JP2004185944A - Solid high polymer type fuel cell - Google Patents

Solid high polymer type fuel cell Download PDF

Info

Publication number
JP2004185944A
JP2004185944A JP2002350560A JP2002350560A JP2004185944A JP 2004185944 A JP2004185944 A JP 2004185944A JP 2002350560 A JP2002350560 A JP 2002350560A JP 2002350560 A JP2002350560 A JP 2002350560A JP 2004185944 A JP2004185944 A JP 2004185944A
Authority
JP
Japan
Prior art keywords
flow path
header portion
fuel cell
flow
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002350560A
Other languages
Japanese (ja)
Inventor
Akira Hamada
陽 濱田
Takamasa Matsubayashi
孝昌 松林
Yasunori Yoshimoto
保則 吉本
Mitsuo Karakane
光雄 唐金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2002350560A priority Critical patent/JP2004185944A/en
Priority to KR10-2003-0086213A priority patent/KR100539649B1/en
Priority to US10/725,215 priority patent/US7285352B2/en
Publication of JP2004185944A publication Critical patent/JP2004185944A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent stay of the condensed water inside a recessed-shape header part provided in a range between an outlet of a flow passage and a manifold in a gas separator for a solid high polymer type fuel cell. <P>SOLUTION: In the separator 1 having the structure that a plurality of recessed groove-like flow passages 2 are arranged in parallel with each other, and that an outlet part of the flow passage is formed with a recessed header part 3, wherein the flow passages 2 join with each other, and that the outlet part of the header part 3 is communicated with a manifold 5 opened in the laminating direction, a bar like water absorbing material 8 is provided along a lower edge inside the header part 3. An end of the water absorbing material 8 is connected to the manifold 5. Water drops discharged from the flow passages 2 to the header part 3 is absorbed by the water absorbing material 8 while discharged to the manifold 5. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、固体高分子形燃料電池に係り、特に電池スタックに組み込まれるガスセパレータを改良した固体高分子形燃料電池に関する。
【0002】
【従来の技術】
固体高分子形燃料電池は、周知のように固体高分子電解質膜の一面にアノード、他面にカソードをそれぞれ接合して膜電極接合体(MEA)を構成し、この膜電極接合体をガスセパレータで挟んでセルユニットとし、このセルユニットを複数重ね合わせて積層すると共に、積層方向に挿通したロッドで締め付け一体化して電池スタックが構成される。そして、アノード側のガスセパレータに設けられた流路に燃料ガスを流通し、カソード側のガスセパレータに設けられた流路には酸化剤ガスを流通させ、前記固体高分子電解質膜を介して電気化学反応を生じさせることにより直流電流を発電する。
【0003】
上記のような構成の固体高分子形燃料電池において、前記固体高分子電解質膜は充分に湿潤していないと電気化学反応が円滑に行われず発電性能が低下する。このため、従来は反応ガスを加湿器等により加湿した後にガスセパレータに供給し、流路を流通する加湿反応ガスにより固体高分子電解質膜の湿潤状態を維持するようにしている。
【0004】
ところが、加湿反応ガスをガスセパレータの流路に流通させると、カソード側では電極反応により水が生成するため、酸化剤ガスが流路を上流から下流に向かって流れるうちに水蒸気濃度が上昇し、やがては凝縮水が生成して流路に付着する。又、アノード側では電極反応によって水素が消費されて燃料ガス体積が低下すると共に、カソード側より逆拡散してくる水によって水蒸気濃度が上昇し、やがてはカソード側と同様、流路に凝縮水が付着する。凝縮水が付着した流路では、付着していない流路にに比べると反応ガスの流路抵抗が増加し、ガスセパレータの複数の流路間で反応ガス流量に分布が生じたり、場合によっては電池スタックを構成するセルユニット間で反応ガス流量に分布が生じたりする。このような場合、反応ガス流量が十分でない流路或はセルユニットでは、反応ガスの供給が不足し、発電特性の低下を引き起こす。
【0005】
このような問題を解決するために、従来ではガスセパレータの流路の数や太さ(断面積)、或は流路パターン等を変えて流路に凝縮水が付着しないように配慮している。その一例として、流路の溝幅と溝の深さ等を考慮して流路に凝縮水が滞留しないようにした技術が開示されている(特許文献1)。この他、水捌け問題に関する従来技術としては、例えば特許文献2、特許文献3等に開示されている。
【0006】
【特許文献1】
特開平6−96777号公報
【特許文献2】
特開2000−149966号公報
【特許文献3】
特開2001−307753号公報
【0007】
【発明が解決しようとする課題】
しかしながら、ガスセパレータの流路での凝縮水の付着を防止するようにしても必ずしも完全ではなく、特に流路の下流側では電気化学反応に伴って生成される生成水が流路に混入するため水滴が多く発生する。図4のようにガスセパレータ1の流路2出口にこれら複数の流路2が合流する凹部状のヘッダ部3が設けられたものにおいては、流路2の下流側で生じた水滴が反応ガスと共に押し出されて徐々に溜まり、ヘッダ部3内で多量の滞留水4が発生する。ヘッダ部3内で多量の滞留水4が発生すると、ヘッダ部3に続くマニホールド5への反応ガス(未反応に終わった反応ガス)の排出が阻害され、その結果流路2での反応ガスの流れが悪くなるばかりか、反応ガスの分配が不均一になって発電性能を低下させることになる。
【0008】
そこで、本発明は、ガスセパレータの流路出口に設けられたヘッダ部内に多量の滞留水が生じないようにした固体高分子形燃料電池を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記の目的を達成するための手段として、本発明の請求項1は、カソード側に酸化剤ガス、アノード側に燃料ガスを流通する複数の流路を備え、この流路の出口部に流路が合流する凹部状のヘッダ部を有し、流路を出た反応ガスが前記ヘッダ部で合流した後、このヘッダ部の出口部に連通し、且つ電池の積層方向に貫通する通路に流れ込む構造のガスセパレータが組み込まれた固体高分子形燃料電池において、前記ヘッダ部に開口する酸化剤ガス流路端部或は燃料ガス流路の開口面積が、端部以外の流路の開口面積よりも小さいことを特徴とする。
【0010】
又、本発明の請求項2は、カソード側に酸化剤ガス、アノード側に燃料ガスを流通する複数の流路を備え、この流路の出口部に流路が合流する凹部状のヘッダ部を有し、流路を出た反応ガスが前記ヘッダ部で合流した後、このヘッダ部の出口部に連通し、且つ電池の積層方向に貫通する通路に流れ込む構造のガスセパレータが組み込まれた固体高分子形燃料電池において、前記ヘッダ部の深さを前記流路の深さよりも大きく形成したことを特徴とする。
【0011】
本発明の請求項3は、カソード側に酸化剤ガス、アノード側に燃料ガスを流通する複数の流路を備え、この流路の出口部に流路が合流する凹部状のヘッダ部を有し、流路を出た反応ガスが前記ヘッダ部で合流した後、このヘッダ部の出口部に連通し、且つ電池の積層方向に貫通する通路に流れ込む構造のガスセパレータが組み込まれた固体高分子形燃料電池において、前記ヘッダ部の内壁面を疎水性に形成したことを特徴とする。
【0012】
本発明の請求項4は、カソード側に酸化剤ガス、アノード側に燃料ガスを流通する複数の流路を備え、この流路の出口部に流路が合流する凹部状のヘッダ部を有し、流路を出た反応ガスが前記ヘッダ部で合流した後、このヘッダ部の出口部に連通し、且つ電池の積層方向に貫通する通路に流れ込む構造のガスセパレータが組み込まれた固体高分子形燃料電池において、前記ヘッダ部内に前記マニホールドに接続する吸水材を設置したことを特徴とする。
【0013】
本発明の請求項5は、請求項4の固体高分子形燃料電池において、前記吸水材がガス流路端部に接触するように設置されていることを特徴とする。
【0014】
本発明の請求項6は、請求項1乃至請求項5の構成を2以上組み合わせたことを特徴とする。
【0015】
【発明の実施の形態】
次に、本発明に係る固体高分子形燃料電池の実施形態について、添付図面を参照しながら説明する。図1は、本発明に係る固体高分子形燃料電池のガスセパレータを示す概略平面図である。前記従来のものと同じ構成部材は同一の符号で説明すると、1はガスセパレータであり、カーボンと樹脂との混合物により形成され、複数の凹溝状流路2が並設されている。尚、ガスセパレータ1の流路2は、通常背面側にも設けられるのが一般的である(いわゆるバイポーラセパレータ)。
【0016】
3は凹部状に設けられたヘッダ部3であり、上記各流路2の出口に連通しこれらの流路2がヘッダ部3において合流するようにしてある。又、ヘッダ部3の出口は、ガスセパレータ1の端部に設けられた積層方向に開口した形状のマニホールド5に連通している。
【0017】
6はプレート板であり、上記流路2の出口部とヘッダ部3との接続端部を覆うようにしてガスセパレータ1に取り付けられ、このガスセパレータ1の上に載せる膜・電極接合体7との間でガスリークが生じないようにシールしている。
【0018】
このような構成のガスセパレータ1において、本発明の第1実施形態は、前記ヘッダ部3に開口する流路2端部(出口部)の断面積を小さく形成する。この流路2端部の断面積を小さく形成する手段としては、例えば図2(a)のように凹溝状流路2の内壁面に突起2aを設けて流路2の溝幅を狭めるか、或は図2(b)のように前記プレート板6の下面に各流路2に臨ませて凸部6aを設けて流路2の深さを狭めるか、又は図2(c)のように流路2の側壁面を出口に向かって漸次内側に傾斜するテーパ2bを設けて溝幅を狭める等があるが、これらに限定されるものではない。
【0019】
上記の手段等により流路2端部の断面積を小さく形成すると、各流路2を流れる反応ガスの流速が出口付近で加速される。反応ガスの流れが加速されると、流路の下流部において生じた凝縮水は未反応ガスと共にヘッダ部3に速やかに押し出される。又、ヘッダ部3内に排出された未反応ガスは前記マニホールド5内に勢い良く流入し、このガス流に伴ってヘッダ部3内に押し出された水滴もマニホールド5内に強制的に押し流される。従って、ヘッダ部3内に集まった凝縮水が容易にマニホールド5に排出されるので、ヘッダ部3内での水の滞留が抑制され、流路2を流れる反応ガスの流れが良好になると共に、反応ガスの分配が均一になって発電性能が向上する。
