, the flow path plate can be easily manufactured, and is suitable for mass production and cost reduction.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  実施例1に係る溶融炭酸塩型燃料電池のガ
ス流路構造を示す斜視図。
FIG. 1 is a perspective view showing a gas flow path structure of a molten carbonate fuel cell according to Example 1.

【図2】  実施例1に係る溶融炭酸塩型燃料電池のガ
ス流路構造を示す断面図。
FIG. 2 is a cross-sectional view showing the gas flow path structure of the molten carbonate fuel cell according to Example 1.

【図3】  実施例1および実施例2で用いた流路板の
展開図。
FIG. 3 is a developed view of the channel plate used in Example 1 and Example 2.

【図4】  実施例1におけるセルのガス流路入口から
の距離と電流密度の関係。
FIG. 4 shows the relationship between the distance from the gas flow path entrance of the cell and the current density in Example 1.

【図5】  実施例2におけるセルのガス流路入口から
の距離と電流密度の関係。
FIG. 5 shows the relationship between the distance from the gas flow path entrance of the cell and the current density in Example 2.

【図6】  比較例1におけるセルのガス流路入口から
の距離と電流密度の関係。
FIG. 6 shows the relationship between the distance from the gas flow path entrance of the cell and the current density in Comparative Example 1.

【図7】  流路板の展開図。[Figure 7] Developed view of the channel plate.

【図8】  流路板の一部を示す斜視図。流路板の展開
図。
FIG. 8 is a perspective view showing a part of the channel plate. Developed view of the channel plate.

【図9】  流路板を応用した流路板の平面図。FIG. 9 is a plan view of a channel plate to which the channel plate is applied.

【図10】  溶融炭酸塩型燃料電池の基本構成。[Figure 10] Basic configuration of a molten carbonate fuel cell.

【符号の説明】[Explanation of symbols]

1…燃料極(陰極) 2…酸化剤極(陽極) 3…電解質板 4…セパレータ 5a,5b…エッジシール板 6a,6b…孔開き板 7a,7b…流路板 8…燃料ガス供給方向 9…酸化剤ガス供給方向 10…流路板 11…開孔部 12…開孔部 13…セパレータ 14…ガス流路 15…燃料ガス供給方向 16…燃料極 17…凸部分 18…切り目で囲まれた部分 19…セパレータ側のガス流路 20…電極側のガス流路 21…開孔部 1...Fuel electrode (cathode) 2... Oxidizer electrode (anode) 3...Electrolyte plate 4...Separator 5a, 5b...edge seal plate 6a, 6b...perforated plate 7a, 7b...channel plate 8…Fuel gas supply direction 9... Oxidizing gas supply direction 10...Flow path plate 11...Opening part 12...Opening part 13...Separator 14...Gas flow path 15...Fuel gas supply direction 16...Fuel electrode 17...Convex part 18...Part surrounded by cuts 19...Gas flow path on the separator side 20...Gas flow path on the electrode side 21...Opening part

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】燃料極と、前記燃料極に対向する酸化剤極
と、前記燃料極と前記酸化剤極との間に介在する電解質
板とを備える複数の単位セルと;前記単位セルを積層す
る際に各単位セル間に介在するセパレータと;前記セパ
レータと対向する電極と前記セパレータの間にガス流路
を形成し、前記セパレータ側のガス流路と電極側のガス
流路を分離する流路板とを備える溶融炭酸塩型燃料電池
において、前記流路板がセパレータ側のガス流路と電極
側のガス流路をつなぐ開孔部を有し、かつ、ガス流れ方
向に対しセパレータ側のガス流路の前記開孔部より後方
が閉塞されていることを特徴とする溶融炭酸塩型燃料電
池。
1. A plurality of unit cells comprising a fuel electrode, an oxidizer electrode facing the fuel electrode, and an electrolyte plate interposed between the fuel electrode and the oxidizer electrode; the unit cells are stacked. a separator interposed between each unit cell; a gas flow path is formed between the separator and the electrode facing the separator, and a flow path is formed to separate the gas flow path on the separator side and the gas flow path on the electrode side; In a molten carbonate fuel cell comprising a passage plate, the passage plate has an opening that connects the gas passage on the separator side and the gas passage on the electrode side, and the passage plate has an opening on the separator side with respect to the gas flow direction. A molten carbonate fuel cell characterized in that the gas flow path is closed at the rear of the opening.
JP3082316A 1991-04-15 1991-04-15 Molten carbonate fuel cell Pending JPH04315770A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3082316A JPH04315770A (en) 1991-04-15 1991-04-15 Molten carbonate fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3082316A JPH04315770A (en) 1991-04-15 1991-04-15 Molten carbonate fuel cell

Publications (1)

Publication Number Publication Date
JPH04315770A true JPH04315770A (en) 1992-11-06

Family

ID=13771167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3082316A Pending JPH04315770A (en) 1991-04-15 1991-04-15 Molten carbonate fuel cell

Country Status (1)

Country Link
JP (1) JPH04315770A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1174938A2 (en) 2000-07-18 2002-01-23 Sofco L.P. Fuel cells with internal fuel staging
JP2012124019A (en) * 2010-12-08 2012-06-28 Honda Motor Co Ltd Flat plate type solid electrolyte fuel battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1174938A2 (en) 2000-07-18 2002-01-23 Sofco L.P. Fuel cells with internal fuel staging
WO2002007243A1 (en) * 2000-07-18 2002-01-24 Sofco L.P. Internal fuel staging for improved fuel cell performance
EP1174938A3 (en) * 2000-07-18 2003-10-29 Sofco L.P. Fuel cells with internal fuel staging
US6852442B2 (en) * 2000-07-18 2005-02-08 Sofoco-Efs Holdings, Llc Internal fuel staging for improved fuel cell performance
JP2012124019A (en) * 2010-12-08 2012-06-28 Honda Motor Co Ltd Flat plate type solid electrolyte fuel battery

Similar Documents

Publication Publication Date Title
US6858338B2 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
EP1722436B1 (en) Polymer electrolyte fuel cell and bipolar separator for the same
US7413821B2 (en) Solid polymer electrolyte fuel cell assembly with gas passages in serial communication, and method of supplying reaction gas in fuel cell
US6350540B1 (en) Fuel cell with gas diffusion layer flow passage
US8039162B2 (en) Unit cell for solid polymer electrolyte fuel cell
KR101531952B1 (en) Interconnect for a fuel cell, a method for manufacturing an interconnect for a fuel cell
JP4081428B2 (en) Fuel cell
JP2003203650A (en) Fuel cell
JP2006260919A (en) Fuel cell
JP4585737B2 (en) Fuel cell
EP1952471B1 (en) Pem fuel cell with charging chamber
JPH04355061A (en) Fuel cell
CA2503796C (en) Fuel cell employing solid ion exchange polymer electrolyte membrane
JP2004185944A (en) Solid high polymer type fuel cell
JPH11283637A (en) Fuel cell
JP2005174648A (en) Fuel cell
JP2006236612A (en) Fuel cell
US7951508B2 (en) Fuel cell
JP3537911B2 (en) Solid polymer electrolyte membrane fuel cell and control method thereof
JPS6358769A (en) Gas passage of fuel cell
JPH04315770A (en) Molten carbonate fuel cell
JP2004171824A (en) Fuel cell
JPH11176457A (en) Solid high polymer electrolyte fuel cell
JP5021219B2 (en) Fuel cell stack
JP2006500743A (en) Fuel cell