JPS6358769A - Gas passage of fuel cell - Google Patents

Gas passage of fuel cell

Info

Publication number
JPS6358769A
JPS6358769A JP61201448A JP20144886A JPS6358769A JP S6358769 A JPS6358769 A JP S6358769A JP 61201448 A JP61201448 A JP 61201448A JP 20144886 A JP20144886 A JP 20144886A JP S6358769 A JPS6358769 A JP S6358769A
Authority
JP
Japan
Prior art keywords
gas
flow path
electrode
cell
gas flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61201448A
Other languages
Japanese (ja)
Other versions
JPH0746613B2 (en
Inventor
Hidekazu Fujimura
秀和 藤村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP61201448A priority Critical patent/JPH0746613B2/en
Publication of JPS6358769A publication Critical patent/JPS6358769A/en
Publication of JPH0746613B2 publication Critical patent/JPH0746613B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • H01M8/0254Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form corrugated or undulated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8626Porous electrodes characterised by the form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make concentration distribution of fuel gas and oxidizing agent gas uniform and to make cell temperature distribution uniform by arranging a thin corrugated plate between an electrode and a separator which separates fuel gas and oxidizing agent gas. CONSTITUTION:A projections of a thin corrugated plate 1 is cut out in a flow direction in two or more portions so as to have some dimension. The corrugated projection 2 is brought into contact with the surface of an electrode to form the same number of openings 3 as the cut-out portions between the electrode and the side wall of the corrugated projections 2. The openings 3 is in contact with the electrode, and reaction gas flows directly above the electrode. Thereby, concentration distribution of each gas flowing inside a cell is made uniform. By adjusting a pitch, cutting dipth, and cutting width of the opening 3, a large volume of low temperature gas can be supplied to the high temperature portion of the cell, and the maximum temperature is decreased and temperature difference is made small.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は燃料電池に係り、特に、新規な反応ガスを電池
全域にわたり供給するのに好適なセパレータ流路に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a fuel cell, and particularly to a separator flow path suitable for supplying a novel reactive gas throughout the cell.

〔従来の技術〕[Conventional technology]

従来、電池内の出力、温度分布とガス濃度との関係につ
いては、ジャーナル、オブ、エレクトロケミカル、ソサ
エティ、 130 、1  (198:l)第48頁か
ら第55頁(J 、Fiectrochem、Soc、
 Vol、130゜Nn 1 、 (+983)PP4
8−55)において、論じられている。
Conventionally, the relationship between output, temperature distribution, and gas concentration in a battery has been described in Journal of Electrochemical Society, 130, 1 (198:l), pp. 48 to 55 (J, Fiectrochem, Soc.
Vol, 130°Nn 1, (+983)PP4
8-55).

しかし、燃料ガス、酸化剤ガスが電池入口から出口へ流
れる電池構造では、電気化学反応に伴い、ガス濃度の低
下、発生熱によるガス温度上昇があり、電池内の入口、
出口間に大きな出力、温度差を生じ、その結果、性能面
からは効率の低下、信層性、寿命面からは熱応力の増加
、電解質損失量の増加などによる信頼性、寿命の低下を
まねくという問題点が考慮されていなかった。
However, in a battery structure in which fuel gas and oxidant gas flow from the cell inlet to the outlet, the gas concentration decreases due to electrochemical reactions, and the gas temperature increases due to the heat generated.
A large output and temperature difference occurs between the outlets, resulting in a decrease in efficiency and reliability from a performance standpoint, and a decrease in reliability and life due to an increase in thermal stress and an increase in electrolyte loss from a lifespan standpoint. This issue was not taken into account.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術は電池内を流れる燃料、酸化剤ガスの濃度
不均一、ガス温度上昇について、ガス流路構造に関して
の考慮がされておらず、1池入口、出口間に生じる大き
な電流密度、温度差に伴う性能、信頼性、及び寿命の低
下という問題があった。
The above-mentioned conventional technology does not take into consideration the gas flow path structure regarding the non-uniform concentration of the fuel and oxidant gas flowing inside the cell, and the rise in gas temperature, and the large current density and temperature difference that occur between the inlet and outlet of one pond. There was a problem of a decrease in performance, reliability, and lifespan due to this.