【0020】
本発明の第2実施形態は、前記ヘッダ部3の深さを流路2の深さよりも大きく形成する。例えば、図3に示すように凹溝状流路2の深さdが0.3mm〜0.5mmの場合には、ヘッダ部3の深さDを0.5mm〜0.7mmとし、最小限度0.2mm程度の深差を確保する。通常は流路2とヘッダ部3とは同じ深さに形成される。ヘッダ部3の背中合わせの部分、即ちガスセパレータ1の他面側にもヘッダ部が設けられるため、ヘッダ部3の深さ寸法には自ずと制限が加わる。
【0021】
上記のようにヘッダ部3の深さDを流路2の深さdよりも大きく形成すると、ヘッダ部3の容積が従来よりも大きくなり、ヘッダ部3に押し出された水滴同士が接触して大きな水の塊に成長するのを抑えることができる。従って、水滴は大きな水の塊になる以前にヘッド部3からマニホールド5に排出され易くなり、この結果ヘッド部3内での滞留水を極力防止することができる。
【0022】
本発明の第3実施形態は、ヘッダ部3の内壁面を疎水性に形成する。その手段としては、例えばフッ素系塗料のような疎水性材料から成る塗料をヘッダ部3の内壁面(底面を含む)に塗布し、或は疎水性材料からなる薄いシートをヘッダ部3の内壁面に貼着する等があるが、これらに限定されない。
【0023】
上記のようにヘッダ部3の内壁面を疎水性に形成すると、ヘッダ部3に押し出された水滴がヘッダ部3の内壁面に付着し難くなり、ヘッダ部3内での滞留水の発生を極力防止すると共に、ヘッダ部3からマニホールド5へ水滴を排除し易くなる。
【0024】
本発明の第4実施形態は、前記ヘッダ部内にマニホールドに接続する吸水材を設置する。例えば、図1のように棒状の吸水材8をヘッダ部3内の下端部に沿って設置する。この吸水材8としては、例えば高吸水性樹脂で構成することができ、その他スポンジ、パルプ等の吸水性材料で構成することも可能であり、これらに限定されない。多孔質又は繊維質で毛細管現象を備えたものが良い。又、吸水材8の端部はマニホールド5に接続させると、吸水した水分をマニホールド5に排出し易くなるため好ましい。図1では、ヘッダ部3内の下端に吸水材8を設置した例を示したが、吸水材8をヘッダ部3内の反応ガス流路2の端部と接する位置まで延設してもよい。この場合は、流路端部より流入した水滴が即座に吸水材8に吸収され、ヘッダ部3内には反応ガスが流れる空間が確保される。
【0025】
本発明の第5実施形態は、図示は省略したが、前記第1実施形態乃至第4実施形態における流路の構成又はヘッダ部3の構成を2以上組み合わせたものである。
このような2以上の構成の組み合わせによる相乗作用によって、ヘッダ部3における滞留水防止効果をより一層高めることができる。
【0026】
【発明の効果】
以上説明したように、本発明に係る請求項1の発明によれば、カソード側に酸化剤ガス、アノード側に燃料ガスを流通する複数の流路を備え、この流路の出口部に流路が合流する凹部状のヘッダ部を有し、流路を出た反応ガスが前記ヘッダ部で合流した後、このヘッダ部の出口部に連通し、且つ電池の積層方向に貫通する通路に流れ込む構造のガスセパレータが組み込まれた固体高分子形燃料電池において、前記ヘッダ部に開口する酸化剤ガス流路端部或は燃料ガス流路の開口面積が、端部以外の流路の開口面積よりも小さいので、流路出口近傍で反応ガスの流速を速めることができる。これにより、流路内に生じた凝縮水をヘッダ部に容易に排出できると共に、ヘッダ部に排出された未反応ガスの流速に伴ってマニホールドに強制的に押し流すことができる。従って、ヘッダ部内での滞留水が抑制され、流路を流れる反応ガスの流れが良好になり、且つ反応ガスの分配が均一になって発電性能が向上する。
【0027】
本発明に係る請求項2の発明によれば、上記固体高分子形燃料電池において、前記ヘッダ部の深さを流路の深さよりも大きく形成したので、ヘッダ部の容積が従来よりも大きくなり、ヘッダ部に押し出された水滴同士が接触して大きな水の塊に成長するのを抑えることができる。これにより、水滴は大きな水の塊になる以前にヘッド部からマニホールドに排出され易くなり、ヘッド部内での滞留水を極力防止することができる。
【0028】
本発明に係る請求項3の発明によれば、上記固体高分子形燃料電池において、前記ヘッダ部の内壁面を疎水性に形成したので、ヘッダ部の内壁面に水滴が付着し難くなる。これにより、ヘッダ部内での滞留水の発生を極力防止すると共に、ヘッダ部からマニホールドへ水滴を排除し易くなる。
【0029】
本発明に係る請求項4の発明によれば、上記固体高分子形燃料電池において、前記ヘッダ部内にマニホールドに接続する吸水材を設置したので、ヘッダ部内の水滴を吸収することができる。これにより、ヘッダ部内での滞留水を極力防止すると共に、吸水した水分をマニホールド5に排出し易くなる。
【0030】
本発明に係る請求項5の発明によれば、請求項4の固体高分子形燃料電池において、前記吸水材がガス流路端部に接触するように設置されているので、流路端部より流入した水滴が即座に吸水材に吸収され、ヘッダ部内には反応ガスが流れる空間が確保される。
【0031】
本発明に係る請求項6の発明によれば、上記請求項1乃至請求項5の発明を2以上組み合わせることで、それらの相乗作用によってヘッダ部における滞留水防止効果をより一層高めることができる。
【図面の簡単な説明】
【図1】本発明に係る固体分子形燃料電池の実施形態におけるガスセパレータを示す概略平面図である。
【図2】(a)はガスセパレータにおける凹溝状流路の側壁面に突起を設けて流路の溝幅を狭める実施形態例を断面で示す説明図である。(b)はプレート板の下面に各流路に臨ませて凸部を設けて流路の深さを狭める実施形態例を断面で示す説明図である。(c)は流路の両側壁面を出口に向かって漸次内側に傾斜するテーパを設けて溝幅を狭める実施形態例を平面で示す説明図である。
【図3】ガスセパレータにおけるヘッダ部の深さを流路の深さより大きく形成した実施形態例を断面で示す説明図である。
【図4】従来のガスセパレータを示す概略平面図である。
【符号の説明】
1…ガスセパレータ
2…流路
2a…突起
2b…テーパ
3…ヘッダ部
4…滞留水
5…マニホールド
6…プレート板
6a…凸部
7…膜電極接合体
8…吸水材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell, and more particularly to a polymer electrolyte fuel cell in which a gas separator incorporated in a cell stack is improved.
[0002]
[Prior art]
As is well known, a polymer electrolyte fuel cell forms an MEA by joining an anode to one surface of a solid polymer electrolyte membrane and a cathode to the other surface. A cell unit is sandwiched between the cell units, a plurality of the cell units are stacked and stacked, and a cell stack is formed by tightening and integrating with a rod inserted in the stacking direction. Then, a fuel gas flows through a flow path provided in the gas separator on the anode side, and an oxidizing gas flows through a flow path provided in the gas separator on the cathode side, and the electric power flows through the solid polymer electrolyte membrane. A direct current is generated by causing a chemical reaction.
[0003]
In the solid polymer electrolyte fuel cell having the above-described configuration, if the solid polymer electrolyte membrane is not sufficiently wet, the electrochemical reaction does not proceed smoothly and the power generation performance is reduced. Therefore, conventionally, the reaction gas is humidified by a humidifier or the like and then supplied to the gas separator, so that the wet state of the solid polymer electrolyte membrane is maintained by the humidification reaction gas flowing through the flow path.
[0004]
However, when the humidified reaction gas is passed through the flow path of the gas separator, water is generated by the electrode reaction on the cathode side, so that while the oxidizing gas flows from the upstream to the downstream in the flow path, the water vapor concentration increases, Eventually, condensed water is generated and adheres to the channel. Also, on the anode side, hydrogen is consumed by the electrode reaction to reduce the fuel gas volume, and the water that diffuses back from the cathode side increases the water vapor concentration. Adhere to. The flow path resistance of the reaction gas increases in the flow path to which the condensed water adheres, compared to the flow path to which the water does not adhere, and the distribution of the reaction gas flow is generated between the plurality of flow paths of the gas separator. A distribution may occur in the flow rate of the reaction gas between the cell units constituting the battery stack. In such a case, the supply of the reaction gas is insufficient in the flow channel or the cell unit where the flow rate of the reaction gas is not sufficient, and the power generation characteristics are deteriorated.
[0005]
