JPH04313308A - Degassing method utilizing molecular diffusion - Google Patents

Degassing method utilizing molecular diffusion

Info

Publication number
JPH04313308A
JPH04313308A JP10894691A JP10894691A JPH04313308A JP H04313308 A JPH04313308 A JP H04313308A JP 10894691 A JP10894691 A JP 10894691A JP 10894691 A JP10894691 A JP 10894691A JP H04313308 A JPH04313308 A JP H04313308A
Authority
JP
Japan
Prior art keywords
water
raw water
vacuum pump
degassing
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10894691A
Other languages
Japanese (ja)
Other versions
JPH0738923B2 (en
Inventor
Yasutoshi Senoo
泰利 妹尾
Hitoshi Shiraishi
仁士 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIURA KENKYUSHO KK
Original Assignee
MIURA KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIURA KENKYUSHO KK filed Critical MIURA KENKYUSHO KK
Priority to JP3108946A priority Critical patent/JPH0738923B2/en
Publication of JPH04313308A publication Critical patent/JPH04313308A/en
Publication of JPH0738923B2 publication Critical patent/JPH0738923B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To reduce the dissolved oxygen amt. of raw water to a specified value with a commercially available (low-capacity) water-sealed vacuum pump by imparting a temp. difference between the sealing water of the pump and raw water to control their vapor pressure difference to a specified value, making the temp. of the sealing water lower than that of the raw water and degassing the raw water. CONSTITUTION:The vapor pressure difference between a working fluid (or sealing water) and raw water is adjusted to >= about 8 Torr in the region where the fluid flows into a water-sealed vacuum pump 2 by making the temp. of the fluid lower than that of the raw water. Consequently, a steam flow is generated, the separated gas is transported from a degassing module 1 toward the pump 2 by the molecular diffusion at this time, and the degassing of the raw water is promoted. Consequently, the dissolved oxygen concn. of the raw water is reduced to <=10 ppb with a commercially available (low-capacity) water-sealed vacuum pump.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】この発明は、原水中の、主として
溶存酸素を効果的に除去するための脱気方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a deaeration method for effectively removing dissolved oxygen from raw water.

【0002】0002

【従来の技術】工業用水その他の原水中には、酸素、炭
酸ガス、窒素を始め、数種の溶存気体が含まれているが
、中でも溶存酸素は、原水の適用物に対して化学的もし
くは物理的原因により多大な影響を与えることが知られ
ている。そのような影響の態様の1つは、適用物に対す
る浸水性に関するもので、例えば、染色加工に際し、十
分な脱気処理が施されていない原水を使用した場合は、
必要な量の染料を溶解させたとしても、これを被染色物
に対して有効に作用させることができない。又、他の態
様としては、酸化作用に関連して、LSI等の電子部品
の洗浄に適用した場合に、脱気処理の不十分な原水によ
ってそれらの部品の表面が酸化され、回路の精度を損な
うことが挙げられる。上記の他にも、食品加工の分野で
脱気処理を施こした原水を利用することが種々試みられ
ているが、この場合も上述の浸水性や酸化作用に関して
、いくつかの問題点が指摘されている。
[Prior Art] Industrial water and other raw water contain several kinds of dissolved gases, including oxygen, carbon dioxide, and nitrogen. It is known that physical causes have a significant impact. One of the aspects of such influence is related to the water permeability of the applied product. For example, when raw water that has not been sufficiently deaerated is used during dyeing processing,
Even if the required amount of dye is dissolved, it cannot effectively act on the object to be dyed. Another aspect related to oxidation is that when applied to the cleaning of electronic components such as LSIs, the surfaces of those components are oxidized by insufficiently degassed raw water, impairing the accuracy of circuits. One example is damage. In addition to the above, various attempts have been made to use deaerated raw water in the food processing field, but in this case as well, several problems have been pointed out regarding the above-mentioned water permeability and oxidation effect. has been done.

