JPH04315768A - Hydrogen storage electrode and manufacture thereof - Google Patents

Hydrogen storage electrode and manufacture thereof

Info

Publication number
JPH04315768A
JPH04315768A JP3004276A JP427691A JPH04315768A JP H04315768 A JPH04315768 A JP H04315768A JP 3004276 A JP3004276 A JP 3004276A JP 427691 A JP427691 A JP 427691A JP H04315768 A JPH04315768 A JP H04315768A
Authority
JP
Japan
Prior art keywords
hydrogen storage
electrode
metal reinforcing
storage electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3004276A
Other languages
Japanese (ja)
Inventor
Gohei Suzuki
剛平 鈴木
Hiroshi Kawano
川野 博志
Nobuyuki Yanagihara
伸行 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3004276A priority Critical patent/JPH04315768A/en
Publication of JPH04315768A publication Critical patent/JPH04315768A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To maintain a high capacity of a battery over a long period and to achieve high quality by packing powder of a hydrogen storage alloy in a foaming metal porous body in the form of a rectangular plate to form an electrode body, and fixing the peripheral portion of the eletrode body with metal reinforcing bodies of high alkali resistance. CONSTITUTION:The edge portion of a hydrogen storage electrode is protected by a metal reinforcing body 2 surrounding an electrode body 1 comprising powder of a hydrogen storage alloy packed in a foaming metal porous body and the electrode is supported by the body 2: i.e., the reinforcing body 2 serves as an electrode support body functionally and enhances the conductivity of the electrode. The protection property of the edge portion, the electrode supporting function of the body 2 and the conductivity of the electrode are further enhanced by the use of a second metal reinforcing body 3. When the metal reinforcing bodies 4A, B are used in such a way as being laid across the body 1, not only the electrode performance is enhanced, but also expansion of the hydrogen storage electrode due to repeating of charge and discharge can be restrained. When a rectangular battery is used the bodies 2,3 are connected to each other into an integral structure so that the amount of deformation of the whole structure can be reduced to a small one. Thereby high capacity is maintained over a long period and high quality is achieved.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、電解液中で水素を可逆
的に吸蔵・脱蔵する水素吸蔵電極とその製造法に関する
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hydrogen storage electrode that reversibly stores and desorbs hydrogen in an electrolytic solution, and a method for manufacturing the same.

【0002】0002

【従来の技術】可逆的に水素を吸蔵・脱蔵する合金を用
いる水素吸蔵電極は、一般につぎのような方法によって
製造されていた。すなわち、合金組成に合うように各種
金属を秤量し、アーク溶解炉などを用いて高温アーク放
電によって各種金属の混合物を溶解させて、所期の組成
を有する合金を製造し、この合金をさらに粉砕して30
0メッシュ以下の粒径を有する粉末とする。
2. Description of the Related Art Hydrogen storage electrodes using alloys that reversibly absorb and desorb hydrogen have generally been manufactured by the following method. That is, various metals are weighed to match the alloy composition, the mixture of various metals is melted by high-temperature arc discharge using an arc melting furnace, etc., to produce an alloy with the desired composition, and this alloy is further pulverized. then 30
The powder has a particle size of 0 mesh or less.

【0003】この粉末を結着剤などと均一状態になるよ
うに混練して、ペースト状となし、例えばニッケル製の
発泡状金属多孔体に塗着した後、乾燥・加圧して水素吸
蔵電極としていた。この水素吸蔵電極を負極とし、セパ
レータを介して公知のニッケル正極などと組合わせて金
属酸化物−水素蓄電池が構成される。
[0003] This powder is kneaded to a uniform state with a binder, etc. to form a paste, which is applied to a foamed metal porous body made of nickel, for example, and then dried and pressurized to form a hydrogen storage electrode. there was. A metal oxide-hydrogen storage battery is constructed by using this hydrogen storage electrode as a negative electrode and combining it with a known nickel positive electrode through a separator.

【0004】0004

【発明が解決しようとする課題】一般に水素吸蔵合金は
水素の吸蔵・放出の繰り返しにより合金粉末の微細化が
起こり、その粒径は小さくなる。このような合金を用い
た電極では、充放電サイクルが進むにつれて合金粉末の
粒径変化による結着力の低下が起こる。発泡状金属多孔
体を電極の基板に用いた場合、特に端部から合金粉末が
脱落しやすい。合金粉末の脱落はいったん起こるとその
後徐々に進行する。その結果電池容量は低下し続けるこ
とになる。
In general, in hydrogen storage alloys, the alloy powder becomes finer due to repeated storage and release of hydrogen, and its particle size becomes smaller. In an electrode using such an alloy, as the charge/discharge cycle progresses, the binding force decreases due to a change in the particle size of the alloy powder. When a foamed metal porous body is used as a substrate of an electrode, alloy powder tends to fall off particularly from the edges. Once the alloy powder falls off, it progresses gradually. As a result, battery capacity continues to decrease.