In order to solve such a problem, conventionally, the number and thickness (cross-sectional area) of the channels of the gas separator, or the channel pattern, etc., are changed so that condensed water does not adhere to the channels. . As one example, there is disclosed a technique in which condensed water is prevented from staying in a flow path in consideration of a groove width and a groove depth of the flow path (Patent Document 1). In addition, conventional techniques relating to the water drainage problem are disclosed in, for example, Patent Literature 2 and Patent Literature 3.
[0006]
[Patent Document 1]
JP-A-6-96777 [Patent Document 2]
JP 2000-149966 A [Patent Document 3]
JP 2001-307753 A
[Problems to be solved by the invention]
However, it is not always perfect to prevent the condensed water from adhering in the flow path of the gas separator, and in particular, the water generated due to the electrochemical reaction is mixed into the flow path on the downstream side of the flow path. Many water drops are generated. As shown in FIG. 4, in a gas separator 1 provided with a recessed header portion 3 where the plurality of flow paths 2 join at the flow path 2 outlet, water droplets generated on the downstream side of the flow path 2 react with the reaction gas. , And gradually accumulates, and a large amount of retained water 4 is generated in the header portion 3. When a large amount of retained water 4 is generated in the header portion 3, the discharge of the reaction gas (unreacted reaction gas) to the manifold 5 following the header portion 3 is hindered, and as a result, the reaction gas Not only does the flow worsen, but the distribution of the reactant gas becomes uneven, which lowers the power generation performance.
[0008]
Therefore, an object of the present invention is to provide a polymer electrolyte fuel cell in which a large amount of retained water is prevented from being generated in a header portion provided at a flow path outlet of a gas separator.
[0009]
[Means for Solving the Problems]
As a means for achieving the above object, a first aspect of the present invention includes a plurality of flow paths for passing an oxidizing gas on a cathode side and a fuel gas on an anode side, and a flow path at an outlet of the flow path. Having a recessed header portion where the reactant gas flows out of the flow path, merges at the header portion, then communicates with the outlet portion of the header portion, and flows into a passage penetrating in the battery stacking direction. In the polymer electrolyte fuel cell incorporating the gas separator, the end area of the oxidizing gas passage or the opening area of the fuel gas passage opening to the header portion is larger than the opening area of the passage other than the end. It is characterized by being small.
[0010]
Further, a second aspect of the present invention includes a plurality of flow paths through which an oxidizing gas flows on the cathode side and a fuel gas flow on the anode side, and a concave-shaped header portion into which the flow paths merge at the outlet of the flow path. After the reaction gas exiting the flow path merges at the header portion, the solid height is incorporated with a gas separator having a structure communicating with the outlet portion of the header portion and flowing into a passage penetrating in the battery stacking direction. In the molecular fuel cell, the depth of the header portion is formed to be larger than the depth of the flow path.
[0011]
Claim 3 of the present invention has a plurality of flow paths for oxidizing gas flow on the cathode side and a fuel gas flow on the anode side, and has a recessed header portion where the flow paths merge at the outlet of this flow path. After the reaction gas exiting the flow path merges at the header section, the solid polymer type in which a gas separator having a structure in which the gas separator is connected to the outlet section of the header section and flows into a passage penetrating in the stacking direction of the battery is incorporated. In the fuel cell, the inner wall surface of the header portion is formed to be hydrophobic.
[0012]
Claim 4 of the present invention is provided with a plurality of flow paths for oxidizing gas flow on the cathode side and a fuel gas flow on the anode side, and has a recessed header portion at which the flow path merges at the outlet of the flow path. After the reaction gas exiting the flow path merges at the header section, the solid polymer type in which a gas separator having a structure in which the gas separator is connected to the outlet section of the header section and flows into a passage penetrating in the stacking direction of the battery is incorporated. In the fuel cell, a water absorbing material connected to the manifold is provided in the header portion.
[0013]
According to a fifth aspect of the present invention, in the polymer electrolyte fuel cell according to the fourth aspect, the water-absorbing material is provided so as to be in contact with an end of the gas flow path.
[0014]
A sixth aspect of the present invention is characterized in that two or more configurations of the first to fifth aspects are combined.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of a polymer electrolyte fuel cell according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic plan view showing a gas separator of a polymer electrolyte fuel cell according to the present invention. The same constituent members as those of the prior art will be described with the same reference numerals. Reference numeral 1 indicates a gas separator, which is formed of a mixture of carbon and resin, and has a plurality of grooved flow paths 2 arranged in parallel. It is to be noted that the flow path 2 of the gas separator 1 is generally provided also on the back side (a so-called bipolar separator).