本発明の目的は、電池内を流れる燃料ガス、酸化剤ガス
の濃度分布を均一にし、かつ、電池温度分布をも一様に
することにより、高性能、高信頼性及び長寿命な燃料電
池のセパレータ流路を提供することにある。
The purpose of the present invention is to create a fuel cell with high performance, high reliability, and long life by making the concentration distribution of fuel gas and oxidizing gas flowing inside the cell uniform and also making the cell temperature distribution uniform. The object of the present invention is to provide a separator flow path.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、燃料ガスと酸化剤ガスを分離する分離板と
電極との間にガス流路形成と集電手段を兼ね備えた波形
薄板を構成するとともに、波板と電極とが接触する凸部
のみをガス流れ方向に複数個、また、任意の幅、任意の
深さでブライディングカット、エンドミルにより削り取
ることにより達成される。さらには、波形薄板により電
極とガスが直接接触する流路と、直接接触しない流路と
が形成されるが、入口側の波板端部では電極と直接接触
する流路の端部を閉塞させ、出口側では、電極と直接接
触しない流路の端部を閉塞すると上記目的はより効果的
に達成される。
The above purpose is to construct a corrugated thin plate that combines the gas flow path formation and current collection means between the electrode and the separation plate that separates fuel gas and oxidant gas, and only has a convex portion where the corrugated plate and the electrode come into contact. This is accomplished by cutting multiple pieces in the direction of gas flow, or by briding cutting or cutting off at any width and depth using an end mill. Furthermore, the corrugated thin plate forms a flow path in which the electrode and the gas are in direct contact, and a flow path in which the gas does not come into direct contact, but the end of the corrugated plate on the inlet side closes the end of the flow path that is in direct contact with the electrode. On the outlet side, the above objective can be more effectively achieved by closing the end of the flow path that does not come into direct contact with the electrode.

〔作用〕[Effect]

上記波形薄板の一方の凸部を複数個ある大きさをもって
流れ方向に削り取り、その加工さ九た波板西部側を電極
面と接触させることにより、電極と波板凸部側壁との間
に、加工を施した数だけの開口部が形成されることにな
る。このため、開口部は電極面と接する形となり、複数
個の開口部を通って反応ガスが電極面直上を流れること
により、電池全域にわたり入口反応ガス濃度にほぼ等し
いガス組成をもつ反応ガスが電極面上を流れることによ
り、電気出力分布を一様にし、高出力化が図れる。本現
象はガス利用率の高い燃料側でより有効に働く。
By scraping off one convex part of the corrugated thin plate in the flow direction to a certain size and bringing the western side of the processed corrugated plate into contact with the electrode surface, a gap between the electrode and the side wall of the convex part of the corrugated plate is created. As many openings as the number of processed holes are formed. Therefore, the openings are in contact with the electrode surface, and the reactive gas flows directly above the electrode surface through the multiple openings, so that the reactive gas with a gas composition approximately equal to the inlet reactive gas concentration is distributed throughout the entire cell to the electrode surface. By flowing over the surface, the electrical output distribution can be made uniform and high output can be achieved. This phenomenon works more effectively on the fuel side with a high gas utilization rate.

また、燃料電池の寿命、信頼性は電池温度に密接に関係
し、特に電解質の損失量を抑制するためには、最高温度
を極力低くすることが要求されている。複数個の開口部
のピッチ、削り深さ、削り幅を調節するという単純な加
工行程により、電池温度の高くなりそうな部分に反応後
のプロセスガスよりは温度の低い供給ガスをより多く供
給することができ、最高温度が低下し、温度差も小さく
なる。これにより同時に熱応力も低減でき、信頼性の向
上が図れる。なお、電池内の流量分布の調節を容易にす
るため、上記波板により形成されろ二つの流路部のうち
、電極面と反応ガスが直接接触する、いオ)ゆろ、反応
流路についてはその入口部を閉塞させ、また、もう一方
の、電極面とはガスが直接接しない流路は反応ガス供給
ヘッダとしての役割を果たすため、出口部を閉塞するこ
とにより、供給ヘシダに入った反応ガスは、開口部を通
って反応流路内へ強制的に流入することとなる。
Further, the lifespan and reliability of a fuel cell are closely related to the cell temperature, and in particular, in order to suppress the amount of loss of electrolyte, it is required to lower the maximum temperature as much as possible. Through a simple process of adjusting the pitch, cutting depth, and cutting width of multiple openings, more supply gas with a lower temperature than the post-reaction process gas is supplied to areas where the battery temperature is likely to be high. This reduces the maximum temperature and the temperature difference. This simultaneously reduces thermal stress and improves reliability. In order to facilitate the adjustment of the flow rate distribution within the battery, of the two flow passages formed by the corrugated plate, the electrode surface and the reaction gas are in direct contact with each other. By blocking the inlet part, and since the other channel, which does not have direct gas contact with the electrode surface, serves as a reaction gas supply header, by blocking the outlet part, it is possible to prevent the reaction that has entered the supply header. Gas will be forced to flow into the reaction channel through the opening.

