JPH0431376B2 - - Google Patents

Info

Publication number
JPH0431376B2
JPH0431376B2 JP15255684A JP15255684A JPH0431376B2 JP H0431376 B2 JPH0431376 B2 JP H0431376B2 JP 15255684 A JP15255684 A JP 15255684A JP 15255684 A JP15255684 A JP 15255684A JP H0431376 B2 JPH0431376 B2 JP H0431376B2
Authority
JP
Japan
Prior art keywords
gate
wiring
electrode
gate wiring
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15255684A
Other languages
Japanese (ja)
Other versions
JPS6129820A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15255684A priority Critical patent/JPS6129820A/en
Publication of JPS6129820A publication Critical patent/JPS6129820A/en
Publication of JPH0431376B2 publication Critical patent/JPH0431376B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136259Repairing; Defects
    • G02F1/136263Line defects
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • G02F1/13629Multilayer wirings

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Liquid Crystal (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アクテイブマトリクス液晶表示装置
における薄膜トランジスタ基板に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thin film transistor substrate in an active matrix liquid crystal display device.

〔従来の技術〕[Conventional technology]

非晶質シリコンa−Siや多結晶シリコンP−Si
等の半導体薄膜を用いた薄膜トランジスタ
(TFT)の1つの応用に、アクテイブマトリクス
液晶表示装置がある。その単位画素の例を第2図
に示す。第2図a及びbは、単位画素構造例のそ
れぞれ平面図及びA−B,B−Cに沿つた断面図
である。半導体薄膜としてa−Siを用いた例で説
明する。ガラス等の透明絶縁基板1上には、ITO
による共通電極8が設けられ、画素に書き込まれ
た電荷の保持容量の一方の電極として働く。保持
容量は、共通電極8とITO画素電極7とSiOxや
SiNx等絶縁膜9とで形成されている。絶縁膜9
上にはゲート電極配線2が設けられ、行電極とし
て延在している。他行のゲート電極配線2′も図
示している。ゲート電極配線2,2′上にはゲー
ト絶縁膜3,a−Si膜4が設けられ、a−Si膜4
上に列電極としてのドレイン電極配線5,5′、
ソース電極6,6′が配されている。この例では、
両電極5,6共金属層15,16とn+a−Si膜2
5,26から成る。ソース電極6は、画素電極7
と接続されている。さらに、図示してないが遮光
膜やパツシベーシヨン膜等も形成される場合があ
る。第2図a及びbの構造例では、導電膜の層数
や絶縁膜の層数が多いので製造工数が多く、従つ
て製造歩留りを向上するのに困難がある。
Amorphous silicon a-Si and polycrystalline silicon P-Si
An active matrix liquid crystal display device is one application of thin film transistors (TFTs) using semiconductor thin films such as the above. An example of the unit pixel is shown in FIG. FIGS. 2a and 2b are a plan view and a cross-sectional view taken along AB and BC, respectively, of an example of a unit pixel structure. An example using a-Si as the semiconductor thin film will be explained. ITO is placed on the transparent insulating substrate 1 made of glass etc.
A common electrode 8 is provided, and serves as one electrode of a storage capacitor for charges written in pixels. The storage capacitance is the common electrode 8, ITO pixel electrode 7, SiOx,
It is formed with an insulating film 9 such as SiNx. Insulating film 9
A gate electrode wiring 2 is provided above and extends as a row electrode. Gate electrode wiring lines 2' in other rows are also shown. A gate insulating film 3 and an a-Si film 4 are provided on the gate electrode wirings 2 and 2'.
drain electrode wirings 5, 5' as column electrodes on top;
Source electrodes 6, 6' are arranged. In this example,
Both electrodes 5, 6, metal layers 15, 16 and n + a-Si film 2
It consists of 5.26. The source electrode 6 is the pixel electrode 7
is connected to. Furthermore, although not shown, a light shielding film, a passivation film, etc. may also be formed. In the structural examples shown in FIGS. 2a and 2b, the number of conductive film layers and the number of insulating film layers are large, so the number of manufacturing steps is large, and it is therefore difficult to improve the manufacturing yield.