[0016]
Reference numeral 3 denotes a header portion 3 provided in a concave shape, which communicates with the outlet of each of the flow channels 2 so that the flow channels 2 merge at the header portion 3. The outlet of the header 3 communicates with a manifold 5 that is provided at the end of the gas separator 1 and that opens in the stacking direction.
[0017]
Reference numeral 6 denotes a plate plate, which is attached to the gas separator 1 so as to cover a connection end between the outlet of the flow path 2 and the header 3, and a membrane / electrode assembly 7 mounted on the gas separator 1. Sealed to prevent gas leakage between
[0018]
In the gas separator 1 having such a configuration, in the first embodiment of the present invention, the cross-sectional area of the end portion (outlet portion) of the flow path 2 that opens to the header portion 3 is formed small. As a means for reducing the cross-sectional area of the end of the flow path 2, for example, as shown in FIG. 2 (a), a protrusion 2 a is provided on the inner wall surface of the concave flow path 2 to reduce the groove width of the flow path 2. Alternatively, as shown in FIG. 2B, a convex portion 6a is provided on the lower surface of the plate plate 6 so as to face each flow path 2 to reduce the depth of the flow path 2, or as shown in FIG. There is a taper 2b that gradually inclines the side wall surface of the flow path 2 inward toward the outlet to reduce the groove width, but the present invention is not limited thereto.
[0019]
When the cross-sectional area at the end of the flow path 2 is reduced by the above-described means or the like, the flow velocity of the reaction gas flowing through each flow path 2 is accelerated near the outlet. When the flow of the reaction gas is accelerated, the condensed water generated in the downstream portion of the flow path is quickly pushed out to the header section 3 together with the unreacted gas. Further, the unreacted gas discharged into the header portion 3 flows into the manifold 5 with great force, and the water droplets pushed out into the header portion 3 along with this gas flow are forcibly flushed into the manifold 5. Therefore, the condensed water collected in the header portion 3 is easily discharged to the manifold 5, so that the stagnation of water in the header portion 3 is suppressed, and the flow of the reaction gas flowing through the flow path 2 is improved. The distribution of the reaction gas becomes uniform, and the power generation performance is improved.
[0020]
In the second embodiment of the present invention, the depth of the header portion 3 is formed larger than the depth of the flow path 2. For example, as shown in FIG. 3, when the depth d of the groove-shaped flow path 2 is 0.3 mm to 0.5 mm, the depth D of the header 3 is set to 0.5 mm to 0.7 mm, A depth difference of about 0.2 mm is secured. Normally, the flow path 2 and the header 3 are formed at the same depth. Since the header portion is also provided on the back-to-back portion of the header portion 3, that is, on the other surface side of the gas separator 1, the depth dimension of the header portion 3 is naturally limited.
[0021]
When the depth D of the header portion 3 is formed larger than the depth d of the flow path 2 as described above, the volume of the header portion 3 becomes larger than before, and the water droplets pushed out to the header portion 3 come into contact with each other. The growth of large water bodies can be suppressed. Therefore, the water droplets are easily discharged from the head portion 3 to the manifold 5 before the water droplets are formed into a large lump of water. As a result, water staying in the head portion 3 can be prevented as much as possible.
[0022]
In the third embodiment of the present invention, the inner wall surface of the header portion 3 is formed to be hydrophobic. For example, a coating made of a hydrophobic material such as a fluorine-based coating is applied to the inner wall surface (including the bottom surface) of the header portion 3 or a thin sheet made of a hydrophobic material is coated on the inner wall surface of the header portion 3. For example, but not limited thereto.
[0023]
When the inner wall surface of the header portion 3 is formed to be hydrophobic as described above, water droplets extruded by the header portion 3 are less likely to adhere to the inner wall surface of the header portion 3, and the generation of retained water in the header portion 3 is minimized. In addition to this, water drops from the header section 3 to the manifold 5 can be easily removed.
[0024]
According to a fourth embodiment of the present invention, a water absorbing material connected to a manifold is installed in the header portion. For example, as shown in FIG. 1, a rod-shaped water-absorbing material 8 is installed along the lower end in the header 3. The water-absorbing material 8 can be made of, for example, a highly water-absorbing resin, and can be made of a water-absorbing material such as sponge or pulp, but is not limited to these. A porous or fibrous material having a capillary phenomenon is preferable. In addition, it is preferable to connect the end of the water absorbing material 8 to the manifold 5 because the absorbed water can be easily discharged to the manifold 5. FIG. 1 shows an example in which the water-absorbing material 8 is provided at the lower end in the header portion 3, but the water-absorbing material 8 may be extended to a position in contact with the end of the reaction gas flow path 2 in the header portion 3. . In this case, the water droplet flowing from the end of the flow path is immediately absorbed by the water absorbing material 8, and a space for the reaction gas to flow is secured in the header portion 3.