この結果、セル全域に開口部の異なる大きさ、ピッチ等
の分布を与えろことにより流量分布のコントロールが可
能となる。
As a result, it becomes possible to control the flow rate distribution by providing a distribution of different sizes, pitches, etc. of the openings throughout the cell.

〔実施例〕〔Example〕

以下、本発明の一実施例を第1図から第7図を用いて説
明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 7.

第1図は本発明による電極とセパレータの間に構成され
る波形薄板の矢視図である。ステンレス。
FIG. 1 is a directional view of a corrugated thin plate constructed between an electrode and a separator according to the present invention. stainless.

銅、ニッケルなどの薄板をプレスで波形に成形した波形
薄板1の電極側と接する凸部2に第2図に示すように、
グラインダ10によりその上部を削り取ることにより幅
W、深さhの開口部3を波形薄板1の全体に任意の数だ
け設ける。なお、凸部2の加工に関してはグラインダ及
びエンドミルの削り幅や深さを調節することにより、任
意の幅W。
As shown in FIG. 2, a convex portion 2 in contact with the electrode side of a corrugated thin plate 1 formed by pressing a thin plate of copper, nickel, etc. into a corrugated shape is formed.
An arbitrary number of openings 3 having a width W and a depth h are provided throughout the corrugated thin plate 1 by scraping off its upper part using a grinder 10. In addition, regarding the machining of the convex portion 2, an arbitrary width W can be obtained by adjusting the cutting width and depth of the grinder and end mill.

深さhの開口部3を任意のピッチLで複数個非常に簡単
に分布させることができる。第3図は波形薄板を内部マ
ンホールド形、直交流タイプのセパレータ4に組み入れ
たときの平面図である。また、第4図、第5図はそれぞ
れそのときのIV−IV、V−■矢視断面図を示す。波
形薄体1は開口部3がセパレータ4と反対側を向くよう
に設口される。
A plurality of openings 3 having a depth h can be distributed at an arbitrary pitch L very easily. FIG. 3 is a plan view when the corrugated thin plate is assembled into an internal manfold type, cross-flow type separator 4. Further, FIGS. 4 and 5 show sectional views taken along the lines IV-IV and V-■, respectively, at that time. The corrugated thin body 1 is formed such that the opening 3 faces the opposite side from the separator 4.

なお、セパレータ4と波形薄板1は接合面9でニッケル
ロー付、拡散接合により接合される。さて、入口マ二ホ
ールド6を通ってセルに流入した反応ガス20は波形1
の凹部8と側壁11−aで形成される流路14を流れる
。なお、波板1の内壁11−bで囲まれる流路15には
波板のプレス加工により同時に成形さ九る流路閉塞部1
3により反応ガス20は入口部16を介しては流入しな
い。
Note that the separator 4 and the corrugated thin plate 1 are joined at the joint surface 9 by nickel brazing and diffusion bonding. Now, the reaction gas 20 flowing into the cell through the inlet manifold 6 has a waveform of 1.
The liquid flows through a flow path 14 formed by the recess 8 and the side wall 11-a. Note that in the flow path 15 surrounded by the inner wall 11-b of the corrugated sheet 1, a flow path closing portion 1 is simultaneously formed by pressing the corrugated sheet.
3, the reaction gas 20 does not flow in via the inlet 16.

また、流路14に入ったガス20は出口マニホールド7
からは閉塞部13と同様に形成される流路閉塞部12に
より出口部17を介して流出することはできす流路14
に流入したガスは全て開口部3を介して流出することに
なる。
Further, the gas 20 that has entered the flow path 14 is transferred to the outlet manifold 7
The flow path 14 cannot flow out through the outlet portion 17 due to the flow path obstruction portion 12 formed in the same manner as the obstruction portion 13.
All the gas that has entered will flow out through the opening 3.