一方、第2図cに示した断面構造例では、電荷
保持容量を他行のゲート電極配線2′と画素電極
7及びゲート絶縁膜3で形成したものを示す。こ
の例では、製造工数が減少するが他行のゲート電
極配線2′で保持容量を形成するため、表示とし
て有効な画素面積即ち開孔率が減少してしまう欠
点を有す。
On the other hand, in the cross-sectional structure example shown in FIG. 2c, the charge storage capacitor is formed by the gate electrode wiring 2' of the other row, the pixel electrode 7, and the gate insulating film 3. In this example, the number of manufacturing steps is reduced, but since the storage capacitance is formed with the gate electrode wiring 2' of the other row, it has the disadvantage that the pixel area effective for display, that is, the aperture ratio is reduced.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第2図a,b及びcの例からわかる様に、従来
はゲート電極配線2,2′は、1回のマスク工程
及びエツチング工程で形成していた。そのため、
そのマスク・エツチ工程に不具合が1ケ所でもあ
ると、ゲート電極配線断線が生じ結果的に不良品
を生じてしまう。画素数を増やしたり、大面積表
示しようとする場合には、結局高い歩留りが得ら
れなくなり、低コストを実現しにくくなる。ま
た、第2図a,bの例では開孔率が高いが、層
数、工数が多く高歩留り・低コストが得にくい欠
点がある。第2図cの例では、開孔率が大きくで
きない欠点を有していた。
As can be seen from the examples shown in FIGS. 2a, b and c, conventionally the gate electrode wirings 2, 2' were formed by one masking process and one etching process. Therefore,
If there is even one defect in the mask/etch process, the gate electrode wiring may be disconnected, resulting in a defective product. When increasing the number of pixels or attempting to display a large area, it becomes impossible to obtain a high yield and it becomes difficult to achieve low costs. Furthermore, although the examples shown in FIGS. 2a and 2b have a high porosity, they have the disadvantage that the number of layers and man-hours are large, making it difficult to achieve high yield and low cost. The example shown in FIG. 2c had the disadvantage that the porosity could not be increased.

本発明は、層数及び工数を特に増加せずに高歩
留り、低コストの表示装置用基板を提供するもの
であり、かつ表示性能の1つである開孔率を特に
落とさずにそれを実現可能とするものである。
The present invention provides a high-yield, low-cost display device substrate without particularly increasing the number of layers or man-hours, and achieves this without particularly reducing the aperture ratio, which is one of display performance. It is possible.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では、ゲート電極配線を少なく共遮光性
を有する導電膜の第1ゲート配線と透明導電膜の
第2ゲート配線の2層を用い、それが少なく共部
分的に接触させることにより行配線の断線確率を
極度に減少する。また、前記透明導電膜を電荷保
持容量の一方の電極に用いることによつて開孔率
の減少を防止するものである。
In the present invention, the gate electrode wiring is made up of two layers: a first gate wiring made of a conductive film having a co-shielding property and a second gate wiring made of a transparent conductive film. Extremely reduces the probability of disconnection. Further, by using the transparent conductive film as one electrode of the charge storage capacitor, a reduction in the porosity is prevented.

〔実施例〕〔Example〕

第1図a及びbには、本発明の単位画素の構造
例を示す。第1図bは、第1図aの平面図のA−
B,B−Cに沿つた断面図である。ゲート電極配
線2は、Al,Cr,Mo,W等金属やその硅化物な
どによる不透明導電膜を用いた第1ゲート配線1
2と、ITOやSnO2等透明導電膜を用いた第2ゲ
ート配線22から成つている。第1及び第2ゲー
ト配線共に、直接重なる部分を有し、電気的には
ほぼ同電位になる。一方、他行の第2ゲート配線
22′は、画素電極7の下に延在し、ゲート絶縁
膜3とで電荷保持容量を形成している。この例で
は、TFTのゲート電極としては第1ゲート配線
12のみを配している。TFTは、第1ゲート配
線に、ゲート絶縁膜3、半導体薄膜4、ドレイン
電極配線5、ソース電極6から成つている。さら
に、遮光膜や表面保護膜が必要な場合もあるが、
本発明に直接関係ないので省略する。また図示し
てないがゲート電極配線の外部とり出し部のコン
タクトも2種以上の導電膜を用いているので、よ
り容易にできる利点も合わせもつ。
FIGS. 1a and 1b show an example of the structure of a unit pixel according to the present invention. Figure 1b shows the plan view A- of Figure 1a.
It is a sectional view along B, BC. The gate electrode wiring 2 is a first gate wiring 1 using an opaque conductive film made of metal such as Al, Cr, Mo, W, or its silicide.
2 and a second gate wiring 22 using a transparent conductive film such as ITO or SnO 2 . Both the first and second gate wirings have portions that directly overlap and are electrically at approximately the same potential. On the other hand, the second gate wiring 22' in the other row extends below the pixel electrode 7, and forms a charge storage capacitor with the gate insulating film 3. In this example, only the first gate wiring 12 is provided as the gate electrode of the TFT. The TFT includes a first gate wiring, a gate insulating film 3, a semiconductor thin film 4, a drain electrode wiring 5, and a source electrode 6. In addition, a light-shielding film or surface protection film may be necessary.
Since it is not directly related to the present invention, it will be omitted. Further, although not shown in the drawings, the contact at the externally extending portion of the gate electrode wiring also uses two or more types of conductive films, so it also has the advantage that it can be made more easily.

第3図は、本発明の他の断面構造例である。ゲ
ート電極配線2,2′は、第1ゲート配線12,
12′と第2ゲート配線22,22′から成つてい
るが、この例では、第2ゲート配線22もTFT
のゲート電極として働く。また、第1ゲート配線
12,12′は第2ゲート配線22,22′の上で
かつ幅狭く形成されている。しかしTFT下の第
1ゲート配線12の幅はTFTを充分遮光する値
に選ばれている。またTFTのドレイン・ソース
電極5,6は画素電極7と同じ透明導電膜で形成
された例を示した。必要により表面は絶縁膜19
(例えばSiOx)で被われている。
FIG. 3 shows another example of the cross-sectional structure of the present invention. The gate electrode wirings 2, 2' are connected to the first gate wirings 12, 2'.
12' and second gate wiring 22, 22', but in this example, the second gate wiring 22 is also TFT.
acts as a gate electrode. Further, the first gate wirings 12, 12' are formed narrowly above the second gate wirings 22, 22'. However, the width of the first gate wiring 12 under the TFT is selected to a value that sufficiently shields the TFT from light. Further, an example is shown in which the drain and source electrodes 5 and 6 of the TFT are formed of the same transparent conductive film as the pixel electrode 7. If necessary, the surface is covered with an insulating film 19.
(e.g. SiOx).

第4図は、本発明の他の実施例に基いた断面構
造例である。この例では、TFT下のゲート電極
配線2は、幅広い第1ゲート配線12とその下で
第1ゲート配線12に被われる第2ゲート配線2
2で成り、それ以外の部分には第1、第2ゲート
配線12,22が重ならない(第4図の他行の第
1ゲート配線12′、第2ゲート配線22′を参
照)。この様にすれば、基板の損傷等による段差
があつても、断線の危険性はより減少する。ま
た、本例では電荷保持容量はゲート絶縁膜3とフ
イールド絶縁膜19を介して他行の第2ゲート配
線22′と画素電極7で設けている。さらに、列
電極であるドレイン電極配線5には画素電極7と
同時の形成できる付加電極配線35を付加し欠長
配線を行なつている例を示した。ソース電極6も
同様である。
FIG. 4 is an example of a cross-sectional structure based on another embodiment of the present invention. In this example, the gate electrode wiring 2 under the TFT includes a wide first gate wiring 12 and a second gate wiring 2 covering the first gate wiring 12 below.
2, and the first and second gate wirings 12 and 22 do not overlap in other parts (see the first gate wiring 12' and the second gate wiring 22' in the other row in FIG. 4). In this way, even if there is a step due to damage to the board, the risk of wire breakage is further reduced. Further, in this example, the charge storage capacitor is provided between the second gate wiring 22' and the pixel electrode 7 in the other row via the gate insulating film 3 and the field insulating film 19. Furthermore, an example has been shown in which an additional electrode wiring 35 that can be formed at the same time as the pixel electrode 7 is added to the drain electrode wiring 5, which is a column electrode, to form a missing length wiring. The same applies to the source electrode 6.