[0025]
Although not shown, the fifth embodiment of the present invention is a combination of two or more of the configuration of the flow path or the configuration of the header 3 in the first to fourth embodiments.
By the synergistic action of such a combination of two or more configurations, the effect of preventing the retained water in the header portion 3 can be further enhanced.
[0026]
【The invention's effect】
As described above, according to the first aspect of the present invention, a plurality of flow paths for oxidizing gas flow on the cathode side and a fuel gas flow on the anode side are provided, and a flow path is provided at an outlet of the flow path. Having a recessed header portion where the reactant gas flows out of the flow path, merges at the header portion, then communicates with the outlet portion of the header portion, and flows into a passage penetrating in the battery stacking direction. In the polymer electrolyte fuel cell incorporating the gas separator, the end area of the oxidizing gas passage or the opening area of the fuel gas passage opening to the header portion is larger than the opening area of the passage other than the end. Since it is small, the flow rate of the reaction gas can be increased near the outlet of the flow channel. Thus, the condensed water generated in the flow path can be easily discharged to the header portion, and can be forcibly flushed to the manifold according to the flow rate of the unreacted gas discharged to the header portion. Therefore, the water remaining in the header portion is suppressed, the flow of the reaction gas flowing through the flow path becomes good, and the distribution of the reaction gas becomes uniform, thereby improving the power generation performance.
[0027]
According to the invention of claim 2 according to the present invention, in the polymer electrolyte fuel cell, since the depth of the header portion is formed larger than the depth of the flow path, the volume of the header portion becomes larger than before. Further, it is possible to prevent the water droplets extruded into the header portion from coming into contact with each other and growing into a large lump of water. This makes it easier for the water droplets to be discharged from the head portion to the manifold before the water droplets become a large lump of water, so that the water remaining in the head portion can be prevented as much as possible.
[0028]
According to the third aspect of the present invention, in the polymer electrolyte fuel cell, since the inner wall surface of the header portion is formed to be hydrophobic, water droplets hardly adhere to the inner wall surface of the header portion. This makes it possible to minimize the generation of stagnant water in the header portion and to easily remove water droplets from the header portion to the manifold.
[0029]
According to the invention of claim 4 according to the present invention, in the polymer electrolyte fuel cell, since the water absorbing material connected to the manifold is provided in the header section, water droplets in the header section can be absorbed. Thereby, the water remaining in the header portion is prevented as much as possible, and the absorbed water is easily discharged to the manifold 5.
[0030]
According to the fifth aspect of the present invention, in the polymer electrolyte fuel cell according to the fourth aspect, the water-absorbing material is provided so as to be in contact with an end of the gas flow path. The water droplets that have flowed in are immediately absorbed by the water-absorbing material, and a space for the reaction gas to flow is secured in the header portion.
[0031]
According to the invention of claim 6 of the present invention, by combining two or more of the inventions of claim 1 to claim 5, it is possible to further enhance the effect of preventing accumulated water in the header portion by their synergistic action.
[Brief description of the drawings]
FIG. 1 is a schematic plan view showing a gas separator in an embodiment of a solid-state molecular fuel cell according to the present invention.
FIG. 2A is an explanatory view showing a cross section of an embodiment in which a protrusion is provided on a side wall surface of a concave channel in a gas separator to reduce the channel width of the channel. (B) is explanatory drawing which shows the embodiment which reduces the depth of a flow path by providing a convex part facing the respective flow paths on the lower surface of the plate plate in cross section. (C) is explanatory drawing which shows the embodiment which reduces the groove width | variety by providing the taper which inclines the both side wall surface of a flow path gradually inward toward an exit, and is a plane view.
FIG. 3 is an explanatory view showing a cross section of an embodiment in which a depth of a header portion of a gas separator is formed larger than a depth of a flow path.
FIG. 4 is a schematic plan view showing a conventional gas separator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Gas separator 2 ... Flow path 2a ... Protrusion 2b ... Taper 3 ... Header part 4 ... Retained water 5 ... Manifold 6 ... Plate plate 6a ... Convex part 7 ... Membrane electrode assembly 8 ... Water absorbing material

Claims (6)

カソード側に酸化剤ガス、アノード側に燃料ガスを流通する複数の流路を備え、この流路の出口部に流路が合流する凹部状のヘッダ部を有し、流路を出た反応ガスが前記ヘッダ部で合流した後、このヘッダ部の出口部に連通し、且つ電池の積層方向に貫通する通路に流れ込む構造のガスセパレータが組み込まれた固体高分子形燃料電池において、前記ヘッダ部に開口する酸化剤ガス流路端部或は燃料ガス流路の開口面積が、端部以外の流路の開口面積よりも小さいことを特徴とする固体高分子形燃料電池。A plurality of flow paths for oxidizing gas flow on the cathode side and a fuel gas flow on the anode side, and a recessed header portion where the flow paths merge at the outlet of this flow path, and the reaction gas exiting the flow path After merging at the header portion, in a polymer electrolyte fuel cell incorporating a gas separator having a structure communicating with an outlet portion of the header portion and flowing into a passage penetrating in the stacking direction of the battery, A polymer electrolyte fuel cell characterized in that the opening area of the oxidizing gas flow path end or the fuel gas flow path that is opened is smaller than the opening area of the flow path other than the end. カソード側に酸化剤ガス、アノード側に燃料ガスを流通する複数の流路を備え、この流路の出口部に流路が合流する凹部状のヘッダ部を有し、流路を出た反応ガスが前記ヘッダ部で合流した後、このヘッダ部の出口部に連通し、且つ電池の積層方向に貫通する通路に流れ込む構造のガスセパレータが組み込まれた固体高分子形燃料電池において、前記ヘッダ部の深さを前記流路の深さよりも大きく形成したことを特徴とする固体高分子形燃料電池。A plurality of flow paths for oxidizing gas flow on the cathode side and a fuel gas flow on the anode side, and a recessed header portion where the flow paths merge at the outlet of this flow path, and the reaction gas exiting the flow path After merging at the header portion, in the polymer electrolyte fuel cell incorporating a gas separator having a structure communicating with an outlet portion of the header portion and flowing into a passage penetrating in the stacking direction of the battery, A polymer electrolyte fuel cell, wherein the depth is greater than the depth of the flow path. カソード側に酸化剤ガス、アノード側に燃料ガスを流通する複数の流路を備え、この流路の出口部に流路が合流する凹部状のヘッダ部を有し、流路を出た反応ガスが前記ヘッダ部で合流した後、このヘッダ部の出口部に連通し、且つ電池の積層方向に貫通する通路に流れ込む構造のガスセパレータが組み込まれた固体高分子形燃料電池において、前記ヘッダ部の内壁面を疎水性に形成したことを特徴とする固体高分子形燃料電池。A plurality of flow paths for oxidizing gas flow on the cathode side and a fuel gas flow on the anode side, and a recessed header portion where the flow paths merge at the outlet of this flow path, and the reaction gas exiting the flow path After merging at the header portion, in the polymer electrolyte fuel cell incorporating a gas separator having a structure communicating with an outlet portion of the header portion and flowing into a passage penetrating in the stacking direction of the battery, A polymer electrolyte fuel cell, wherein an inner wall surface is formed to be hydrophobic. カソード側に酸化剤ガス、アノード側に燃料ガスを流通する複数の流路を備え、この流路の出口部に流路が合流する凹部状のヘッダ部を有し、流路を出た反応ガスが前記ヘッダ部で合流した後、このヘッダ部の出口部に連通し、且つ電池の積層方向に貫通する通路に流れ込む構造のガスセパレータが組み込まれた固体高分子形燃料電池において、前記ヘッダ部内に前記マニホールドに接続する吸水材を設置したことを特徴とする固体高分子形燃料電池。A plurality of flow paths for oxidizing gas flow on the cathode side and a fuel gas flow on the anode side, and a recessed header portion where the flow paths merge at the outlet of this flow path, and the reaction gas exiting the flow path After merging at the header portion, in a polymer electrolyte fuel cell incorporating a gas separator having a structure communicating with an outlet portion of the header portion and flowing into a passage penetrating in the stacking direction of the battery, A polymer electrolyte fuel cell comprising a water absorbing material connected to the manifold. 前記吸水材がガス流路端部に接触するように設置されていることを特徴とする請求項4記載の固体高分子形燃料電池。The polymer electrolyte fuel cell according to claim 4, wherein the water-absorbing material is provided so as to contact an end of the gas flow path. 請求項1乃至請求項5の発明を2以上組み合わせたことを特徴とする固体高分子形燃料電池。A polymer electrolyte fuel cell, comprising a combination of two or more of the first to fifth aspects of the invention.
JP2002350560A 2002-12-02 2002-12-02 Solid high polymer type fuel cell Pending JP2004185944A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002350560A JP2004185944A (en) 2002-12-02 2002-12-02 Solid high polymer type fuel cell
KR10-2003-0086213A KR100539649B1 (en) 2002-12-02 2003-12-01 Separator for fuel cell and fuel cell using the same
US10/725,215 US7285352B2 (en) 2002-12-02 2003-12-02 Separator for fuel cell and fuel cell therewith