次に、第6図、第7図に示す、電池を構成したときの電
極近傍の拡大断面図を用いて、本発明の詳細な説明する
。流路14を流れる反応ガスは流れの進行方向に設けら
れた開口部3を通って流入する。セル全体に反応ガスを
開口部3を介して流すために流路14の流路面積に比し
て、開口部3の面積は相当小さくなっており、また、削
り深さhをできるだけ小さくして反応ガスができる限り
電極表面5の近くを流れるようになっている。このため
、電極表面上では反応ガス1度がその流路内の平均濃度
に比べて高くなり入口ガス組成に近づく、この結果、電
池全体の電気出力が向りすることになる。また、電流密
度も均一化の方向に向う。 また、第3図に示すように
、セル内の領域Bに比べて領域Aの電池温度が高いとき
、この制温部の温度を下げることが必要となるが、この
高温領域Aには開口部のピッチ■、を短かくしたりある
いはこの領域の開口部面積が大きくなるように削り幅W
を領域Bとは異なるパターンにすることにより流量分布
のコントロールが可能となり、領域Aに他の領域よりも
多くの冷却用ガスを流すことがiiJ能となる。その結
果、温度の均一化、また、最高温度を極力低く抑えるこ
とができろ。
Next, the present invention will be described in detail using enlarged sectional views of the vicinity of the electrodes when a battery is constructed, as shown in FIGS. 6 and 7. The reaction gas flowing through the flow path 14 flows through the opening 3 provided in the direction of flow. In order to flow the reaction gas through the opening 3 throughout the cell, the area of the opening 3 is considerably smaller than that of the flow path 14, and the cutting depth h is made as small as possible. The reactant gas is arranged to flow as close to the electrode surface 5 as possible. Therefore, the reactant gas concentration on the electrode surface becomes higher than the average concentration in the flow path and approaches the inlet gas composition, resulting in a shift in the electrical output of the entire cell. Furthermore, the current density tends to become more uniform. Furthermore, as shown in Figure 3, when the battery temperature in area A is higher than area B in the cell, it is necessary to lower the temperature of this temperature control part, but this high temperature area A has an opening. To shorten the pitch ■, or to increase the cutting width W so that the opening area in this area becomes larger.
By making the pattern different from that in region B, it becomes possible to control the flow rate distribution, and it becomes possible to flow more cooling gas in region A than in other regions. As a result, the temperature can be made uniform and the maximum temperature can be kept as low as possible.

〔発明の効果〕〔Effect of the invention〕

本発明によ九ば、燃料電池のガス分散性、電極面上の反
応ガスの高濃度化、流量分布のコントロールがより確実
なものとなり、電池の性能、寿命、信頼性向上の効果が
ある。
According to the present invention, the gas dispersibility of the fuel cell, the high concentration of the reactant gas on the electrode surface, and the control of the flow rate distribution are made more reliable, and the performance, life span, and reliability of the cell are improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の波形薄板の斜視図、第2図
はその成形法の概略図、第3図は電池セパレータの平面
図、第4図、第5図はそれぞれ第3図のIV−IV線、
V−V線断面図、第6図、第7図は電池の単極部の拡大
断面図である。 1・・・波形薄板、2・・・波形凸部、3・・・開口部
、4 ・セパレータ、5・・・電極、6・・入口マニホ
ールド、7・・・出口マニホールド、11−a・・・波
板側壁、11−b・・・波板内壁、】4・・・供給へラ
ダー、15・・反応流路。             
      、ン代理人 弁理士 小川勝馬 し、 高1区 も?L図 11−b −−−j成上えl’l苛 高3図 宅4−図 弔S図 16 20 4  1+−b 市四口
Fig. 1 is a perspective view of a corrugated thin plate according to an embodiment of the present invention, Fig. 2 is a schematic diagram of its forming method, Fig. 3 is a plan view of a battery separator, and Figs. 4 and 5 are respectively Fig. 3. IV-IV line,
The sectional view taken along the line V-V, and FIGS. 6 and 7 are enlarged sectional views of the unipolar portion of the battery. DESCRIPTION OF SYMBOLS 1... Waveform thin plate, 2... Waveform convex part, 3... Opening part, 4 - Separator, 5... Electrode, 6... Inlet manifold, 7... Outlet manifold, 11-a... - Corrugated plate side wall, 11-b... Corrugated plate inner wall, ]4... Ladder to supply, 15... Reaction channel.
, N's agent, patent attorney Katsuma Ogawa, and the first ward of high school too? L Figure 11-b ---j Growth l'l High School 3 Figure House 4- Figure Condolence S Figure 16 20 4 1+-b City Yotsuguchi

Claims (1)