【0003】このため、近年ではより高レベルの脱気処
理が求められているけれども、周知のように、原水を加
温する手法では、加熱コストが掛かる割に十分な脱気処
理が行なえないという欠点がある。一方、市販の脱酸素
剤を投入する手法においては、コストの増大を招くだけ
でなく、原水の性状に適合する脱酸素剤の選定や、それ
が供給水中に残留した場合の問題点等に十分な注意を払
わなければならない。上述に鑑み、比較的新しい手法と
して、常温で使用可能な真空式の脱気モジュールが提案
された結果、現在では工業的にもかなりなレベル(溶存
酸素濃度が10〜1PPM)の脱気処理が実現されるよ
うになっている。
[0003] For this reason, in recent years, a higher level of deaeration treatment has been required, but as is well known, the method of heating raw water does not provide sufficient deaeration treatment despite the high heating cost. There are drawbacks. On the other hand, the method of adding a commercially available oxygen scavenger not only increases costs, but also requires the selection of an oxygen scavenger that matches the properties of the raw water, and the need to adequately address problems that may occur if the oxygen scavenger remains in the supplied water. special care must be taken. In view of the above, a vacuum degassing module that can be used at room temperature was proposed as a relatively new method, and as a result, it is now possible to perform degassing at a considerable level industrially (dissolved oxygen concentration of 10 to 1 PPM). It is about to be realized.

【0004】図3は、その一例を概略的に示した系統図
である。同図に示す脱気装置は、原水のための給水ライ
ン(31)中に設けた膜式脱気モジュール(32)及び
フロースイッチ(33)と、給水ライン(31)と水封
式真空ポンプ(34)との間の封水供給ライン(35)
中に設けた封水用電磁弁(36)及び、脱気モジュール
(32)と水封式真空ポンプ(34)との間の真空脱気
ライン(37)中に設けた停止時真空保持用の電磁弁(
38)を備えている。このシステムにおいては、原水が
供給されると、フロースイッチ(33)が作動して水封
式真空ポンプ(34)を駆動すると共に、2つの電磁弁
(36)、(38)が開いて真空脱気処理が行なわれる
。そして給水が止まると、水封式真空ポンプ(34)が
停止し、前記2つの電磁弁(36)、(38)が閉じら
れる。
FIG. 3 is a system diagram schematically showing one example. The deaeration device shown in the figure consists of a membrane deaeration module (32) and a flow switch (33) installed in a water supply line (31) for raw water, a water supply line (31), and a water ring vacuum pump (31). Water sealing supply line (35) between
A water-sealing solenoid valve (36) provided in the vacuum degassing line (37) between the degassing module (32) and the water-sealing vacuum pump (34) for maintaining vacuum during shutdown. solenoid valve(
38). In this system, when raw water is supplied, a flow switch (33) is activated to drive a water ring vacuum pump (34), and two solenoid valves (36) and (38) are opened to release the vacuum. Air treatment is performed. When the water supply is stopped, the water ring vacuum pump (34) is stopped and the two electromagnetic valves (36) and (38) are closed.