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002350560A JP2004185944A (en) 2002-12-02 2002-12-02 Solid high polymer type fuel cell

Publications (1)

Publication Number Publication Date
JP2004185944A true JP2004185944A (en) 2004-07-02

Family

ID=32752731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002350560A Pending JP2004185944A (en) 2002-12-02 2002-12-02 Solid high polymer type fuel cell

Country Status (1)

Country Link
JP (1) JP2004185944A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006172759A (en) * 2004-12-13 2006-06-29 Toyota Motor Corp Fuel cell
JP2006185895A (en) * 2004-09-16 2006-07-13 Seiko Instruments Inc Fuel cell system
JP2006278177A (en) * 2005-03-30 2006-10-12 Honda Motor Co Ltd Fuel cell
JP2007005076A (en) * 2005-06-22 2007-01-11 Honda Motor Co Ltd Fuel battery and separator for fuel battery
KR100728787B1 (en) * 2005-11-30 2007-06-19 삼성에스디아이 주식회사 Direct methanol fuel cell
WO2007099982A1 (en) * 2006-03-01 2007-09-07 Equos Research Co., Ltd. Fuel cell device
JP2007257991A (en) * 2006-03-23 2007-10-04 Equos Research Co Ltd Fuel cell system
JP2007265799A (en) * 2006-03-28 2007-10-11 Toyota Motor Corp Separator and fuel cell stack
JP2007280879A (en) * 2006-04-11 2007-10-25 Toyota Motor Corp Fuel cell sealing plate extraction method, fuel cell sealing plate and fuel cell sealing plate extraction device
JP2008059848A (en) * 2006-08-30 2008-03-13 Casio Comput Co Ltd Waterdrop removing device, fuel cell system, and electronic device
JP2008166260A (en) * 2006-12-04 2008-07-17 Toyota Motor Corp Fuel cell
JP2008171822A (en) * 2007-01-12 2008-07-24 Gm Global Technology Operations Inc Moisture removal channel for header of pem fuel cell stack
WO2008096780A1 (en) * 2007-02-09 2008-08-14 Toyota Jidosha Kabushiki Kaisha Fuel cell
JP2010272350A (en) * 2009-05-21 2010-12-02 Toyota Motor Corp Fuel cell and fuel cell system
JP2011171115A (en) * 2010-02-18 2011-09-01 Honda Motor Co Ltd Fuel cell
JP2012146679A (en) * 2012-03-28 2012-08-02 Toyota Motor Corp Method of taking out fuel cell ceiling plate and fuel cell ceiling plate
JP2014164849A (en) * 2013-02-22 2014-09-08 Mitsubishi Heavy Ind Ltd Solid polymer type fuel cell
JP2016119177A (en) * 2014-12-19 2016-06-30 三菱重工業株式会社 Solid polymer fuel battery

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006185895A (en) * 2004-09-16 2006-07-13 Seiko Instruments Inc Fuel cell system
JP2006172759A (en) * 2004-12-13 2006-06-29 Toyota Motor Corp Fuel cell
JP2006278177A (en) * 2005-03-30 2006-10-12 Honda Motor Co Ltd Fuel cell
JP4673110B2 (en) * 2005-03-30 2011-04-20 本田技研工業株式会社 Fuel cell
JP2007005076A (en) * 2005-06-22 2007-01-11 Honda Motor Co Ltd Fuel battery and separator for fuel battery
JP4673141B2 (en) * 2005-06-22 2011-04-20 本田技研工業株式会社 Fuel cell and fuel cell separator
KR100728787B1 (en) * 2005-11-30 2007-06-19 삼성에스디아이 주식회사 Direct methanol fuel cell
JP2007234398A (en) * 2006-03-01 2007-09-13 Equos Research Co Ltd Fuel cell device
US8197986B2 (en) 2006-03-01 2012-06-12 Kabushikikaisha Equos Research Fuel cell device
WO2007099982A1 (en) * 2006-03-01 2007-09-07 Equos Research Co., Ltd. Fuel cell device
JP2007257991A (en) * 2006-03-23 2007-10-04 Equos Research Co Ltd Fuel cell system
JP2007265799A (en) * 2006-03-28 2007-10-11 Toyota Motor Corp Separator and fuel cell stack
JP2007280879A (en) * 2006-04-11 2007-10-25 Toyota Motor Corp Fuel cell sealing plate extraction method, fuel cell sealing plate and fuel cell sealing plate extraction device
WO2007119445A1 (en) * 2006-04-11 2007-10-25 Toyota Jidosha Kabushiki Kaisha Method for extracting fuel cell sealing plates, sealing plate, and device for extracting the same
US8652664B2 (en) 2006-04-11 2014-02-18 Toyota Jidosha Kabushiki Kaisha Method for taking out a sealing plate of a fuel cell and a sealing plate directly used in the method
US8202637B2 (en) 2006-04-11 2012-06-19 Toyota Jidosha Kabushiki Kaisha Method and apparatus for taking out a sealing plate of a fuel cell
JP2008059848A (en) * 2006-08-30 2008-03-13 Casio Comput Co Ltd Waterdrop removing device, fuel cell system, and electronic device
JP2008166260A (en) * 2006-12-04 2008-07-17 Toyota Motor Corp Fuel cell
JP2008171822A (en) * 2007-01-12 2008-07-24 Gm Global Technology Operations Inc Moisture removal channel for header of pem fuel cell stack
WO2008096780A1 (en) * 2007-02-09 2008-08-14 Toyota Jidosha Kabushiki Kaisha Fuel cell
US8557465B2 (en) 2007-02-09 2013-10-15 Toyota Jidosha Kabushiki Kaisha Fuel cell including a liquid discharge mechanism
JP2010272350A (en) * 2009-05-21 2010-12-02 Toyota Motor Corp Fuel cell and fuel cell system
JP2011171115A (en) * 2010-02-18 2011-09-01 Honda Motor Co Ltd Fuel cell
JP2012146679A (en) * 2012-03-28 2012-08-02 Toyota Motor Corp Method of taking out fuel cell ceiling plate and fuel cell ceiling plate
JP2014164849A (en) * 2013-02-22 2014-09-08 Mitsubishi Heavy Ind Ltd Solid polymer type fuel cell
JP2016119177A (en) * 2014-12-19 2016-06-30 三菱重工業株式会社 Solid polymer fuel battery

Similar Documents

Publication Publication Date Title
JP2004185944A (en) Solid high polymer type fuel cell
KR100539649B1 (en) Separator for fuel cell and fuel cell using the same
KR100549683B1 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
US8580460B2 (en) Apparatus and method for managing fluids in a fuel cell stack
US20070009781A1 (en) Flow field plates for fuel cells
US9214682B2 (en) Fuel cell
US7811719B2 (en) PEM fuel cell with charging chamber
KR20050010969A (en) Fuel battery
JP2002260709A (en) Solid polymer cell assembly, fuel cell stack and operation method of fuel cell
US9306227B2 (en) Fuel cell and flow field plate for fluid distribution
JP2006093086A (en) Fuel cell
JP4031936B2 (en) Fuel cell
JP2006236612A (en) Fuel cell
JP2006278177A (en) Fuel cell
US20080254339A1 (en) Constant channel cross-section in a pemfc outlet
JP5301406B2 (en) Fuel cell
KR101315622B1 (en) Fuelcell stack using branched channel
JP4036760B2 (en) Separator structure for polymer electrolyte fuel cell
JP2004207041A (en) Cell unit for fuel cell
JP2004171887A (en) Nozzle plate and solid macromolecule fuel cell equipped therewith
JP2010003541A (en) Fuel cell stack
JP2007087742A (en) Solid polymer fuel cell
JP2006221896A (en) Fuel cell and separator for fuel cell
JP4340417B2 (en) Polymer electrolyte fuel cell
JP2011034768A (en) Fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040614

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050929

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20051017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060829