【0005】このような現象を無くすために結着剤の添
加量を増やす方法が採られる。しかしあまり多くの結着
剤を添加すると、電極の単位重量当たりの合金量が減少
し、その結果として単位重量当たりのエネルギー密度が
低下するという問題が生じる。
[0005] In order to eliminate this phenomenon, a method is adopted in which the amount of binder added is increased. However, if too much binder is added, the amount of alloy per unit weight of the electrode decreases, resulting in a problem that the energy density per unit weight decreases.

【0006】以上の問題を解決する水素吸蔵電極として
、特開平2−201870号公報において、発泡状金属
多孔体の平板を中空とし、その中空部分に異種金属を被
覆した水素吸蔵合金を濃密に充填し、その両平面を金属
網面で被覆して高温下で三者を一体化した水素吸蔵電極
が提案されている。
[0006] As a hydrogen storage electrode that solves the above problems, Japanese Patent Application Laid-Open No. 2-201870 discloses a method in which a flat plate of a porous metal foam is made hollow, and the hollow portion is densely filled with a hydrogen storage alloy coated with a different metal. However, a hydrogen storage electrode has been proposed in which both planes are covered with a metal mesh surface and the three are integrated under high temperature.

【0007】この発明は、結着剤の添加量を低くして合
金の水素吸蔵特性をよりよく発揮することを目的とする
。具体的には、電極の四周を囲繞する発泡状金属多孔体
がエッジ部からの合金粉末の脱落を防ぎ、金属網面が電
極平面部からの合金粉末の脱落を防ぐ役目を果たすため
、結着剤の使用量を大幅に減らすことができるというも
のである。
The object of the present invention is to lower the amount of binder added to better exhibit the hydrogen storage properties of the alloy. Specifically, the foam metal porous material that surrounds the four circumferences of the electrode prevents the alloy powder from falling off from the edges, and the metal mesh surface plays the role of preventing the alloy powder from falling off from the flat surface of the electrode. This means that the amount of drug used can be significantly reduced.

【0008】しかしながら、無電解めっき等で合金粉末
上に異種金属を被覆する方法は高価であること、切り抜
き空隙部の金属多孔体の有効な利用方法がないため歩留
まりが悪いこと等、電極自体が高価なものになり、工業
的実用性に問題点がある。
However, the method of coating dissimilar metals on alloy powder by electroless plating etc. is expensive, and the yield is low because there is no effective way to use the metal porous material in the cutout gap. It is expensive and has problems in industrial practicality.

【0009】このように、電極のエネルギー密度を落と
すことなく合金粉末の脱落の問題を無くし、しかもコス
ト的に実用性のある水素吸蔵電極については、いまだ提
起されていない状態である。
As described above, a hydrogen storage electrode that eliminates the problem of alloy powder falling off without reducing the energy density of the electrode and is practical in terms of cost has not yet been proposed.

【0010】本発明の目的は、以上の課題を解決し、高
容量を長期間保つことのできる高品質の水素吸蔵電極を
提供することである。
An object of the present invention is to solve the above-mentioned problems and provide a high-quality hydrogen storage electrode that can maintain a high capacity for a long period of time.

【0011】[0011]

【課題を解決するための手段】本発明における水素吸蔵
電極は、容量低下の原因となる合金粉末の脱落を防止す
るため、周囲を耐アルカリ性の高い金属補強体で固定す
ることを特徴とする。
[Means for Solving the Problems] The hydrogen storage electrode according to the present invention is characterized in that the periphery thereof is fixed with a metal reinforcing body having high alkali resistance in order to prevent alloy powder from falling off, which causes a decrease in capacity.

【0012】またこの水素吸蔵電極の製造法としては、
角板形の発泡状金属多孔体に水素吸蔵合金粉末を充填し
て電極体とし、その周辺部を上記金属補強体で固定する
方法が挙げられる。この固定方法としては加圧一体化及
びスポット溶接法があるが、合金の脱落を確実に防止し
、集電能力を高めるためにはスポット溶接を行うことが
好ましい。このとき発泡状金属多孔体は、スポット溶接
に適するようその周辺部を加圧等で低孔度化する方法が
採られる。
[0012] Furthermore, the method for manufacturing this hydrogen storage electrode is as follows:
One method is to fill a square plate-shaped foamed metal porous body with hydrogen-absorbing alloy powder to form an electrode body, and to fix the peripheral portion of the electrode body with the metal reinforcing body. This fixing method includes pressure integration and spot welding, but spot welding is preferable in order to reliably prevent the alloy from falling off and to improve the current collecting ability. At this time, a method is adopted in which the periphery of the foamed metal porous body is reduced in porosity by applying pressure or the like so that it is suitable for spot welding.

【0013】ここで金属補強体は、好ましくは電極体の
上辺を残すように、これをコの字型に覆う形が採られる
。さらには金属補強体が電極体の四周すべてを覆う形も
例示できる。この場合、別の金属補強体で四周を固定す
る金属補強体間を上下方向にさらに連結固定することも
好ましい態様の一つであることを示す。
[0013] Here, the metal reinforcing body preferably covers the electrode body in a U-shape so as to leave the upper side of the electrode body intact. Furthermore, a configuration in which the metal reinforcing body covers all four circumferences of the electrode body can also be exemplified. In this case, it is also shown that one of the preferred embodiments is to further connect and fix the metal reinforcing bodies in the vertical direction, which fix the four circumferences with another metal reinforcing body.