【特許請求の範囲】 1、電解質板と、前記電解質板を両側からはさむアノー
ド電極、カソード電極と、これら電極と接して燃料、酸
化剤ガスが流れるガス流路部と、前記燃料、酸化剤ガス
流路を分離するセパレータ板と、前記部材を収納する電
池容器とから成る燃料電池において、 前記ガス流路部に凸凹をもつ薄板により少なくとも二種
類のガス流路を分離形成させ、そのうち、少なくとも一
つの流路はその中を流れるガスが電極面と直接接し、少
なくとも一つの流路は、前記ガス流路内を流れるガスと
電極が直接接することはなく、前記電極面と接する前記
薄板の凸部の上部のみが任意の幅と薄板の肉厚以上の深
さで削り取られた開口部を複数個設けたことを特徴とす
る燃料電池のガス流路。 2、特許請求の範囲第1項において、 前記電極面とガスが直接接触しない流路はその出口部を
閉塞し、前記電極面とガスが直接接触する流路はその入
口部を閉塞することを特徴とする燃料電池のガス流路。
[Scope of Claims] 1. An electrolyte plate, an anode electrode and a cathode electrode that sandwich the electrolyte plate from both sides, a gas passage portion through which fuel and oxidizing gas flow in contact with these electrodes, and the fuel and oxidizing gas In a fuel cell comprising a separator plate that separates flow paths and a cell container that houses the member, at least two types of gas flow paths are formed separately by a thin plate having unevenness in the gas flow path portion, and at least one of the gas flow paths is formed separately. In at least one flow path, the gas flowing through the gas flow path does not come into direct contact with the electrode surface, and in at least one flow path, the gas flowing through the gas flow path does not come into direct contact with the electrode, and the convex portion of the thin plate that contacts the electrode surface A gas flow path for a fuel cell, characterized in that only the upper part of the gas flow path is provided with a plurality of openings having an arbitrary width and a depth greater than the wall thickness of the thin plate. 2. In claim 1, it is provided that the outlet portion of a flow path that does not come into direct contact with the electrode surface is closed, and the inlet portion of a flow path that is in direct contact with the electrode surface is closed. Characteristic fuel cell gas flow path.
JP61201448A 1986-08-29 1986-08-29 Fuel cell gas flow path Expired - Lifetime JPH0746613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61201448A JPH0746613B2 (en) 1986-08-29 1986-08-29 Fuel cell gas flow path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61201448A JPH0746613B2 (en) 1986-08-29 1986-08-29 Fuel cell gas flow path

Publications (2)

Publication Number Publication Date
JPS6358769A true JPS6358769A (en) 1988-03-14
JPH0746613B2 JPH0746613B2 (en) 1995-05-17

Family

ID=16441253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61201448A Expired - Lifetime JPH0746613B2 (en) 1986-08-29 1986-08-29 Fuel cell gas flow path

Country Status (1)

Country Link
JP (1) JPH0746613B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0440968A1 (en) * 1990-02-08 1991-08-14 Asea Brown Boveri Ag Element for obtaining a possible uniform temperature distribution on the surface of a plate-like ceramic high temperature fuel cell
EP0978891A2 (en) 1998-08-03 2000-02-09 Toyota Jidosha Kabushiki Kaisha Multiple uneven plate, multiple uneven plate bending mold, multiple uneven plate manufacturing method and separator using multiple uneven plate
EP1174938A2 (en) 2000-07-18 2002-01-23 Sofco L.P. Fuel cells with internal fuel staging
JP2012124019A (en) * 2010-12-08 2012-06-28 Honda Motor Co Ltd Flat plate type solid electrolyte fuel battery
JPWO2014013747A1 (en) * 2012-07-17 2016-06-30 トヨタ車体株式会社 Fuel cell
JP2018037383A (en) * 2016-09-02 2018-03-08 トヨタ自動車株式会社 Fuel cell and separator for fuel cell
JP2018536262A (en) * 2015-12-17 2018-12-06 バイエリッシェ モトーレン ヴェルケ アクチエンゲゼルシャフトBayerische Motoren Werke Aktiengesellschaft Method for manufacturing a bipolar plate
KR20200035426A (en) * 2017-07-26 2020-04-03 로베르트 보쉬 게엠베하 Distributor structure for supplying one or more reaction gases
JP2021009809A (en) * 2019-07-01 2021-01-28 トヨタ自動車株式会社 Fuel battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006324084A (en) * 2005-05-18 2006-11-30 Hitachi Ltd Fuel cell