第5図は、本発明の他の具体例の断面図であ
る。ゲート電極配線2を下に第1ゲート配線は上
に第2ゲート配線22によつて構成した例であ
る。この例のTFTもやはりドレインソース電極
5,6共に画素電極7と同時に形成した付加電極
35,36を有した例を示した。
FIG. 5 is a cross-sectional view of another embodiment of the invention. This is an example in which the gate electrode wiring 2 is arranged below and the first gate wiring is formed by the second gate wiring 22 above. The TFT in this example also has additional electrodes 35 and 36 formed at the same time as the drain and source electrodes 5 and 6 as well as the pixel electrode 7.

以上の電極例において、第1及び第2ゲート配
線の上下の関係は、第1ゲート配線に用いる材質
によつて適宜選ばれる。例えば、酸化しやすい
Crを第1ゲート配線に用いた場合には、第1ゲ
ート配線は上の方が下の第2ゲート配線例えば
ITOとコンタクトをとりやすい。酸化しにくい、
または酸化物を容易に除去できる導電膜を第1ゲ
ート配線に用いるときには、その限りでなく第5
図の例も適用できる。
In the above electrode examples, the vertical relationship between the first and second gate wirings is appropriately selected depending on the material used for the first gate wirings. For example, easy to oxidize
When Cr is used for the first gate wiring, the upper part of the first gate wiring is connected to the lower second gate wiring, for example.
Easy to contact ITO. hard to oxidize,
Alternatively, when a conductive film from which oxide can be easily removed is used for the first gate wiring, the fifth
The illustrated example is also applicable.

〔作用〕[Effect]

上述の如く、従来の1マスク工程で形成される
ゲート電極配線に対して、本発明による第1及び
第2ゲート配線はそれぞれのマスク・エツチ工程
によつて形成されるので、仮に、どちらか一方の
ゲート配線が断線したとしても、他方のゲート配
線とが行電極方向に面接触して電気的に接続して
いるために、同一のゲート電極配線の断線の確率
は従来の確率の自乗に低下する。例えば、1回の
マスク工程で0.1%の割合で断線が生ずるものと
すれば、本発明によれば100万本に1本切れるこ
とになり、不良率が極度に減少する。また、第2
ゲート配線に透明導電膜を使用するので、電荷保
持容量を形成しても開孔率を低下させることはな
い。
As mentioned above, unlike the conventional gate electrode wiring which is formed by one mask process, the first and second gate wirings according to the present invention are formed by respective mask etching processes. Even if one gate wiring is disconnected, the probability of disconnection of the same gate electrode wiring decreases to the square of the conventional probability because the other gate wiring is electrically connected by making surface contact in the row electrode direction. do. For example, if wire breakage occurs at a rate of 0.1% in one mask process, according to the present invention, one out of every one million wires will break, and the defective rate will be extremely reduced. Also, the second
Since a transparent conductive film is used for the gate wiring, the porosity does not decrease even if a charge storage capacitor is formed.

〔効果〕〔effect〕

以上によつて、基本的に多数の単位画素を行列
状に配置するアクテイブマトリクス表示装置の製
造歩留りを向上することができ、結果的に低コス
トで市場に提供できる。また、第2ゲート配線形
成工程の分工程増となるが、コストは歩留り向上
で充分カバーできる。さらに欠陥が少ないことと
共に開孔率が低下しないので明るい良質の表示を
得ることができる。
As described above, it is possible to improve the manufacturing yield of an active matrix display device in which a large number of unit pixels are basically arranged in a matrix, and as a result, it can be provided on the market at low cost. Further, although the second gate wiring forming step increases the number of steps, the cost can be sufficiently covered by the improved yield. Furthermore, since there are fewer defects and the aperture ratio does not decrease, a bright, high-quality display can be obtained.

以上、a−Si膜を用いたTFTを例に述べてき
たが、p−Si場合によればビームアニール等で形
成した単結晶Si薄膜や他の半導体材料による
TFTを用いたアクテイブマトリクス表示装置用
基板に本発明は適用でき、その工業的価値は高
い。
Above, we have described TFT using an a-Si film as an example, but in the case of p-Si, it is possible to use a single-crystal Si thin film formed by beam annealing or other semiconductor materials.
The present invention can be applied to a substrate for an active matrix display device using TFT, and its industrial value is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a及びbは本発明による単位画素構造例
であり、第1図bは第1図aの平面図のA−B,
B−Cに沿つた断面図である。第2図a及びb
は、従来の構造例の平面図及び断面図であり、第
2図cは従来構造の断面例である。第3図乃至第
5図は、本発明による実施例のそれぞれの断面図
である。 1……基板、2,2′……ゲート電極配線、3
……ゲート絶縁膜、4……半導体薄膜、5……ド
レイン電極、6……ソース電極、7……画素電
極、8……共通電極、12,12′……第1ゲー
ト配線、22,22′……第2ゲート配線。
FIGS. 1a and 1b are examples of unit pixel structures according to the present invention, and FIG. 1b is a plan view of FIG.
It is a sectional view along BC. Figure 2 a and b
2 are a plan view and a cross-sectional view of a conventional structure, and FIG. 2c is a cross-sectional view of the conventional structure. 3 to 5 are respective cross-sectional views of embodiments according to the present invention. 1...Substrate, 2, 2'...Gate electrode wiring, 3
... Gate insulating film, 4 ... Semiconductor thin film, 5 ... Drain electrode, 6 ... Source electrode, 7 ... Pixel electrode, 8 ... Common electrode, 12, 12' ... First gate wiring, 22, 22 '...Second gate wiring.

Claims (1)

【特許請求の範囲】 1 透明絶縁基板上の薄膜トランジスタと、第1
の透明導電膜からなる画素電極と、電荷保持容量
とを少なくとも具備する単位画素を有するアクテ
イブマトリクス表示装置用基板において、 前記薄膜トランジスタのゲート電極配線が行配
線として延在し、 該行配線は、遮光性を有する導電膜である第1
ゲート配線と透明導電膜から成る第2ゲート配線
とが積層配設された少なくとも2つのゲート配線
からなり、該積層配設された第1ゲート配線と第
2ゲート配線の少なくとも複数の単位画素部分は
面接触して電気的に導通して積層配設されてお
り、 前記電荷保持容量が画素電極と隣接する他行の
第2ゲート配線の一部と、ゲート絶縁膜を一部に
含む絶縁膜とによつて構成されたことを特徴とす
るアクテイブマトリクス表示装置用基板。
[Claims] 1. A thin film transistor on a transparent insulating substrate;
In a substrate for an active matrix display device having a unit pixel including at least a pixel electrode made of a transparent conductive film and a charge storage capacitor, the gate electrode wiring of the thin film transistor extends as a row wiring, and the row wiring is light-shielded. The first conductive film has
It consists of at least two gate wirings in which a gate wiring and a second gate wiring made of a transparent conductive film are arranged in a stacked manner, and at least a plurality of unit pixel portions of the first gate wiring and the second gate wiring arranged in a stacked manner are The charge storage capacitor is arranged in a stacked manner in surface contact and electrically conductive, and the charge retention capacitor is connected to a part of the second gate wiring in the other row adjacent to the pixel electrode and an insulating film partially including the gate insulating film. A substrate for an active matrix display device, comprising:
JP15255684A 1984-07-23 1984-07-23 Substrate for active matrix display device Granted JPS6129820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15255684A JPS6129820A (en) 1984-07-23 1984-07-23 Substrate for active matrix display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15255684A JPS6129820A (en) 1984-07-23 1984-07-23 Substrate for active matrix display device

Publications (2)

Publication Number Publication Date
JPS6129820A JPS6129820A (en) 1986-02-10
JPH0431376B2 true JPH0431376B2 (en) 1992-05-26

Family

ID=15543050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15255684A Granted JPS6129820A (en) 1984-07-23 1984-07-23 Substrate for active matrix display device

Country Status (1)

Country Link
JP (1) JPS6129820A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685440B2 (en) * 1986-04-10 1994-10-26 アルプス電気株式会社 Thin film transistor
JPS639977A (en) * 1986-07-01 1988-01-16 Citizen Watch Co Ltd Thin-film transistor
JP2620240B2 (en) * 1987-06-10 1997-06-11 株式会社日立製作所 Liquid crystal display
JP2620241B2 (en) * 1987-06-10 1997-06-11 株式会社日立製作所 Liquid crystal display
JP2668935B2 (en) * 1988-05-10 1997-10-27 松下電器産業株式会社 Semiconductor device for matrix image display device and manufacturing method thereof
JPH0833554B2 (en) * 1988-05-10 1996-03-29 松下電器産業株式会社 Semiconductor for image display device and manufacturing method thereof
JPH02250038A (en) * 1989-03-23 1990-10-05 Seiko Instr Inc Thin film transistor array
JPH0820641B2 (en) * 1989-06-30 1996-03-04 シャープ株式会社 Liquid crystal display manufacturing method
US5162901A (en) * 1989-05-26 1992-11-10 Sharp Kabushiki Kaisha Active-matrix display device with added capacitance electrode wire and secondary wire connected thereto
JP2711015B2 (en) * 1990-07-25 1998-02-10 三菱電機株式会社 Matrix type display device
JP3258768B2 (en) * 1993-06-22 2002-02-18 三菱電機株式会社 Matrix display device
JP2002055360A (en) 2000-08-11 2002-02-20 Nec Corp Liquid crystal display device and method of manufacture thereof
US8836879B2 (en) * 2010-06-10 2014-09-16 Apple Inc. Displays with minimized curtain mura
JP5955920B2 (en) * 2014-10-28 2016-07-20 株式会社半導体エネルギー研究所 Semiconductor device

Also Published As

Publication number Publication date
JPS6129820A (en) 1986-02-10

Similar Documents

Publication Publication Date Title
US4821092A (en) Thin film transistor array for liquid crystal display panel
US6475837B2 (en) Electro-optical device
JP4420462B2 (en) Liquid crystal display device and manufacturing method thereof
US6373546B1 (en) Structure of a liquid crystal display and the method of manufacturing the same
JPH0431376B2 (en)
JP2584290B2 (en) Manufacturing method of liquid crystal display device
US7023501B2 (en) Liquid crystal display device having particular connections among drain and pixel electrodes and contact hole
US11695020B2 (en) Active matrix substrate and method for manufacturing same
JP3669082B2 (en) Thin film transistor array for liquid crystal display elements
JPH04313729A (en) Liquid crystal display device
JP2001320059A (en) Thin-film transistor liquid-crystal display device and manufacturing method thereof
JPH0570156B2 (en)
US6356319B1 (en) Liquid crystal display device and method of manufacturing the same
JPH05303115A (en) Liquid crystal display device
JPH0618921A (en) Matrix type display device
JP4585071B2 (en) Active matrix liquid crystal display device
KR100218503B1 (en) Liquid crystal display device and its manufacturing method
JP2639980B2 (en) Liquid crystal display
JP2000206560A (en) Active matrix type liquid crystal display device
JP2566130B2 (en) Method for manufacturing substrate for active matrix display device
JP2000029071A (en) Array substrate for display device and its production
US20230135065A1 (en) Active matrix substrate
KR100397672B1 (en) an array panel for liquid crystal display and manufacturing method thereof
JPH05249485A (en) Active matrix liquid crystal display having thin-film transistor for switching
KR950003942B1 (en) Method of manufacturing thin film transistor for lcd

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term