【0014】[0014]

【作用】図1Aは本発明における電極の構成例を示す図
である。この図に基づいて本発明の作用を説明する。
[Operation] FIG. 1A is a diagram showing an example of the structure of an electrode according to the present invention. The operation of the present invention will be explained based on this figure.

【0015】水素吸蔵合金の粉末を発泡状金属多孔体内
に充填して成る電極体1の周辺部を取り囲む金属補強体
2が、エッジ部の保護と電極支持の作用を果たす。すな
わち金属補強体は機能上電極支持体となる。またこの金
属補強体は電極の導電性を向上させる働きも持つ。
A metal reinforcing body 2 surrounding the periphery of the electrode body 1, which is made of a porous foamed metal body filled with powder of a hydrogen storage alloy, serves to protect the edges and support the electrode. That is, the metal reinforcement functions as an electrode support. This metal reinforcement also has the function of improving the conductivity of the electrode.

【0016】さらに第2の金属補強体3を使用すること
により、エッジ部の保護性、電極支持機能及び導電性は
より向上する。また図1Bのように金属補強体4A、B
を電極体1にわたしかけるように使用した場合、上記性
能の一層の向上に加え、充放電の繰り返しによる水素吸
蔵電極の膨脹をも抑えることができる。
Furthermore, by using the second metal reinforcing body 3, the protection of the edge portion, the electrode support function, and the conductivity are further improved. Also, as shown in FIG. 1B, metal reinforcing bodies 4A and B
When used across the electrode body 1, in addition to further improving the above-mentioned performance, it is also possible to suppress expansion of the hydrogen storage electrode due to repeated charging and discharging.

【0017】角形電池の場合、水素吸蔵電極を大面積化
する必要があるが、このとき電極の変形をいかに抑える
かが大きな課題となる。このような場合、上記金属補強
体2、3どうしをスポット溶接などで連結し、水素吸蔵
電極が複数個、一平面上に連結一体化した構造とするこ
とにより、全体の変形量を少なく抑えることができる。
In the case of a prismatic battery, it is necessary to increase the area of the hydrogen storage electrode, but at this time a major problem is how to suppress deformation of the electrode. In such a case, the amount of overall deformation can be kept to a minimum by connecting the metal reinforcing bodies 2 and 3 with each other by spot welding or the like to create a structure in which a plurality of hydrogen storage electrodes are connected and integrated on one plane. Can be done.

【0018】以上のように本発明は、その構造上合金の
脱落を強固に抑えることができるので、従来程度の結着
剤量で従来よりも長期間高い放電容量を保つ電極を提供
できる。
As described above, the present invention can firmly suppress the falling off of the alloy due to its structure, and therefore can provide an electrode that maintains a higher discharge capacity for a longer period of time than the conventional one with the same amount of binder.

【0019】[0019]

【実施例】以下、本発明の実施例を説明する。[Examples] Examples of the present invention will be described below.

【0020】[0020]

【実施例1】純度99.5%以上のランタン(La)、
ニッケル(Ni)、マンガン(Mn)、アルミニウム(
Al)、コバルト(Co)を所定の割合で混合し、アー
ク溶解炉にて溶解してLaNi4.0Mn0.3Al0
.3Co0.4合金を製造した。この合金を不活性雰囲
気中で粉砕し、300メッシュ以下の粉末とした。
[Example 1] Lanthanum (La) with a purity of 99.5% or more,
Nickel (Ni), manganese (Mn), aluminum (
Al) and cobalt (Co) are mixed in a predetermined ratio and melted in an arc melting furnace to form LaNi4.0Mn0.3Al0.
.. A 3Co0.4 alloy was produced. This alloy was ground in an inert atmosphere to a powder of 300 mesh or less.

【0021】この合金粉末に結着剤であるポリビニルア
ルコール(以下PVAと略す)を合金に対して0.4重
量%、4重量%それぞれ加え、電極支持体の発泡状金属
多孔体に加圧・充填した水素吸蔵電極体をそのまま負極
とし、正極には公知のニッケル極を用い、電解液には比
重1.3のか性カリ水溶液200mlを用いて金属酸化
物−水素蓄電池を組立てた。これをそれぞれ電池A、A
’とする。
Polyvinyl alcohol (hereinafter abbreviated as PVA) as a binder was added to this alloy powder in an amount of 0.4% by weight and 4% by weight based on the alloy, and the foamed metal porous body of the electrode support was pressurized. A metal oxide-hydrogen storage battery was assembled using the filled hydrogen storage electrode body as a negative electrode, a known nickel electrode as a positive electrode, and 200 ml of a caustic potassium aqueous solution with a specific gravity of 1.3 as an electrolyte. These are batteries A and A, respectively.
'.

【0022】次に同様の方法でPVA0.4重量%の水
素吸蔵電極体をつくり、これに図1Aに示すコの字型の
ニッケル製金属補強体2を上辺を残す形で電極体と加圧
一体化し、この金属補強体の側辺にリードを接続して負
極とし、上記正極と組み合わせ、電池Aと同様に金属酸
化物−水素蓄電池を構成した。これを電池Bとする。
Next, a hydrogen storage electrode body made of 0.4% by weight PVA was made in the same manner, and a U-shaped nickel metal reinforcing body 2 shown in FIG. A lead was connected to the side of the metal reinforcing body to form a negative electrode, which was combined with the positive electrode to form a metal oxide-hydrogen storage battery in the same manner as Battery A. This is called battery B.

【0023】続いて発泡状金属多孔体1それ自体の周辺
部を加圧することにより低孔度化し、0.4重量%のP
VAを加えた合金粉末を加圧・充填し、水素吸蔵電極体
を作製した。これに図1Aに示すコの字型のニッケル製
金属補強体2を上辺を残す形で電極体とスポット溶接し
、この金属補強体の側辺にリードを接続して負極とし、
上記正極と組み合わせ、金属酸化物−水素蓄電池を構成
した。これを電池Cとする。
Subsequently, the periphery of the foamed metal porous body 1 itself is reduced in porosity by applying pressure, and 0.4% by weight of P is added.
An alloy powder containing VA was pressurized and filled to produce a hydrogen storage electrode body. A U-shaped nickel metal reinforcing body 2 shown in FIG. 1A is spot welded to the electrode body with the upper side left intact, and a lead is connected to the side edge of this metal reinforcing body to form a negative electrode.
In combination with the above positive electrode, a metal oxide-hydrogen storage battery was constructed. This is called battery C.

【0024】さらに電池Cと同様の方法でPVA0.4
重量%の水素吸蔵電極体をつくり、この四周をとり囲む
ように金属補強体2、3をスポット溶接し、この金属補
強体にリードを接続して負極とし、上記正極と組み合わ
せ、金属酸化物−水素蓄電池を構成した。これを電池D
とする。
[0024] Furthermore, in the same manner as for battery C, PVA0.4
% by weight, metal reinforcing bodies 2 and 3 are spot welded so as to surround the four peripheries, a lead is connected to this metal reinforcing body to form a negative electrode, and combined with the above positive electrode, a metal oxide - A hydrogen storage battery was constructed. This is battery D
shall be.

【0025】また電池Cと同様の方法でPVA0.4重
量%の水素吸蔵電極体をつくり、この四周に金属補強体
2、3をスポット溶接し、この金属補強体にリードを接
続した。さらに上下方向に金属補強体4A、4Bを固定
して負極とし、上記正極と組み合わせ、金属酸化物−水
素蓄電池を構成した。これを電池Eとする。
In addition, a hydrogen storage electrode body containing 0.4% by weight of PVA was prepared in the same manner as in Battery C, metal reinforcing bodies 2 and 3 were spot welded around the four peripheries, and leads were connected to the metal reinforcing bodies. Further, metal reinforcing bodies 4A and 4B were fixed in the vertical direction to serve as a negative electrode, which was combined with the positive electrode to form a metal oxide-hydrogen storage battery. This is called battery E.

【0026】なお、正極は容量1.8Ahの焼結型水酸
化ニッケル3枚、負極は容量1.8Ahのもの2枚を用
いた。電極の大きさは正、負極とも36cm2であり、
負極の合金は1枚当たり約7〜8gを用いた。
Note that three sintered nickel hydroxide sheets with a capacity of 1.8 Ah were used as the positive electrode, and two sheets with a capacity of 1.8 Ah were used as the negative electrode. The size of the electrodes is 36 cm2 for both positive and negative electrodes,
Approximately 7 to 8 g of the negative electrode alloy was used per sheet.

【0027】電池A、A’、B、C、D及びE各5個に
ついて2Aの電流で充放電した。充電時間は放電時間の
50%過剰とし、放電終止電圧は1.0Vとした。この
充放電サイクル試験における電池の放電容量の変動幅を
図2に、充放電サイクル終了後の負極の重量変化を表1
に示す。
Five batteries each of A, A', B, C, D and E were charged and discharged at a current of 2A. The charging time was 50% longer than the discharging time, and the discharge end voltage was 1.0V. Figure 2 shows the fluctuation range of the battery discharge capacity in this charge/discharge cycle test, and Table 1 shows the weight change of the negative electrode after the charge/discharge cycle.
Shown below.

【0028】[0028]

【表1】 図2より、電池D、Eは600サイクルの充・放電を繰
り返しても容量低下は数%程度であり小さい。また容量
のバラツキ幅もほとんど拡がっていない。一方、電池C
は600サイクルの充・放電を繰り返すと約5〜10%
程度の容量低下とバラツキ幅が観察されたが、実用上は
問題ない範囲に入っている。また電池Bは初期容量が他
のものに比べて5%程度低いものの、600サイクル終
了後の容量低下は10〜15%にとどまっている。
[Table 1] From FIG. 2, even after 600 cycles of charging and discharging for batteries D and E, the capacity decrease was only a few percent, which was small. Furthermore, the range of variation in capacity has hardly widened. On the other hand, battery C
is approximately 5-10% after 600 cycles of charging and discharging.
Although some capacity reduction and variation were observed, this was within a range that would pose no problem for practical use. Furthermore, although the initial capacity of battery B is about 5% lower than that of the others, the capacity decrease after 600 cycles is only 10 to 15%.

【0029】これに対して電池Aは、200サイクルま
ではC、D及びEと差異はないものの、サイクル数を重
ねる毎に最低値として400サイクルで残存放電容量が
2.2Ahとなって約40%の容量低下を示した電池か
ら、最高値として600サイクルで残存放電容量が2.
2Ahとなった電池まで、非常に大きな変動幅を持って
いる。
On the other hand, battery A has no difference from C, D, and E up to 200 cycles, but as the number of cycles increases, the remaining discharge capacity becomes 2.2 Ah at 400 cycles, which is approximately 40 % capacity loss, the maximum remaining discharge capacity was 2.0% after 600 cycles.
There is a very large fluctuation range up to 2Ah batteries.

【0030】この寿命特性の差異は水素吸蔵合金粉末の
脱落による容量低下から起こったものであり、またその
脱落の進行速度によって大きな変動幅が生じたものと考
えられる。充・放電サイクルの繰り返しにより合金粉末
が細分化し、これが進むにつれて負極の端部を中心に合
金粉末の脱落が起こる。脱落は徐々に進行するので、結
果的に大きな容量低下につながる。このように、B、C
、D及びEはAと比較して充・放電サイクル寿命が非常
にすぐれていることがわかる。
It is believed that this difference in life characteristics is caused by a decrease in capacity due to shedding of the hydrogen-absorbing alloy powder, and that a large variation range occurs depending on the speed at which the shedding progresses. The alloy powder is fragmented by repeated charge/discharge cycles, and as this progresses, the alloy powder falls off mainly from the end of the negative electrode. Since the shedding progresses gradually, it results in a large capacity reduction. In this way, B, C
, D and E are found to have extremely superior charge/discharge cycle life compared to A.

【0031】また、合金粉末の脱落を防ぐためにPVA
量を増した電池A’は、寿命特性はよいものの初期の放
電容量が他のものと比べて20%程度低いものとなって
いる。すなわち、B、C、D及びEはA’と比較して放
電容量が非常に優れていることがわかる。
[0031] In addition, in order to prevent the alloy powder from falling off, PVA
Although the battery A' with increased capacity has good life characteristics, its initial discharge capacity is about 20% lower than that of the other batteries. That is, it can be seen that B, C, D, and E have extremely superior discharge capacities compared to A'.

【0032】また電池Bの初期容量が低い理由として、
電極体と金属多孔体との接触不良が挙げられる。これは
電池Cのように、スポット溶接法により電極体と金属補
強体との接続をより強固にすると、初期容量が向上する
ことからも明らかである。実際電池Bの内部抵抗を測定
したところ、Cに比べて高いことがわかった。
[0032] Also, the reason why the initial capacity of battery B is low is as follows.
An example of this is poor contact between the electrode body and the metal porous body. This is clear from the fact that, as in Battery C, when the connection between the electrode body and the metal reinforcing body is made stronger by spot welding, the initial capacity is improved. When the internal resistance of battery B was actually measured, it was found to be higher than that of battery C.

【0033】充放電を400〜600サイクルで終了し
、その後電池A〜Eを分解して負極の重量変化について
調べた。その結果は(表1)に示すように、電池Aは重
量減少が著しいことがわかる。この重量減少は合金粉末
の脱落量と一致し、図1に示す大きな容量低下の証拠と
なる。また脱落した合金粉末が電槽底部に堆積している
ことが確認できた。
After 400 to 600 cycles of charging and discharging, batteries A to E were disassembled and changes in the weight of the negative electrodes were examined. As shown in Table 1, the results show that battery A showed a significant weight reduction. This weight loss corresponds to the amount of alloy powder shedding and is evidence of the large capacity loss shown in FIG. It was also confirmed that the fallen alloy powder was deposited on the bottom of the container.

【0034】これに対して本発明の電池B〜Eにおいて
は、同様に分解調査した結果、重量減少は金属補強体の
数が増すにつれて少なくなり、電池Eにおいてはほとん
どないことがわかる。これも図2に示す結果とよい相関
をなす。
On the other hand, as a result of similar disassembly examination of batteries B to E of the present invention, it is found that the weight decrease decreases as the number of metal reinforcing bodies increases, and that in battery E there is almost no weight loss. This also has a good correlation with the results shown in FIG.

【0035】電池Aに見られるような現象は特に角形電
池において顕著に現れる。また密閉形蓄電池においても
この傾向が若干見られるので、本発明の方法は有効であ
る。
The phenomenon seen in battery A is particularly noticeable in prismatic batteries. Furthermore, this tendency is somewhat observed in sealed storage batteries, so the method of the present invention is effective.

【0036】[0036]

【実施例2】実施例1と同様の方法で、合金に対してP
VAを0.4重量%加えた水素吸蔵合金の粉末を12c
m四方の発泡状金属多孔体に加圧・充填して水素吸蔵電
極体をつくり、これをそのまま負極として上記正極と組
み合わせ、実施例1と同様に金属酸化物−水素蓄電池を
構成した。これを電池Fとする。
[Example 2] P was applied to the alloy in the same manner as in Example 1.
12c of hydrogen storage alloy powder containing 0.4% by weight of VA
A hydrogen storage electrode body was prepared by pressurizing and filling an m square foam metal porous body, and this was used as a negative electrode in combination with the above positive electrode to construct a metal oxide-hydrogen storage battery in the same manner as in Example 1. This is called battery F.

【0037】次に12cm四方の発泡状金属多孔体の周
辺部を加圧して低孔度化し、これに水素吸蔵合金の粉末
を0.4重量%のPVAとともに充填して水素吸蔵電極
体を作製した。さらにこの四周をとり囲むように金属補
強体2、3をスポット溶接して負極とし、金属酸化物−
水素蓄電池を構成した。これを電池Gとする。
Next, the periphery of the 12 cm square foam metal porous body was pressurized to reduce the porosity, and hydrogen storage alloy powder was filled therewith with 0.4% by weight of PVA to produce a hydrogen storage electrode body. did. Further, metal reinforcing bodies 2 and 3 are spot welded around the four circumferences to form a negative electrode, and metal oxide -
A hydrogen storage battery was constructed. This is called battery G.

【0038】続いて電池Gと同様の方法で6cm四方の
水素吸蔵電極体をつくり、この四周を囲繞するように金
属補強体2、3をスポット溶接してなるユニット4個を
正方形に並べ、各ユニットの隣り合う金属補強体どうし
をスポット溶接して負極とし、金属酸化物−水素蓄電池
を構成した。これを電池Hとする。
Next, a 6 cm square hydrogen storage electrode body was made in the same manner as for battery G, and four units formed by spot welding metal reinforcing bodies 2 and 3 were arranged in a square so as to surround the four circumferences of the electrode body. Adjacent metal reinforcing bodies of the unit were spot welded together to form a negative electrode, and a metal oxide-hydrogen storage battery was constructed. This is called battery H.

【0039】さらに電池Gと同様の方法で4cm四方の
水素吸蔵電極体をつくり、この四周をとり囲むように金
属補強体2、3をスポット溶接してなるユニット9個を
正方形に並べ、各ユニットの隣り合う金属補強体どうし
をスポット溶接して負極とし、金属酸化物−水素蓄電池
を構成した。これを電池Iとする。
[0039] Furthermore, a 4 cm square hydrogen storage electrode body was made in the same manner as for battery G, and metal reinforcing bodies 2 and 3 were spot welded to surround the four circumferences of the 9 units, each of which was arranged in a square. Adjacent metal reinforcing bodies were spot welded together to form a negative electrode, and a metal oxide-hydrogen storage battery was constructed. This is called battery I.

【0040】なお、正極は容量7.2Ahの焼結型水酸
化ニッケル2枚、負極は容量7.2Ahのもの3枚を用
いた。電極の大きさは正、負極とも144cm2であり
、負極の合金は1枚当たり約30gを用いた。
Note that two sintered nickel hydroxide sheets with a capacity of 7.2 Ah were used as the positive electrode, and three sheets of sintered nickel hydroxide with a capacity of 7.2 Ah were used as the negative electrode. The size of the electrodes was 144 cm2 for both the positive and negative electrodes, and about 30 g of the alloy for each negative electrode was used.

【0041】電池F、G、H及びI各1個について5A
の電流で充放電した。充電時間は放電時間の50%過剰
とし、放電終止電圧は1.0Vとした。この電池の2サ
イクル目と400サイクル目における放電容量と、40
0サイクル後の水素吸蔵電極の変形について表2に示す
5A for each battery F, G, H and I
It was charged and discharged with a current of . The charging time was 50% longer than the discharging time, and the discharge end voltage was 1.0V. The discharge capacity of this battery at the 2nd cycle and the 400th cycle, and the 400
Table 2 shows the deformation of the hydrogen storage electrode after 0 cycles.

【0042】[0042]

【表2】 電極は充放電の繰り返しにより碗状に変形する。したが
って電池の変形に関しては、電極の4つのコーナで形成
される面と、碗の頂点との距離として示してある。
[Table 2] The electrode deforms into a bowl shape by repeated charging and discharging. Therefore, the deformation of the battery is shown as the distance between the surface formed by the four corners of the electrode and the top of the bowl.

【0043】(表2)からわかるように、本発明の電池
H、Iが400サイクルを経た後も初期の90%以上の
放電容量を保持しているのに対し、電池F、Gはいずれ
も初期の80%以下の放電容量となっている。
As can be seen from Table 2, Batteries H and I of the present invention retain more than 90% of their initial discharge capacity even after 400 cycles, while Batteries F and G both maintain The discharge capacity is less than 80% of the initial capacity.

【0044】これは合金粉末の脱落に加えて、充放電の
繰り返しにより碗状に変形した水素吸蔵電極がセパレー
タを介して正極を圧迫し、その結果主に電極の中心部で
微小短絡が生じることに起因する。このことは電池F、
Gの水素吸蔵電極の変形が大きいことからも容易に理解
できる。また電池H、Iは金属補強体の数が増えること
により電極の集電能力が向上していることも、係る傾向
の要因の一つにあげられる。
This is because, in addition to the alloy powder falling off, the hydrogen storage electrode, which has been deformed into a bowl shape due to repeated charging and discharging, presses the positive electrode through the separator, resulting in a micro short circuit mainly in the center of the electrode. caused by. This means that battery F,
This can be easily understood from the large deformation of the hydrogen storage electrode of G. Another factor contributing to this trend is that batteries H and I have an increased number of metal reinforcing bodies, which improves the current collecting ability of the electrodes.

【0045】以上のように、ユニット数を増やすことに
より電極特性の総合的な向上が期待できる。しかしこの
ことは同時に電極自身の重量を増加させ、単位重量当た
りの容量を下げる原因になることも考慮する必要がある
As described above, by increasing the number of units, a comprehensive improvement in electrode characteristics can be expected. However, it must be taken into consideration that this also increases the weight of the electrode itself and causes a decrease in capacity per unit weight.

【0046】[0046]

【発明の効果】このように本発明によれば、充・放電の
サイクル寿命が伸長し、品質の安定した、信頼性の高い
水素吸蔵電極を提供することができる。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide a highly reliable hydrogen storage electrode with an extended charge/discharge cycle life and stable quality.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】(A)本発明の実施例の電極構成を示す図(B
)本発明の他の実施例における電極構成を示す図
FIG. 1 (A) Diagram showing the electrode configuration of an embodiment of the present invention (B
) Diagram showing the electrode configuration in another embodiment of the present invention

【図2
】金属補強体の有無とその固定方法及び結着剤量による
金属酸化物−水素蓄電池の放電容量及びサイクル特性の
違いを示す図
[Figure 2
] Diagram showing the difference in discharge capacity and cycle characteristics of metal oxide-hydrogen storage batteries depending on the presence or absence of metal reinforcement, its fixing method, and amount of binder

【符号の説明】[Explanation of symbols]

1  電極体 2  金属補強体 3  金属補強体 1 Electrode body 2 Metal reinforcement 3 Metal reinforcement

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】電気化学的に水素を吸蔵・放出する合金か
らなる水素吸蔵電極であって、水素吸蔵合金粉末と結着
剤からなるペーストを発泡状あるいは繊維状金属多孔体
内に充填してなる角板形電極体1の周辺部に、断面コの
字形の金属補強体2が固定されている水素吸蔵電極。
Claim 1: A hydrogen storage electrode made of an alloy that absorbs and releases hydrogen electrochemically, the electrode comprising a foamed or fibrous metal porous body filled with a paste made of hydrogen storage alloy powder and a binder. A hydrogen storage electrode in which a metal reinforcing body 2 having a U-shaped cross section is fixed to the periphery of a square plate-shaped electrode body 1.
【請求項2】金属補強体2の少なくとも一つの側辺にリ
ードが接続されている請求項1記載の水素吸蔵電極。
2. The hydrogen storage electrode according to claim 1, wherein a lead is connected to at least one side of the metal reinforcing body.
【請求項3】水素吸蔵電極が複数個、一平面上に連結一
体化されており、前記金属補強体2の少なくとも一つの
側辺にリードが接続されている請求項1記載の水素吸蔵
電極。
3. The hydrogen storage electrode according to claim 1, wherein a plurality of hydrogen storage electrodes are connected and integrated on one plane, and a lead is connected to at least one side of the metal reinforcing body.
【請求項4】電極体1の四周に金属補強体2、3が固定
されている請求項1記載の水素吸蔵電極。
4. The hydrogen storage electrode according to claim 1, wherein metal reinforcing bodies 2 and 3 are fixed around the four circumferences of the electrode body 1.
【請求項5】金属補強体2、3が電極体1の四周を固定
し、さらに少なくとも1方向に1本以上の金属補強体4
A、4Bを連結固定している請求項4記載の水素吸蔵電
極。
5. Metal reinforcing bodies 2 and 3 fix the four circumferences of the electrode body 1, and furthermore, one or more metal reinforcing bodies 4 are provided in at least one direction.
5. The hydrogen storage electrode according to claim 4, wherein A and 4B are connected and fixed.
【請求項6】水素吸蔵電極が複数個、一平面上に連結一
体化されている請求項4または請求項5記載の水素吸蔵
電極。
6. The hydrogen storage electrode according to claim 4, wherein a plurality of hydrogen storage electrodes are connected and integrated on one plane.
【請求項7】金属補強体2、3の少なくとも任意の一辺
にリードが接続されている請求項4,5および6のいず
れかに記載の水素吸蔵電極。
7. The hydrogen storage electrode according to claim 4, wherein a lead is connected to at least one arbitrary side of the metal reinforcing bodies 2, 3.
【請求項8】水素吸蔵合金粉末と結着剤からなるペース
トを、周辺部を低孔度化した発泡状あるいは繊維状金属
多孔体内に充填してなる角板形電極体1の周辺部が、コ
の字形の金属補強体2で固定されている水素吸蔵電極。
8. The peripheral part of the square plate-shaped electrode body 1 is formed by filling a paste made of hydrogen-absorbing alloy powder and a binder into a foamed or fibrous metal porous body whose peripheral part has a low porosity. A hydrogen storage electrode fixed with a U-shaped metal reinforcing body 2.
【請求項9】金属補強体2の少なくとも一つの側辺にリ
ードが接続されている請求項8記載の水素吸蔵電極。
9. The hydrogen storage electrode according to claim 8, wherein a lead is connected to at least one side of the metal reinforcing body.
【請求項10】水素吸蔵電極が複数個、一平面上に連結
一体化されており、前記金属補強体2の少なくとも一つ
の側辺にリードが接続されている請求項8記載の水素吸
蔵電極。
10. The hydrogen storage electrode according to claim 8, wherein a plurality of hydrogen storage electrodes are connected and integrated on one plane, and a lead is connected to at least one side of the metal reinforcing body.
【請求項11】電極体1の四周に金属補強体2、3が固
定されている請求項8記載の水素吸蔵電極。
11. The hydrogen storage electrode according to claim 8, wherein metal reinforcing bodies 2 and 3 are fixed around the four circumferences of the electrode body 1.
【請求項12】金属補強体2、3が電極体1の四周を固
定し、さらに少なくとも1方向に1本以上の金属補強体
4A、4Bを連結固定している請求項11記載の水素吸
蔵電極。
12. The hydrogen storage electrode according to claim 11, wherein the metal reinforcing bodies 2 and 3 fix the four circumferences of the electrode body 1, and furthermore, one or more metal reinforcing bodies 4A and 4B are connected and fixed in at least one direction. .
【請求項13】水素吸蔵電極が複数個、一平面上に連結
一体化されている請求項11または12記載の水素吸蔵
電極。
13. The hydrogen storage electrode according to claim 11 or 12, wherein a plurality of hydrogen storage electrodes are connected and integrated on one plane.
【請求項14】金属補強体2、3の少なくとも任意の一
辺にリードが接続されている請求項11,12および1
3のいずれかに記載の水素吸蔵電極。
14. Claims 11, 12 and 1, wherein a lead is connected to at least one arbitrary side of the metal reinforcing bodies 2, 3.
3. The hydrogen storage electrode according to any one of 3.
【請求項15】発泡状あるいは繊維状の金属多孔体内に
水素吸蔵合金を充填した後、その周辺と金属補強体を加
圧一体化するかあるいはスポット溶接で固定し、その後
リードを接続する水素吸蔵電極の製造法。
[Claim 15] A hydrogen storage device in which a hydrogen storage alloy is filled in a foamed or fibrous metal porous body, the surrounding area and a metal reinforcing body are integrated under pressure or fixed by spot welding, and then leads are connected. Electrode manufacturing method.
JP3004276A 1991-01-18 1991-01-18 Hydrogen storage electrode and manufacture thereof Pending JPH04315768A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3004276A JPH04315768A (en) 1991-01-18 1991-01-18 Hydrogen storage electrode and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3004276A JPH04315768A (en) 1991-01-18 1991-01-18 Hydrogen storage electrode and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH04315768A true JPH04315768A (en) 1992-11-06

Family

ID=11580020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3004276A Pending JPH04315768A (en) 1991-01-18 1991-01-18 Hydrogen storage electrode and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH04315768A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280878B1 (en) 1997-05-30 2001-08-28 Tdk Corporation Electrode and lithium secondary battery using this electrode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6280878B1 (en) 1997-05-30 2001-08-28 Tdk Corporation Electrode and lithium secondary battery using this electrode

Similar Documents

Publication Publication Date Title
JPH1064537A (en) Nickel positive electrode for alkaline storage battery and nickel hydrogen storage battery using this electrode
US5205985A (en) Hydrogen storage alloy and hydride electrodes having c15 crystal structure
JP2965475B2 (en) Hydrogen storage alloy
JPH04315768A (en) Hydrogen storage electrode and manufacture thereof
JPS6119063A (en) Hydrogen occlusion electrode
JP2579072B2 (en) Hydrogen storage alloy electrode
JP4423412B2 (en) Alkaline secondary battery negative electrode and alkaline secondary battery
JP3168623B2 (en) Prismatic metal hydride storage battery
JPH04280066A (en) Hydrogen storage electrode and manufacture thereof
JPS61168870A (en) Metal-hydrogen alkaline storage battery
JPS61176067A (en) Hydrogen occlusion electrode
JP2566912B2 (en) Nickel oxide / hydrogen battery
JP3065713B2 (en) Hydrogen storage electrode and nickel-hydrogen battery
JPS6220245A (en) Enclosed type alkaline storage battery
JPH08321302A (en) Hydrogen storage electrode
JP2926965B2 (en) Hydrogen storage alloy
JP3316687B2 (en) Nickel-metal hydride storage battery
JPS61168869A (en) Metal-hydrogen alkaline storage battery
JPS61233966A (en) Manufacture of sealed nickel-hydrogen storage battery
JPH0475256A (en) Non-sintered type hydrogen storage electrode and nickel-hydrogen storage battery using the same
JPH0466632A (en) Hydrogen storage ni-zr series alloy
JPS61176066A (en) Hydrogen occlusion electrode
JPH1040950A (en) Alkaline secondary battery
JPS61176065A (en) Hydrogen occlusion electrode
JPS5931834B2 (en) Hydrogen storage electrode