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0440968A1 (en) * 1990-02-08 1991-08-14 Asea Brown Boveri Ag Element for obtaining a possible uniform temperature distribution on the surface of a plate-like ceramic high temperature fuel cell
EP0978891A2 (en) 1998-08-03 2000-02-09 Toyota Jidosha Kabushiki Kaisha Multiple uneven plate, multiple uneven plate bending mold, multiple uneven plate manufacturing method and separator using multiple uneven plate
EP0978891A3 (en) * 1998-08-03 2001-11-28 Toyota Jidosha Kabushiki Kaisha Multiple uneven plate, multiple uneven plate bending mold, multiple uneven plate manufacturing method and separator using multiple uneven plate
US6490778B1 (en) 1998-08-03 2002-12-10 Toyota Jidosha Kabushiki Kaisha Multiple uneven plate, multiple uneven plate bending mold, multiple uneven plate manufacturing method and separator using multiple uneven plate
US6833214B2 (en) * 1998-08-03 2004-12-21 Toyota Jidosha Kabushiki Kaisha Multiple uneven plate and separator using multiple uneven plate
EP1174938A2 (en) 2000-07-18 2002-01-23 Sofco L.P. Fuel cells with internal fuel staging
EP1174938A3 (en) * 2000-07-18 2003-10-29 Sofco L.P. Fuel cells with internal fuel staging
JP2012124019A (en) * 2010-12-08 2012-06-28 Honda Motor Co Ltd Flat plate type solid electrolyte fuel battery
JPWO2014013747A1 (en) * 2012-07-17 2016-06-30 トヨタ車体株式会社 Fuel cell
US10727511B2 (en) 2012-07-17 2020-07-28 Toyota Shatai Kabushiki Kaisha Fuel cell
JP2018536262A (en) * 2015-12-17 2018-12-06 バイエリッシェ モトーレン ヴェルケ アクチエンゲゼルシャフトBayerische Motoren Werke Aktiengesellschaft Method for manufacturing a bipolar plate
US11456465B2 (en) 2015-12-17 2022-09-27 Bayerische Motoren Werke Aktiengesellschaft Method for producing a bipolar plate
JP2018037383A (en) * 2016-09-02 2018-03-08 トヨタ自動車株式会社 Fuel cell and separator for fuel cell
KR20200035426A (en) * 2017-07-26 2020-04-03 로베르트 보쉬 게엠베하 Distributor structure for supplying one or more reaction gases
JP2020526884A (en) * 2017-07-26 2020-08-31 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Distributing structure for providing at least one reaction gas
US11228045B2 (en) 2017-07-26 2022-01-18 Robert Bosch Gmbh Distribution structure for providing at least one reaction gas
JP2021009809A (en) * 2019-07-01 2021-01-28 トヨタ自動車株式会社 Fuel battery

Also Published As

Publication number Publication date
JPH0746613B2 (en) 1995-05-17

Similar Documents

Publication Publication Date Title
KR100549683B1 (en) Solid polymer electrolyte fuel cell assembly, fuel cell stack, and method of supplying reaction gas in fuel cell
JP2006508496A (en) Fuel cell flow field plate
EP1722436B1 (en) Polymer electrolyte fuel cell and bipolar separator for the same
US7867666B2 (en) Fuel cell with triangular buffers for reactant gas and coolant
US20080199738A1 (en) Solid oxide fuel cell interconnect
CN101142342A (en) Flow field plate arrangement
US8986905B2 (en) Fuel cell interconnect
US8053125B2 (en) Fuel cell having buffer and seal for coolant
JPS6358769A (en) Gas passage of fuel cell
JP5302263B2 (en) Fuel cell
KR20040083832A (en) Bipolar plate and Fuel cell comprising the same
JP2000311696A5 (en)
CN111785987A (en) Flow field type heat sink for bipolar plate
EP4181243A2 (en) Fuel cell interconnect optimized for operation in hydrogen fuel
US7745062B2 (en) Fuel cell having coolant inlet and outlet buffers on a first and second side
JP4601893B2 (en) Fuel cell separator
US20050008921A1 (en) Fluid flow plate for fuel cell
CN210535761U (en) Fuel cell metal polar plate
US20040151974A1 (en) PEM fuel cell with flow-field having a branched midsection
JPH04322062A (en) Separator of fuel cell and fuel cell using separator
JPS61128470A (en) Fuel cell separator
JPS63236265A (en) Fuel cell
JPH04315770A (en) Molten carbonate fuel cell
US20240128480A1 (en) Separator for fuel cell
CN209880730U (en) Bipolar plate for electrochemical reactor