【0005】この種の従来の脱気装置によると、次のよ
うな問題点がある。即ち、従来の脱気装置によるときは
、脱気モジュール内の中空糸膜の外側気圧が30tor
r(水蒸気分圧17.5torr)の場合に、原水中の
酸素濃度約10PPM を0.5PPM程度まで低減す
ることができるが(at 20 ℃)、これを0.01
PPM 以下の溶存酸素濃度とするには、原水中の約1
0PPM の酸素を18torr(水蒸気分圧を含む)
の真空状態で吸引しなければならない。その際、分離気
体は分圧の低下に応じて体積が著しく増加するから、従
来のものの約10倍の吸込体積で圧力比が約1000に
も達する真空ポンプが必要となる。そのような大容量の
真空ポンプは、所要効力が大きくて効率が悪いため、公
知の簡単な手法もしくは装置によっては溶存酸素濃度を
10PPB 以下に下げることは、事実上困難である。
This type of conventional deaerator has the following problems. That is, when using a conventional degassing device, the outside pressure of the hollow fiber membrane in the degassing module is 30 torr.
r (water vapor partial pressure 17.5 torr), the oxygen concentration in the raw water can be reduced from about 10 PPM to about 0.5 PPM (at 20 °C), but this can be reduced to 0.01
To achieve a dissolved oxygen concentration of less than PPM, approximately 1
0PPM oxygen at 18 torr (including water vapor partial pressure)
must be aspirated under a vacuum. At this time, since the volume of the separated gas increases significantly as the partial pressure decreases, a vacuum pump that has a suction volume about 10 times that of conventional pumps and a pressure ratio of about 1000 is required. Such large capacity vacuum pumps have a high power requirement and are inefficient, making it virtually difficult to reduce the dissolved oxygen concentration below 10 PPB using known simple techniques or equipment.

【0006】[0006]

【発明が解決しようとする課題】この発明は、市販の水
封式真空ポンプを使用して、原水の溶存酸素濃度を10
PPB 以下にすることのできる脱気方法を得ることを
目的とするもので、該真空ポンプの封水と原水との間に
所望の蒸気圧差を生じさせるべく温度差を与え、封水側
を原水に対して低温度に設定することにより、所期の目
的を達成するものである。
[Problems to be Solved by the Invention] This invention uses a commercially available water ring vacuum pump to reduce the dissolved oxygen concentration of raw water to 10%.
The purpose of this method is to obtain a degassing method that can reduce the amount of water to less than PPB by applying a temperature difference between the sealed water of the vacuum pump and the raw water to create the desired vapor pressure difference. The desired purpose is achieved by setting the temperature to a low temperature.

【0007】[0007]

【課題を解決するための手段】具体的には、この発明は
、真空ポンプに流入する作動流体(もしくは封水)の流
入側流域において、該流体と原水との蒸気圧の差が略8
torrもしくはそれ以上の値になるように、前者の温
度を後者のそれよりも低く設定することにより、水蒸気
の流れを生じさせ、その際の分子拡散効果を利用して脱
気モジュールから真空ポンプに向かって分離ガスを輸送
圧縮し、脱気処理を促進することを特徴としている。
[Means for Solving the Problems] Specifically, the present invention provides that in the inflow side region of the working fluid (or sealed water) flowing into the vacuum pump, the difference in vapor pressure between the fluid and raw water is approximately 8.
By setting the temperature of the former lower than that of the latter so that the temperature of the former reaches a value of torr or higher, a flow of water vapor is generated, and the molecular diffusion effect is used to transfer the water vapor from the degassing module to the vacuum pump. It is characterized by transporting and compressing the separated gas toward the degassing process.

【0008】[0008]

【実施例】以下、この発明の実施例を図面について説明
する。図1中、(1)は脱気モジュール、(2) は水
封式真空ポンプで、これらに対しては、原水供給用のラ
イン(3)、脱気水供給用のライン(4) 、該真空ポ
ンプのための封水供給用のライン(5) 、及び該モジ
ュールと該ポンプとを連通する真空脱気用のライン(6
) を接続配置してある。尚、(7)は該脱気水供給用
のラインを開閉する電磁弁、(8) は該真空脱気用の
ラインを開閉する同種の弁を示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings. In Figure 1, (1) is a degassing module, (2) is a water ring vacuum pump, and these are connected to a raw water supply line (3), a deaerated water supply line (4), and a water ring vacuum pump. A seal water supply line (5) for the vacuum pump, and a vacuum deaeration line (6) that communicates the module with the pump.
) are connected and arranged. In addition, (7) shows a solenoid valve that opens and closes the line for supplying degassed water, and (8) shows a similar type of valve that opens and closes the line for vacuum degassing.

【0009】このシステムによると、弁(7) 、(8
) を開放して、真空ポンプ(2) を運転すれば、原
水は、ライン(3) より脱気モジュール(1) を通
過する過程で脱気処理され、脱気水となってライン(4
) を通って所望の供給点に流れることとなる。
According to this system, valves (7), (8
) is opened and the vacuum pump (2) is operated, the raw water is degassed in the process of passing through the degassing module (1) from the line (3), becoming degassed water and flowing into the line (4).
) to the desired supply point.

【0010】この発明は、上述のような脱気処理システ
ムにおいて次のような構成により、脱気処理を効果的に
促進させるものである。図1において、(10)は、こ
の発明の要部をなす封水冷却用のユニットであって、封
水供給用のライン(5) の中途部つまりはポンプ(2
) の流入側流域の所望個所に接続した熱交換器(11
)とこれに連結した冷却器(12)とから成っている。
[0010] The present invention effectively promotes the degassing process in the degassing system as described above by using the following configuration. In FIG. 1, (10) is a unit for cooling sealed water, which is the main part of the present invention, and is the middle part of the line (5) for supplying sealed water, that is, the pump (2).
heat exchanger (11
) and a cooler (12) connected thereto.

【0011】上記の流域の、好ましくは熱交換器(11
)の上流側には、温度センサー(13)を設けてあり、
このセンサーからの出力信号がコントロールボックス(
16)に入るように構成している。該ボックスに温度に
関する出力信号を発するための上述のような温度センサ
ーは、(14)として示すところの、熱交換器(11)
の下流側と、(15)として示すところの、原水供給用
のライン(3) 中にも設けてあるが、これらのセンサ
ーは適宜の組み合わせにより、ポンプ(2) の封水の
温度を原水に対して、低温度に設定するために用いるも
のである。
[0011] Preferably a heat exchanger (11
) is provided with a temperature sensor (13) on the upstream side.
The output signal from this sensor is sent to the control box (
16). A temperature sensor as described above for providing an output signal relating to temperature to the box is connected to the heat exchanger (11), shown as (14).
These sensors are also installed downstream of the pump (2) and in the raw water supply line (3) shown as (15), and these sensors can be used in appropriate combinations to adjust the temperature of the sealed water of the pump (2) to the raw water. On the other hand, it is used to set a low temperature.

【0012】図2は、横軸に原水温度、縦軸に飽和蒸気
圧力をとったもので、実線で、原水の飽和蒸気圧を示す
とともに、モジュール周りの蒸気分圧を示している。も
し、真空ポンプの封水が原水と同じ温度の場合には、真
空ポンプ入口における蒸気分圧はこの圧力に等しい。点
線は、封水温度が5℃、一点鎖線は、それが10℃いず
れも原水温度より低い場合の真空ポンプ入口における蒸
気分圧を表しているが、これに示される封水と原水との
蒸気分圧の差が脱気モジュールから真空ポンプに向かう
分子流を引きおこし、脱気された気体をポンプに向かっ
て駆動する動力源となる。原水温度が高い場合には、原
水と封水との温度差が小さくても蒸気分圧の差が大きい
ので、モジュール部の気体の分圧が充分低くなるが、原
水が15℃程度では、封水との温度差が10℃程度はな
いと蒸気分圧差が充分でなく、水中の溶存酸素濃度を1
PPB以下にすることはできない。
FIG. 2 shows the raw water temperature on the horizontal axis and the saturated steam pressure on the vertical axis, and the solid line shows the saturated steam pressure of the raw water and the steam partial pressure around the module. If the sealed water of the vacuum pump is at the same temperature as the raw water, the steam partial pressure at the vacuum pump inlet is equal to this pressure. The dotted line represents the steam partial pressure at the vacuum pump inlet when the sealed water temperature is 5°C, and the dashed line represents the steam partial pressure at the vacuum pump inlet when both of these are 10°C lower than the raw water temperature. The partial pressure difference causes a molecular flow from the degassing module toward the vacuum pump, providing the power source that drives the degassed gas toward the pump. When the raw water temperature is high, even if the temperature difference between the raw water and sealed water is small, the difference in steam partial pressure is large, so the partial pressure of the gas in the module part becomes sufficiently low. If the temperature difference with the water is less than 10℃, the vapor partial pressure difference will not be sufficient, and the dissolved oxygen concentration in the water will decrease by 1.
It cannot be lower than PPB.

【0013】次に、この発明を実施したシステムの運転
例について説明する。例えば、原水温度が15℃の場合
、封水として約5℃に冷却された原水が使用されたとす
ると、この原水は、封水供給用のライン(5) を介し
て水封式真空ポンプ(2) に流入するようになるけれ
ども、これによって該ポンプ内の水蒸気分圧が約8.5
torr 低下する。このため、モジュール部とポンプ
入口との間に生じる蒸気圧の差による水蒸気分子の流れ
が脱気モジュール(1) から真空ポンプ(2) に向
かって分離ガスを輸送圧縮し、ポンプ入口領域における
ガス分圧を高めて、真空ポンプの作用を容易にする結果
、モジュール部における分離ガスの分圧は低下し、脱気
処理が促進される。
Next, an example of operation of a system embodying the present invention will be explained. For example, when the raw water temperature is 15°C, if raw water cooled to approximately 5°C is used as seal water, this raw water is supplied to the water ring vacuum pump (2) via the seal water supply line (5). ), but this causes the water vapor partial pressure inside the pump to be about 8.5
torr decreases. Therefore, the flow of water vapor molecules due to the difference in vapor pressure that occurs between the module part and the pump inlet transports and compresses the separated gas from the degassing module (1) toward the vacuum pump (2), and the gas in the pump inlet area is compressed. As a result of increasing the partial pressure and facilitating the action of the vacuum pump, the partial pressure of the separation gas in the module section is reduced and the degassing process is accelerated.

【0014】[0014]

【発明の効果】以上のように、この発明は、常温での脱
気処理が可能で、格別の高真空性能を有するポンプ装置
を用いることなく、簡単な構造の水封式一段真空ポンプ
を用いて溶存酸素濃度を低レベル(1PPB)にまで低
減することができるものである。また、この発明を実施
すると、省エネルギーの点でも顕著な効果が得られるだ
けでなく、全体をコンパクトな装置とすることができる
等大なる工業的効果を挙げることができる。
[Effects of the Invention] As described above, the present invention uses a water-ring single-stage vacuum pump with a simple structure that is capable of degassing at room temperature and does not require a pump device with exceptionally high vacuum performance. It is possible to reduce the dissolved oxygen concentration to a low level (1 PPB). Further, by implementing the present invention, not only remarkable effects can be obtained in terms of energy saving, but also great industrial effects such as the ability to make the entire device compact can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】この発明による脱気処理システムを示す系統図
である。
FIG. 1 is a system diagram showing a deaeration treatment system according to the present invention.

【図2】原水の飽和蒸気圧および封水と原水との温度差
(Δt)による封水蒸気圧を示すグラフである。
FIG. 2 is a graph showing the saturated vapor pressure of raw water and the sealed water vapor pressure depending on the temperature difference (Δt) between the sealed water and the raw water.

【図3】従来の脱気処理システムを示す系統図である。FIG. 3 is a system diagram showing a conventional deaeration processing system.

【符号の説明】[Explanation of symbols]

1  脱酸素モジュール 2  水封式真空ポンプ 1 Oxygen removal module 2 Water ring vacuum pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  真空ポンプ(2) に流入する作動流
体(もしくは封水)の流入側流域において、該流体と原
水との蒸気圧の差が略8torrもしくはそれ以上の値
になるように、前者の温度を後者のそれよりも低く設定
することにより、水蒸気の流れを生じさせ、その際の分
子拡散効果を利用して脱気モジュール(1) から真空
ポンプ(2) に向かって分離ガスを輸送圧縮し、脱気
処理を促進することを特徴とする分子拡散効果を利用し
た脱気方法。
Claim 1: In the inflow side region of the working fluid (or sealed water) flowing into the vacuum pump (2), the former is heated so that the difference in vapor pressure between the fluid and raw water is approximately 8 torr or more. By setting the temperature of the latter lower than that of the latter, a flow of water vapor is generated, and the molecular diffusion effect at that time is used to transport the separated gas from the degassing module (1) toward the vacuum pump (2). A deaeration method that utilizes the molecular diffusion effect, which is characterized by compressing and promoting deaeration processing.
JP3108946A 1991-04-11 1991-04-11 Degassing method using molecular diffusion effect Expired - Fee Related JPH0738923B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3108946A JPH0738923B2 (en) 1991-04-11 1991-04-11 Degassing method using molecular diffusion effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3108946A JPH0738923B2 (en) 1991-04-11 1991-04-11 Degassing method using molecular diffusion effect

Publications (2)

Publication Number Publication Date
JPH04313308A true JPH04313308A (en) 1992-11-05
JPH0738923B2 JPH0738923B2 (en) 1995-05-01

Family

ID=14497657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3108946A Expired - Fee Related JPH0738923B2 (en) 1991-04-11 1991-04-11 Degassing method using molecular diffusion effect

Country Status (1)

Country Link
JP (1) JPH0738923B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038998A1 (en) * 2003-10-17 2005-04-28 Mitsubishi Denki Kabushiki Kaisha Solid-state laser oscillator and solid-state laser beam apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458095A (en) * 1990-06-26 1992-02-25 Miura Co Ltd Deoxidizing equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0458095A (en) * 1990-06-26 1992-02-25 Miura Co Ltd Deoxidizing equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005038998A1 (en) * 2003-10-17 2005-04-28 Mitsubishi Denki Kabushiki Kaisha Solid-state laser oscillator and solid-state laser beam apparatus

Also Published As

Publication number Publication date
JPH0738923B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
US5062271A (en) Evacuation apparatus and evacuation method
KR100221782B1 (en) Apparatus for rapid evacuation of a vacuum chamber
US5584914A (en) Membrane deaerator apparatus
US5928407A (en) Alternating pressure apparatus for obtaining oxygen from the air and method for the operation thereof
US5935297A (en) Method for operating an alternating pressure apparatus for producing oxygen from the air
JP2003062403A (en) Operating method for membrane degasifier
JPH04313308A (en) Degassing method utilizing molecular diffusion
JPH09296975A (en) Vacuum cooling apparatus
JP2781931B2 (en) Deoxidizer
EP0788402B1 (en) An arrangement in autoclaving systems
JPH08906A (en) Degassing device
JP3291369B2 (en) Treatment method of exhaust gas containing organic vapor
EP1391253A4 (en) Device and method for removal of harmful substance
JPH07231Y2 (en) 2-stage deoxidizer
JPH0698345B2 (en) Deoxygenation system controller
JPS5932401B2 (en) ozone generator
JPH01503325A (en) Solution circulation type two-component compression heat pump
USRE36610E (en) Evacuation apparatus and evacuation method
JP3630787B2 (en) Nitrogen gas generator with built-in air compressor
JP4190964B2 (en) Pressurized gas cooling device for heat treatment furnace and operation method thereof
JP2001066031A (en) Vacuum cooler having vapor ejector by-pass route
JP2543910Y2 (en) Dissolved oxygen stabilization system for deoxygenation equipment
JPH0814183A (en) Sealing water cooling system of water sealing type vacuum pump in deaerator
JPH01264906A (en) Oxygen enriching device
JPH09196529A (en) Vacuum cooling method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees