JP4190964B2 - Pressurized gas cooling device for heat treatment furnace and operation method thereof - Google Patents

Pressurized gas cooling device for heat treatment furnace and operation method thereof Download PDF

Info

Publication number
JP4190964B2
JP4190964B2 JP2003184873A JP2003184873A JP4190964B2 JP 4190964 B2 JP4190964 B2 JP 4190964B2 JP 2003184873 A JP2003184873 A JP 2003184873A JP 2003184873 A JP2003184873 A JP 2003184873A JP 4190964 B2 JP4190964 B2 JP 4190964B2
Authority
JP
Japan
Prior art keywords
cooling
pressurized gas
cooling chamber
pressurized
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003184873A
Other languages
Japanese (ja)
Other versions
JP2005016893A (en
Inventor
雅宏 荒木
誠司 吉本
修 大下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2003184873A priority Critical patent/JP4190964B2/en
Publication of JP2005016893A publication Critical patent/JP2005016893A/en
Application granted granted Critical
Publication of JP4190964B2 publication Critical patent/JP4190964B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Furnace Details (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷却用加圧ガスの消費量を低減することが可能な熱処理炉の加圧ガス冷却装置およびその運転方法に関する。
【0002】
【従来の技術】
熱処理炉、特に真空熱処理炉にあっては、例えば非特許文献1に開示されているように、2室形加圧ガス冷却真空炉が知られている。この種の真空炉は、処理材を加熱処理する加熱室と、加熱処理した処理材を冷却処理する冷却室とが別々に備えられ、処理材を加熱室から冷却室に移して冷却処理する際には、冷却用加圧ガスを冷却室に供給して当該冷却室内を加圧状態にして冷却するようにし、また冷却処理後は、冷却室内に充満している加圧ガスを真空引きする等して排出することにより、冷却室内を減圧状態にするようになっている。
【0003】
このように冷却処理のために専用の冷却室を設けると、一旦加熱処理を行った加熱室を冷却する必要がなくて処理材を急冷することができ、大きな冷却速度を確保できる利点がある。また加圧ガスを利用した加圧冷却も、大きな冷却速度を確保するのに有利である。冷却用加圧ガスとしては、処理材の酸化反応を防止するために、窒素ガスや水素ガス、ヘリウムガスなどを、おおよそ数百KPa〜数MPa程度に昇圧したものが用いられている。
【0004】
この熱処理炉の冷却室を含む冷却装置の従来構造は、図4に示すように、加熱室aに隣接させて設けられ、処理材bを冷却処理する冷却室cと、この冷却室cに一対のダクトdを介して連通されたファンハウジングeおよびこのファンハウジングe内に設けたファンfから構成され、ファンfによって冷却用加圧ガスを冷却室cとの間で循環させるファン装置gと、ダクトdに接続され、冷却室cに冷却用加圧ガスを供給する供給系hと、冷却室cに接続された第1の排出管mに設けられ、開放されることで冷却室c内が大気圧となるまで冷却用加圧ガスを排出する開閉自在な放散弁kと、冷却室cに第2の排出管iを介して接続され、冷却用加圧ガスを大気圧下に真空引きして排出する真空ポンプjとを備えている。
【0005】
ファン装置gと冷却室cとは、ダクトdを介して外部からは閉じられた循環回路を構成し、冷却処理に際しては、加圧ガスを供給系hから冷却室cへと順次供給しつつ、ファン装置gで加圧ガスを循環させるようになっている。また、冷却室cから処理材bを取り出す際には、放散弁kを開放して冷却室c内が大気圧となるまで加圧ガスを排出し、その後真空ポンプjでさらに加圧ガスを大気圧下に真空引きして排出してから、冷却室cを開放するようになっている。
【0006】
【非特許文献1】
(社)日本熱処理技術協会、「熱処理技術便覧」、初版、日刊工業新聞社、2000年8月30日、p.776−779
【0007】
【発明が解決しようとする課題】
ところで、上記従来の熱処理炉の冷却装置にあっては、冷却室cが一対のダクトd、そしてまたファン装置gのファンハウジングeと常時連通されているため、冷却処理に際してこれら冷却室c内、ダクトd内およびファンハウジングe内の空間全体を満たすことができる量で供給されたすべての加圧ガスが、冷却処理後にはすべて排出されることとなっており、一回の冷却処理で消費される加圧ガスが多量であるという課題があった。
【0008】
本発明は上記従来の課題に鑑みて創案されたものであって、冷却用加圧ガスの消費量を低減することが可能な熱処理炉の加圧ガス冷却装置およびその運転方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明にかかる熱処理炉の加圧ガス冷却装置は、加熱室から搬入される処理材を冷却処理するときに、冷却用加圧ガスが供給されることによって加圧状態とされ、冷却処理後、冷却用加圧ガスが排出されることによって減圧状態とされる冷却室と、一対のダクトを介して上記冷却室と連通されるファンハウジングおよび該ファンハウジング内に設けたファンから構成され、冷却処理時、該ファンによって該冷却室との間で冷却用加圧ガスを循環させるファン装置とを有する熱処理炉の加圧ガス冷却装置において、上記一対のダクトそれぞれに、これらを開閉自在に開閉する第1開閉弁および第2開閉弁を設け、これら第1および第2開閉弁は、上記冷却室が加圧される際に同時に開かれるとともに、該冷却室が減圧される前に該冷却室と上記ファン装置との間を遮断すべく同時に閉じられることを特徴とする。
【0010】
一対のダクトそれぞれに設けた第1,第2開閉弁を同時に閉じて、冷却室とファン装置との間を遮断するようにしていて、冷却室を減圧すべく冷却用加圧ガスを排出する前にこれら開閉弁を同時に閉じることにより、排出される加圧ガスの量を、冷却室内および第1,第2開閉弁位置から冷却室側のダクト内に滞留している量とすることができ、第1,第2開閉弁を設けない場合に比べて、排出すべき加圧ガス量を低減し得る。
【0011】
そしてまた、第1,第2開閉弁を同時に閉じることによって、ファン装置のハウジング内および第1,第2開閉弁位置からファン装置側のダクト内に相当の加圧状態で滞留する相当量の加圧ガスは、次の冷却処理のために冷却室が加圧される際に第1,第2開閉弁を同時に開くことで、そのまま冷却室へと供給することができて、これを利用して次回の冷却処理を行うことができ、供給系から供給すべき新規の加圧ガス量も低減し得る。このように、排出すべき加圧ガス量も、また供給すべき加圧ガス量も低減することができて、加圧ガスの消費量を低減することが可能となる。
【0012】
また、加圧ガスの排出量を低減できることにより、冷却室の減圧操作時間を短縮することも可能となり、排出工程の効率化を図り得る。
【0013】
また、前記ファン装置と前記第1開閉弁および第2開閉弁のいずれかとの間に、前記ダクト内を循環される冷却用加圧ガスを冷却するガスクーラーを設けたことを特徴とする。ガスクーラーを設けるようにしていて、循環する冷却用加圧ガスを適切に冷却して冷却室に送り込むことが可能であるとともに、ガスクーラーを、第1,第2開閉弁のいずれかとファン装置との間に設けるようにしていて、これにより第1,第2開閉弁を同時に閉じることで、ガスクーラー内の加圧ガスもファン装置側に滞留させておくことができ、ガスクーラーを第1,第2開閉弁のいずれかより冷却室側に設置する場合に比べて、排出される加圧ガス量、すなわち加圧ガスの消費量を低減し得る。
【0014】
さらに、少なくともいずれか一方の前記ダクト内に、冷却用加圧ガスを供給する供給系の供給端部を挿入してこれらダクトと供給系とを接続するとともに、該供給端部のガス吹き込み口を、上記ダクトに沿って冷却用加圧ガスの循環方向へ向けたことを特徴とする。供給系のガス吹き込み口から吹き込まれるガス流を利用して、ダクト内を循環する加圧ガスの流れを強めることが可能で、ファン装置側に滞留させた加圧ガスのファン装置による送り出しも円滑化させて、短時間で加圧ガスの循環を定常化させることが可能となり、冷却室の加圧操作時間を短縮化し得るとともに、ファン装置の必要能力を削減し得る。
【0015】
また、本発明にかかる熱処理炉の加圧ガス冷却装置の運転方法は、加熱室から搬入される処理材を冷却処理するときに、冷却用加圧ガスが供給されることによって加圧状態とされ、冷却処理後、冷却用加圧ガスが排出されることによって減圧状態とされる冷却室と、一対のダクトを介して上記冷却室と連通されるファンハウジングおよび該ファンハウジング内に設けたファンから構成され、冷却処理時、該ファンによって該冷却室との間で冷却用加圧ガスを循環させるファン装置とを有する熱処理炉の加圧ガス冷却装置の運転方法において、上記一対のダクトそれぞれに設けた第1開閉弁および第2開閉弁を、上記冷却室が加圧される際に同時に開く一方、該冷却室が減圧される前に該冷却室と上記ファン装置との間を遮断すべく同時に閉じるようにしたことを特徴とする。
【0016】
冷却室を減圧すべく冷却用加圧ガスを排出する前に、一対のダクトそれぞれに設けた第1,第2開閉弁を同時に閉じて冷却室とファン装置との間を遮断するようにしていて、排出される加圧ガスの量を、冷却室内および第1,第2開閉弁位置から冷却室側のダクト内に滞留している量とすることができ、排出すべき加圧ガス量を低減し得る。
【0017】
そしてまた、第1,第2開閉弁を同時に閉じることによって、ファン装置のハウジング内および第1,第2開閉弁位置からファン装置側のダクト内に相当の加圧状態で滞留する相当量の加圧ガスは、次の冷却処理のために冷却室が加圧される際に、第1,第2開閉弁を同時に開くことで、そのまま冷却室へと供給することができて、これを利用して次回の冷却処理を行うことができ、供給系から供給すべき新規の加圧ガス量も低減し得る。このように、排出すべき加圧ガス量も、また供給すべき加圧ガス量も低減することができて、加圧ガスの消費量を低減することが可能となる。
【0018】
また、加圧ガスの排出量を低減できることにより、冷却室の減圧操作時間を短縮することも可能となり、排出工程の効率化を図り得る。
【0019】
【発明の実施の形態】
以下に、本発明にかかる熱処理炉の加圧ガス冷却装置の好適な一実施形態を、添付図面を参照して詳細に説明する。本実施形態にあっては熱処理炉1として、上記2室形加圧ガス冷却真空炉が例示されている。熱処理炉1としてはこの他、冷却熱処理炉などであってもよいことはもちろんである。加圧ガス冷却装置2は主に、加熱室3に隣接して設けられ、加熱室3から処理材4が搬入され、搬入された処理材4を冷却処理し、冷却処理後これより処理材4が搬出される密閉構造の冷却室5と、冷却室5にそれらの一端がそれぞれ連結された第1ダクト6および第2ダクト7と、第1ダクト6の他端がその吸い込み口に、また第2ダクト7の他端がその吐出口に連結されたファン装置8と、これら一対のダクト6,7それぞれに設けられた第1開閉弁9および第2開閉弁10と、第2ダクト7の第2開閉弁10とファン装置8の吐出口との間に接続され、冷却室5に、窒素ガスや水素ガス、ヘリウムガスなどの冷却用加圧ガスを供給するための供給系11と、第1ダクト6の第1開閉弁9とファン装置8との間に設けられたガスクーラー12と、冷却室5に接続された排出系13とから構成される。
【0020】
供給系11は、冷却室5に冷却用加圧ガスを供給するために、冷却用加圧ガスが相当の圧力で充填されたリザーブタンク14と、リザーブタンク14に一端が接続され、他端である供給端部15a(図2参照)が第2ダクト7と接続された供給管15と、供給管15の途中に設けられ、加圧ガスの供給量を調整する調整弁16とから構成される。そして冷却室5は、加熱室3から搬入される処理材4を冷却処理するとき、この供給系11から供給される加圧ガスによって加圧状態とされる。
【0021】
ファン装置8は、一対のダクト6,7を介して冷却室5内に連通されるファンハウジング17およびファンハウジング17内に設けられ、回転駆動されるファン18とから構成され、処理材4の冷却処理時、ファン18の作動によって冷却室5から加圧ガスを第1ダクト6を介してファンハウジング17内に引き込み、引き込んだ加圧ガスをファンハウジング17から第2ダクト7を介して冷却室5へと送り返して、冷却ガスを循環させる。このファン装置8と冷却室5とは、一対のダクト6,7を介して、外部からは閉じられた循環回路を構成する。
【0022】
ガスクーラー12は、処理材4を冷却することで昇温された冷却室5内の加圧ガスがファン装置8に引き込まれて第1ダクト6を流通する際に、これを冷却するようになっている。排出系13は、冷却用加圧ガスなどを排出するために、冷却室5に接続された第1の排出管24に設けられ、開放されることで冷却室5内が大気圧となるまで加圧ガスを排出する開閉自在な放散弁23と、加圧ガスをさらに大気圧下に真空引きする真空ポンプ19と、真空ポンプ19に一端が接続され、他端が冷却室5に接続された第2の排出管20と、第2の排出管20の途中に設けられ、真空ポンプ19の起動・停止に応じて当該第2の排出管20を開閉する排気開閉弁21とから構成される。そして冷却室5は、冷却処理後、すなわち処理材4を冷却室5から搬出するにあたって、排出系13によって加圧ガスが排出されることにより、減圧状態とされる。
【0023】
そして特に、第1および第2ダクト6,7に開閉自在に設けられた第1および第2開閉弁9,10は、この減圧操作の前にこれら第1および第2ダクト6,7を同時に閉じて、ファン装置8やガスクーラー12、また供給系11を、排出系13と接続された冷却室5から遮断するようになっている。
【0024】
また本実施形態にあっては、供給系11の供給管15については図2に示したように、ガス吹き込み口22を含む供給端部15aが第2ダクト7内に挿入されることにより、当該第2ダクト7と接続され、そのガス吹き込み口22は、第2ダクト7の長さ方向に沿って、かつファン装置8から冷却室5に向かって流れる加圧ガスの循環方向Qに向けて配置される。
【0025】
次に、上記構成を備えた本実施形態にかかる熱処理炉1の加圧ガス冷却装置2の運転方法について説明する。図3には、処理材4を冷却処理する時間経過に伴う冷却室内圧力の変化が示されている。加熱室3から冷却室5に処理材4を搬入する待機状態では、冷却室5内はほぼ大気圧状態に設定される(図中、アで示す)。
【0026】
冷却処理の開始にあたっては、冷却室5を密閉し、その後、第1および第2開閉弁9,10を同時に開くとともに調整弁16を開き、これによりリザーブタンク14から供給管15および第2ダクト7を介して冷却室5に新規の冷却用加圧ガスを供給することで、冷却室内圧力が高まって加圧状態となる(図中、イで示す)。このときには、排出系13の排気開閉弁21および放散弁23はもちろん閉じておく。また、これと併せてファン装置8の運転を開始して、冷却室5内に供給された加圧ガスを循環させる。この際、前回の冷却処理時の加圧ガスがファン装置8側に滞留している場合には、第1および第2開閉弁9,10の同時開放によって、ファン装置8側からも前回の加圧ガスが冷却室5へと流入する。
【0027】
冷却室内圧力が所定の加圧状態に達したならば、ファン装置8の運転による加圧ガスの循環を継続しながら、調整弁16を閉じて、リザーブタンク14からの加圧ガスの供給を停止し、これにより加圧ガスをガスクーラー12で冷却しつつ、その定常的な循環の下で、処理材4を冷却処理する(図中、ウで示す)。
【0028】
冷却処理が完了したならば、冷却室5内を減圧する。この減圧操作にあたっては、その前にファン装置8を停止し、また第1および第2開閉弁9,10を同時に閉じて、これによりファン装置8やガスクーラー12、そしてまたこれら開閉弁9,10よりもファン装置8側のダクト6,7内に加圧ガスを封じ込めて、滞留させる。このように第1および第2開閉弁9,10を同時に閉じたならば、排出系13の放散弁23を開放し、冷却室5から加圧ガスを排出させて、冷却室内圧力を一旦大気圧まで戻す(図中、エで示す)。その後、放散弁23を閉じる一方で排気開閉弁21を開放し、併せて真空ポンプ19を起動させて冷却室5から加圧ガスを大気圧下に真空引きして、窒素ガスなど、大気中への放散を嫌う加圧ガスをほぼ完全に冷却室5から排出する(図中、オで示す)。
【0029】
次いで、冷却室5内に大気を充填して大気圧まで一旦戻し(図中、カで示す)、この時点で、冷却室5から処理材4を搬出する(図中、キで示す)。その後、今度は冷却室5に流入し充満している大気を真空ポンプ19で真空引きして、ほぼ完全に排出する(図中、クで示す)。
【0030】
そして最後に、次回の冷却処理に備えて、冷却室5内に加圧ガスを大気圧程度まで充填する(図中、ケで示す)。この際には、第1および第2開閉弁9,10を同時に開けば、これら開閉弁9,10の閉止によってファン装置8側に滞留させておいた加圧ガスを、冷却室5に送り込むことができる。また、必要に応じて、供給系11から新規の加圧ガスを供給するようにしてもよい。このようにすることで、次回の冷却処理に対する待機状態に移行することができる(図中、アで示す)。
【0031】
以上説明したように、本実施形態にかかる熱処理炉1の加圧ガス冷却装置2およびその運転方法にあっては、第1および第2ダクト6,7それぞれに設けた第1および第2開閉弁9,10を同時に閉じて冷却室5とファン装置8との間を遮断できるようにしたので、冷却室5を減圧すべく冷却用加圧ガスを排出する前にこれら開閉弁9,10を同時に閉じれば、排出される加圧ガスの量を、冷却室5内および開閉弁9,10位置から冷却室5側のダクト6,7内に滞留している量とすることができ、開閉弁9,10を設けない場合に比べて、排出すべき加圧ガス量を低減することができる。
【0032】
そしてまた、これら開閉弁9,10を同時に閉じることによって、ファン装置8のハウジング17内やガスクーラー12内、そしてまた開閉弁9,10位置からファン装置8側のダクト6,7内に相当の加圧状態で滞留する相当量の加圧ガスを、次の冷却処理の際にこれら開閉弁9,10を同時に開くことで、そのまま冷却室5へと供給することができて、これを利用して次回の冷却処理を行うことができ、供給系11から供給すべき新規の加圧ガス量も低減することができる。
【0033】
このように、排出すべき加圧ガス量も、また供給すべき加圧ガス量も低減することができて、加圧ガスの消費量を低減することができる。
【0034】
また、加圧ガスの排出量を低減できることにより、冷却室5の減圧操作時間を短縮することもでき、排出工程(図中、エ、オ、クで示す)の効率化も図ることができる。
【0035】
また、ファン装置8と第1開閉弁9との間に、第1ダクト6内を循環する冷却用加圧ガスを冷却するガスクーラー12を設けたので、循環する冷却用加圧ガスを適切に冷却して冷却室5に送り込むことができる。また、開閉弁9,10を同時に閉じることで、ガスクーラー12内の加圧ガスもファン装置8側に滞留させておくことができ、ガスクーラー12を開閉弁9,10よりも冷却室5側に設置する場合に比べて、排出される加圧ガス量、すなわち加圧ガスの消費量をさらに減少させることができる。
【0036】
さらに、第2ダクト7内に、冷却用加圧ガスを供給する供給系11の供給端部15aを挿入してこれら第2ダクト7と供給系11とを接続するとともに、供給端部15aのガス吹き込み口22を、第2ダクト7に沿って冷却用加圧ガスの循環方向Qへ向けて配置したので、ガス吹き込み口22から吹き込まれるガス流を利用して、循環する加圧ガスの流れを強めることができ、ファン装置8側に滞留させた加圧ガスのファン装置8による送り出しも円滑化させて、短時間で加圧ガスの循環を定常化させることができ、冷却室5の加圧操作時間を短縮化できるとともに、ファン装置8の必要能力を削減することができる。
【0037】
上記実施形態にあっては、ガスクーラー12をファン装置8と第1開閉弁9との間に設けるようにしたが、ファン装置8と第2開閉弁10との間、あるいは冷却室5内に設けるようにしてもよい。
【0038】
【発明の効果】
以上要するに、本発明にかかる熱処理炉の加圧ガス冷却装置およびその運転方法にあっては、冷却室を減圧すべく冷却用加圧ガスを排出する前に、一対のダクトそれぞれに設けた第1,第2開閉弁を同時に閉じて冷却室とファン装置との間を遮断するようにしていて、排出される加圧ガスの量を、冷却室内および第1,第2開閉弁位置から冷却室側のダクト内に滞留している量とすることができ、排出すべき加圧ガス量を低減できるとともに、第1,第2開閉弁を同時に閉じることによって、ファン装置のハウジング内および第1,第2開閉弁位置からファン装置側のダクト内に相当の加圧状態で滞留する相当量の加圧ガスを、次の冷却処理のために冷却室が加圧される際に、第1,第2開閉弁を同時に開くことで、そのまま冷却室へと供給することができて、これを利用して次回の冷却処理を行うことができ、供給系から供給すべき新規の加圧ガス量も低減することができる。このように、排出すべき加圧ガス量も、また供給すべき加圧ガス量も低減することができて、冷却用加圧ガスの消費量を低減することができる。
【図面の簡単な説明】
【図1】 本発明にかかる熱処理炉の加圧ガス冷却装置の好適な一実施形態を示す回路図である。
【図2】 図1中、A部拡大図である。
【図3】 本発明にかかる熱処理炉の加圧ガス冷却装置の運転方法の好適な一実施形態を示す冷却室内圧力の変化を説明するダイアグラム図である。
【図4】 従来例を示す回路図である。
【符号の説明】
1 熱処理炉
2 加圧ガス冷却装置
3 加熱室
4 処理材
5 冷却室
6 第1ダクト
7 第2ダクト
8 ファン装置
9 第1開閉弁
10 第2開閉弁
11 供給系
12 ガスクーラー
15a 供給端部
17 ファンハウジング
18 ファン
22 ガス吹き込み口
Q 冷却用加圧ガスの循環方向
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pressurized gas cooling device for a heat treatment furnace capable of reducing the consumption of pressurized gas for cooling and an operation method thereof.
[0002]
[Prior art]
As a heat treatment furnace, particularly a vacuum heat treatment furnace, a two-chamber pressurized gas cooling vacuum furnace is known as disclosed in Non-Patent Document 1, for example. This type of vacuum furnace is provided with a heating chamber for heat-treating the treatment material and a cooling chamber for cooling the heat-treated treatment material, and when the treatment material is transferred from the heating chamber to the cooling chamber for cooling treatment. For example, a cooling pressurized gas is supplied to the cooling chamber so that the cooling chamber is pressurized and cooled, and after the cooling process, the pressurized gas filled in the cooling chamber is evacuated. By discharging it, the cooling chamber is brought into a reduced pressure state.
[0003]
When a dedicated cooling chamber is provided for the cooling process in this way, there is an advantage that the processing material can be rapidly cooled without having to cool the heating chamber once subjected to the heat treatment, and a large cooling rate can be secured. Further, pressurized cooling using a pressurized gas is advantageous for securing a large cooling rate. As the pressurized pressure gas for cooling, in order to prevent the oxidation reaction of the treatment material, a gas whose pressure is increased to about several hundred KPa to several MPa is used.
[0004]
As shown in FIG. 4, the conventional structure of the cooling device including the cooling chamber of the heat treatment furnace is provided adjacent to the heating chamber a, and a pair of cooling chambers c for cooling the processing material b is provided. A fan housing g communicated via a duct d and a fan f provided in the fan housing e, and the fan f that circulates a pressurized pressurized gas for cooling with the cooling chamber c by the fan f; The cooling chamber c is connected to the duct d and provided in a supply system h for supplying a pressurized pressurized gas to the cooling chamber c, and a first discharge pipe m connected to the cooling chamber c. An openable and closable diffusion valve k that discharges the pressurized pressurized gas until atmospheric pressure is reached, and connected to the cooling chamber c via the second exhaust pipe i, and the pressurized pressurized gas for cooling is evacuated to atmospheric pressure. And a vacuum pump j for discharging.
[0005]
The fan device g and the cooling chamber c constitute a circulation circuit that is closed from the outside via the duct d, and during the cooling process, while sequentially supplying the pressurized gas from the supply system h to the cooling chamber c, The pressurized gas is circulated by the fan device g. Further, when the processing material b is taken out from the cooling chamber c, the diffusion valve k is opened, the pressurized gas is discharged until the inside of the cooling chamber c reaches atmospheric pressure, and then the pressurized gas is further increased by the vacuum pump j. The cooling chamber c is opened after being evacuated and discharged under atmospheric pressure.
[0006]
[Non-Patent Document 1]
Japan Heat Treatment Technology Association, “Heat Treatment Technology Handbook”, first edition, Nikkan Kogyo Shimbun, August 30, 2000, p. 776-779
[0007]
[Problems to be solved by the invention]
By the way, in the cooling device of the conventional heat treatment furnace, the cooling chamber c is always in communication with the pair of ducts d and the fan housing e of the fan device g. All the pressurized gas supplied in an amount that can fill the entire space in the duct d and the fan housing e is exhausted after the cooling process, and is consumed in one cooling process. There was a problem that a large amount of pressurized gas was required.
[0008]
The present invention has been devised in view of the above-described conventional problems, and provides a pressurized gas cooling device for a heat treatment furnace capable of reducing the consumption of cooling pressurized gas and an operation method thereof. Objective.
[0009]
[Means for Solving the Problems]
The pressurized gas cooling device of the heat treatment furnace according to the present invention is brought into a pressurized state by supplying a pressurized gas for cooling when the processing material carried from the heating chamber is cooled, and after the cooling processing, A cooling chamber that is decompressed by discharging the pressurized gas for cooling, a fan housing that communicates with the cooling chamber via a pair of ducts, and a fan that is provided in the fan housing. In a pressurized gas cooling apparatus for a heat treatment furnace having a fan device that circulates a pressurized pressurized gas for cooling between the cooling chamber and the cooling chamber, the first duct is configured to open and close each of the pair of ducts. A first on-off valve and a second on-off valve are provided, and the first and second on-off valves are simultaneously opened when the cooling chamber is pressurized and before the cooling chamber is depressurized, Characterized in that simultaneously closed in order to shut off between § emission device.
[0010]
The first and second on-off valves provided in each of the pair of ducts are closed at the same time to shut off the cooling chamber and the fan device, and before the pressurized gas for cooling is discharged to depressurize the cooling chamber. By simultaneously closing these on-off valves, the amount of pressurized gas discharged can be made the amount staying in the cooling chamber side duct from the cooling chamber and the first and second on-off valve positions, Compared to the case where the first and second on-off valves are not provided, the amount of pressurized gas to be discharged can be reduced.
[0011]
Also, by closing the first and second on-off valves at the same time, a considerable amount of additional pressure staying in the pressurized state in the fan device housing and in the duct on the fan device side from the first and second on-off valve positions. When the cooling chamber is pressurized for the next cooling process, the pressurized gas can be supplied to the cooling chamber as it is by simultaneously opening the first and second on-off valves. The next cooling process can be performed, and the amount of new pressurized gas to be supplied from the supply system can also be reduced. Thus, the amount of pressurized gas to be discharged and the amount of pressurized gas to be supplied can be reduced, and the consumption of pressurized gas can be reduced.
[0012]
Further, since the discharge amount of the pressurized gas can be reduced, it is possible to shorten the time for depressurizing the cooling chamber, and the efficiency of the discharge process can be improved.
[0013]
Further, a gas cooler for cooling the pressurized pressurized gas circulated in the duct is provided between the fan device and one of the first on-off valve and the second on-off valve. A gas cooler is provided, and the circulating pressurized pressurized gas can be appropriately cooled and sent to the cooling chamber. The gas cooler is connected to one of the first and second on-off valves and a fan device. Thus, by closing the first and second on-off valves at the same time, the pressurized gas in the gas cooler can also stay on the fan device side. Compared with the case where the second on-off valve is installed on the cooling chamber side, the amount of the pressurized gas discharged, that is, the consumption of the pressurized gas can be reduced.
[0014]
Further, a supply end of a supply system that supplies pressurized gas for cooling is inserted into at least one of the ducts to connect the duct and the supply system, and a gas inlet port of the supply end is provided. The cooling gas is directed in the circulation direction along the duct. By using the gas flow blown from the gas blow-in port of the supply system, the flow of pressurized gas circulating in the duct can be strengthened, and the pressurized gas accumulated in the fan device can be sent out by the fan device smoothly. Thus, the circulation of the pressurized gas can be made steady in a short time, the pressurizing operation time of the cooling chamber can be shortened, and the necessary capacity of the fan device can be reduced.
[0015]
Further, according to the operating method of the pressurized gas cooling apparatus for the heat treatment furnace according to the present invention, when the processing material carried from the heating chamber is cooled, the pressurized pressure gas for cooling is supplied to make the pressurized state. A cooling chamber that is decompressed by discharging the cooling pressurized gas after the cooling process, a fan housing that communicates with the cooling chamber via a pair of ducts, and a fan provided in the fan housing. In the operating method of the pressurized gas cooling device of the heat treatment furnace having a fan device configured to circulate the pressurized gas for cooling between the cooling chamber and the cooling chamber by the fan at the time of the cooling process , provided in each of the pair of ducts The first on-off valve and the second on-off valve are simultaneously opened when the cooling chamber is pressurized, and at the same time to shut off the cooling chamber and the fan device before the cooling chamber is depressurized. Close Characterized in that way the.
[0016]
Before exhausting the pressurized gas for cooling in order to depressurize the cooling chamber, the first and second on-off valves provided in each of the pair of ducts are simultaneously closed to shut off the cooling chamber and the fan device. The amount of pressurized gas to be discharged can be the amount staying in the cooling chamber and the duct on the cooling chamber side from the first and second on-off valve positions, reducing the amount of pressurized gas to be discharged Can do.
[0017]
Also, by closing the first and second on-off valves at the same time, a considerable amount of additional pressure staying in the pressurized state in the fan device housing and in the duct on the fan device side from the first and second on-off valve positions. When the cooling chamber is pressurized for the next cooling process, the pressurized gas can be supplied to the cooling chamber as it is by simultaneously opening the first and second on-off valves. Thus, the next cooling process can be performed, and the amount of new pressurized gas to be supplied from the supply system can be reduced. Thus, the amount of pressurized gas to be discharged and the amount of pressurized gas to be supplied can be reduced, and the consumption of pressurized gas can be reduced.
[0018]
Further, since the discharge amount of the pressurized gas can be reduced, it is possible to shorten the time for depressurizing the cooling chamber, and the efficiency of the discharge process can be improved.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of a pressurized gas cooling apparatus for a heat treatment furnace according to the present invention will be described in detail with reference to the accompanying drawings. In the present embodiment, the two-chamber pressurized gas cooling vacuum furnace is exemplified as the heat treatment furnace 1. Of course, the heat treatment furnace 1 may be a cooling heat treatment furnace or the like. The pressurized gas cooling device 2 is mainly provided adjacent to the heating chamber 3, the processing material 4 is carried in from the heating chamber 3, the loaded processing material 4 is cooled, and after the cooling processing, the processing material 4 The cooling chamber 5 having a closed structure, the first duct 6 and the second duct 7 whose one ends are connected to the cooling chamber 5, respectively, and the other end of the first duct 6 at the suction port, The fan device 8 having the other end of the two ducts 7 connected to the discharge port, the first on-off valve 9 and the second on-off valve 10 provided in each of the pair of ducts 6, 7, and the second duct 7 A supply system 11 connected between the on-off valve 10 and the discharge port of the fan device 8 to supply a cooling pressurized gas such as nitrogen gas, hydrogen gas, helium gas, etc., to the cooling chamber 5; Gas cooler provided between the first on-off valve 9 of the duct 6 and the fan device 8 2, it consists of a connected discharge system 13. the cooling chamber 5.
[0020]
In order to supply the pressurized pressurized gas to the cooling chamber 5, the supply system 11 has a reserve tank 14 filled with the pressurized pressurized gas for cooling at one pressure, one end connected to the reserved tank 14, and the other end at the other end. A supply end 15a (see FIG. 2) includes a supply pipe 15 connected to the second duct 7, and an adjustment valve 16 provided in the supply pipe 15 to adjust the supply amount of pressurized gas. . The cooling chamber 5 is brought into a pressurized state by the pressurized gas supplied from the supply system 11 when the processing material 4 carried in from the heating chamber 3 is cooled.
[0021]
The fan device 8 includes a fan housing 17 communicated with the inside of the cooling chamber 5 through a pair of ducts 6 and 7 and a fan 18 that is rotationally driven and cools the treatment material 4. During processing, the pressurized gas is drawn from the cooling chamber 5 into the fan housing 17 through the first duct 6 by the operation of the fan 18, and the drawn pressurized gas is drawn from the fan housing 17 through the second duct 7 into the cooling chamber 5. Circulate the cooling gas back to The fan device 8 and the cooling chamber 5 constitute a circulation circuit closed from the outside through a pair of ducts 6 and 7.
[0022]
The gas cooler 12 cools the pressurized gas in the cooling chamber 5 heated by cooling the treatment material 4 when it is drawn into the fan device 8 and flows through the first duct 6. ing. The discharge system 13 is provided in the first discharge pipe 24 connected to the cooling chamber 5 in order to discharge the pressurized gas for cooling and the like, and is opened until the inside of the cooling chamber 5 reaches atmospheric pressure. An openable / closable diffusion valve 23 for discharging the pressurized gas, a vacuum pump 19 for evacuating the pressurized gas to atmospheric pressure, and one end connected to the vacuum pump 19 and the other end connected to the cooling chamber 5. 2, and an exhaust opening / closing valve 21 that is provided in the middle of the second discharge pipe 20 and opens and closes the second discharge pipe 20 in accordance with the start / stop of the vacuum pump 19. Then, after the cooling process, that is, when the processing material 4 is carried out of the cooling chamber 5, the cooling chamber 5 is decompressed by discharging the pressurized gas by the discharge system 13.
[0023]
In particular, the first and second on-off valves 9 and 10 provided in the first and second ducts 6 and 7 so as to be freely opened and closed simultaneously close the first and second ducts 6 and 7 before the decompression operation. Thus, the fan device 8, the gas cooler 12, and the supply system 11 are cut off from the cooling chamber 5 connected to the discharge system 13.
[0024]
In the present embodiment, as shown in FIG. 2, the supply pipe 15 of the supply system 11 is inserted into the second duct 7 so that the supply end 15a including the gas blowing port 22 is inserted. Connected to the second duct 7, the gas inlet 22 is arranged along the length direction of the second duct 7 and in the direction Q of circulation of the pressurized gas flowing from the fan device 8 toward the cooling chamber 5. Is done.
[0025]
Next, an operation method of the pressurized gas cooling device 2 of the heat treatment furnace 1 according to the present embodiment having the above-described configuration will be described. FIG. 3 shows the change in the pressure in the cooling chamber with the passage of time for cooling the treatment material 4. In the standby state in which the treatment material 4 is carried from the heating chamber 3 to the cooling chamber 5, the inside of the cooling chamber 5 is set to an almost atmospheric pressure state (indicated by a in the drawing).
[0026]
At the start of the cooling process, the cooling chamber 5 is sealed, and then the first and second on-off valves 9 and 10 are simultaneously opened and the regulating valve 16 is opened, whereby the supply pipe 15 and the second duct 7 are opened from the reserve tank 14. By supplying a new pressurized gas for cooling to the cooling chamber 5 through the cooling chamber, the pressure in the cooling chamber is increased to be in a pressurized state (indicated by a in the figure). At this time, the exhaust opening / closing valve 21 and the diffusion valve 23 of the exhaust system 13 are of course closed. At the same time, the operation of the fan device 8 is started, and the pressurized gas supplied into the cooling chamber 5 is circulated. At this time, if the pressurized gas from the previous cooling process stays on the fan device 8 side, the previous addition from the fan device 8 side by simultaneous opening of the first and second on-off valves 9 and 10. The pressurized gas flows into the cooling chamber 5.
[0027]
When the pressure in the cooling chamber reaches a predetermined pressurized state, the supply of pressurized gas from the reserve tank 14 is stopped by closing the regulating valve 16 while continuing the circulation of the pressurized gas by the operation of the fan device 8. Thus, while the pressurized gas is cooled by the gas cooler 12, the treatment material 4 is subjected to a cooling treatment under the steady circulation (indicated by “u” in the figure).
[0028]
When the cooling process is completed, the inside of the cooling chamber 5 is depressurized. Before the pressure reducing operation, the fan device 8 is stopped and the first and second on-off valves 9 and 10 are closed at the same time, whereby the fan device 8 and the gas cooler 12 and also these on-off valves 9 and 10 are closed. Further, the pressurized gas is contained in the ducts 6 and 7 on the fan device 8 side so as to be retained. If the first and second on-off valves 9 and 10 are closed at the same time, the diffusion valve 23 of the discharge system 13 is opened, the pressurized gas is discharged from the cooling chamber 5, and the pressure in the cooling chamber is temporarily set to atmospheric pressure. (Represented by D in the figure). Thereafter, the diffusion valve 23 is closed while the exhaust on-off valve 21 is opened. At the same time, the vacuum pump 19 is activated to evacuate the pressurized gas from the cooling chamber 5 to the atmospheric pressure, and to the atmosphere such as nitrogen gas. The pressurized gas that dislikes the emission of the gas is almost completely discharged from the cooling chamber 5 (indicated by o in the figure).
[0029]
Next, the cooling chamber 5 is filled with air and returned to atmospheric pressure (indicated by “K” in the figure). At this point, the processing material 4 is unloaded from the cooling chamber 5 (indicated by “K” in the figure). Thereafter, the air that has flowed into the cooling chamber 5 and is now filled is evacuated by the vacuum pump 19 and is almost completely discharged (indicated in FIG. 1).
[0030]
Finally, in preparation for the next cooling process, the pressurized gas is filled in the cooling chamber 5 to about the atmospheric pressure (indicated by a mark in the figure). At this time, if the first and second on-off valves 9 and 10 are opened at the same time, the pressurized gas retained on the fan device 8 side by closing the on-off valves 9 and 10 is sent into the cooling chamber 5. Can do. Moreover, you may make it supply a new pressurized gas from the supply system 11 as needed. In this way, it is possible to shift to a standby state for the next cooling process (indicated by a in the figure).
[0031]
As described above, in the pressurized gas cooling device 2 and the operating method of the heat treatment furnace 1 according to the present embodiment, the first and second on-off valves provided in the first and second ducts 6 and 7, respectively. 9 and 10 are closed at the same time so that the cooling chamber 5 and the fan device 8 can be shut off. Therefore, before the cooling gas is discharged to reduce the pressure in the cooling chamber 5, the on-off valves 9 and 10 are simultaneously opened. If closed, the amount of the pressurized gas discharged can be made the amount staying in the cooling chamber 5 and the ducts 6 and 7 on the cooling chamber 5 side from the positions of the on-off valves 9 and 10. , 10 can be reduced as compared with the case of not providing 10.
[0032]
Further, by closing these on-off valves 9 and 10 at the same time, the air in the housing 17 and the gas cooler 12 of the fan device 8 and the ducts 6 and 7 on the fan device 8 side from the positions of the on-off valves 9 and 10 can be obtained. A considerable amount of pressurized gas staying in the pressurized state can be supplied to the cooling chamber 5 as it is by opening the on-off valves 9 and 10 at the time of the next cooling process. Thus, the next cooling process can be performed, and the amount of new pressurized gas to be supplied from the supply system 11 can also be reduced.
[0033]
Thus, the amount of pressurized gas to be discharged and the amount of pressurized gas to be supplied can be reduced, and the consumption of pressurized gas can be reduced.
[0034]
Further, since the discharge amount of the pressurized gas can be reduced, the decompression operation time of the cooling chamber 5 can also be shortened, and the efficiency of the discharge process (indicated by D, E, and K in the figure) can be improved.
[0035]
In addition, since the gas cooler 12 for cooling the cooling pressurized gas circulating in the first duct 6 is provided between the fan device 8 and the first on-off valve 9, the circulating cooling pressurized gas is appropriately set. It can be cooled and fed into the cooling chamber 5. Further, by closing the on-off valves 9 and 10 at the same time, the pressurized gas in the gas cooler 12 can also stay on the fan device 8 side, and the gas cooler 12 is closer to the cooling chamber 5 than the on-off valves 9 and 10 are. Compared with the case where it installs in, the amount of pressurized gas discharged | emitted, ie, the consumption of pressurized gas, can further be reduced.
[0036]
Further, the supply end 15a of the supply system 11 for supplying the pressurized pressurized gas for cooling is inserted into the second duct 7 to connect the second duct 7 and the supply system 11, and the gas at the supply end 15a. Since the blow-in port 22 is arranged along the second duct 7 in the circulation direction Q of the pressurized gas for cooling, the flow of the pressurized gas to be circulated is utilized using the gas flow blown from the gas blow-in port 22. It is possible to increase the pressure, the smoothing of the pressurized gas retained by the fan device 8 by the fan device 8 can be facilitated, and the circulation of the pressurized gas can be made steady in a short time. The operation time can be shortened and the necessary capacity of the fan device 8 can be reduced.
[0037]
In the above embodiment, the gas cooler 12 is provided between the fan device 8 and the first on-off valve 9, but between the fan device 8 and the second on-off valve 10 or in the cooling chamber 5. You may make it provide.
[0038]
【The invention's effect】
In short, in the pressurized gas cooling apparatus for a heat treatment furnace and the operating method thereof according to the present invention, the first duct provided in each of the pair of ducts before discharging the cooling pressurized gas to decompress the cooling chamber. The second on-off valve is closed at the same time so as to shut off the cooling chamber and the fan device, and the amount of pressurized gas discharged is changed from the cooling chamber and the first and second on-off valve positions to the cooling chamber side. The amount of pressurized gas to be discharged can be reduced, and the first and second on-off valves can be closed at the same time to close the fan housing and the first and first When the cooling chamber is pressurized for the next cooling process, a considerable amount of pressurized gas staying in a considerably pressurized state from the on-off valve position in the duct on the fan device side is first and second. By opening the on-off valve at the same time, it is directly supplied to the cooling chamber And be Rukoto, which can be performed next cooling process using pressurized gas of the novel to be supplied from the supply system can be reduced. In this way, the amount of pressurized gas to be discharged and the amount of pressurized gas to be supplied can be reduced, and the consumption of cooling pressurized gas can be reduced.
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing a preferred embodiment of a pressurized gas cooling apparatus for a heat treatment furnace according to the present invention.
FIG. 2 is an enlarged view of part A in FIG.
FIG. 3 is a diagram for explaining the change in the pressure in the cooling chamber, showing a preferred embodiment of the operating method of the pressurized gas cooling apparatus for the heat treatment furnace according to the present invention.
FIG. 4 is a circuit diagram showing a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Heat processing furnace 2 Pressurized gas cooling device 3 Heating chamber 4 Processing material 5 Cooling chamber 6 1st duct 7 2nd duct 8 Fan apparatus 9 1st on-off valve 10 2nd on-off valve 11 Supply system 12 Gas cooler 15a Supply end 17 Fan housing 18 Fan 22 Gas inlet Q Circulation direction of pressurized gas for cooling

Claims (4)

加熱室から搬入される処理材を冷却処理するときに、冷却用加圧ガスが供給されることによって加圧状態とされ、冷却処理後、冷却用加圧ガスが排出されることによって減圧状態とされる冷却室と、一対のダクトを介して上記冷却室と連通されるファンハウジングおよび該ファンハウジング内に設けたファンから構成され、冷却処理時、該ファンによって該冷却室との間で冷却用加圧ガスを循環させるファン装置とを有する熱処理炉の加圧ガス冷却装置において、上記一対のダクトそれぞれに、これらを開閉自在に開閉する第1開閉弁および第2開閉弁を設け、
これら第1および第2開閉弁は、上記冷却室が加圧される際に同時に開かれるとともに、該冷却室が減圧される前に該冷却室と上記ファン装置との間を遮断すべく同時に閉じられることを特徴とする熱処理炉の加圧ガス冷却装置。
When the processing material carried in from the heating chamber is subjected to a cooling process, a pressurized state is obtained by supplying the cooling pressurized gas, and after the cooling process, the cooled pressurized gas is discharged to reduce the pressure. A cooling chamber, a fan housing communicated with the cooling chamber via a pair of ducts, and a fan provided in the fan housing, and for cooling between the cooling chamber and the cooling chamber by the fan during cooling processing In a pressurized gas cooling device for a heat treatment furnace having a fan device for circulating a pressurized gas , each of the pair of ducts is provided with a first on-off valve and a second on-off valve for opening and closing them.
The first and second on-off valves are simultaneously opened when the cooling chamber is pressurized, and are simultaneously closed to shut off the cooling chamber and the fan device before the cooling chamber is depressurized. pressurized gas cooler of the heat treatment furnace, characterized in that it is.
前記ファン装置と前記第1開閉弁および第2開閉弁のいずれかとの間に、前記ダクト内を循環される冷却用加圧ガスを冷却するガスクーラーを設けたことを特徴とする請求項1に記載の熱処理炉の加圧ガス冷却装置。 2. A gas cooler for cooling the pressurized pressurized gas circulated in the duct is provided between the fan device and one of the first on-off valve and the second on-off valve. A pressurized gas cooling device for a heat treatment furnace as described in 1. above. 少なくともいずれか一方の前記ダクト内に、冷却用加圧ガスを供給する供給系の供給端部を挿入してこれらダクトと供給系とを接続するとともに、該供給端部のガス吹き込み口を、上記ダクトに沿って冷却用加圧ガスの循環方向へ向けたことを特徴とする請求項1または2に記載の熱処理炉の加圧ガス冷却装置。  At least one of the ducts is inserted with a supply end of a supply system for supplying a pressurized pressurized gas to connect the duct and the supply system, and the gas blow-in port at the supply end is connected to the above-described duct. 3. The pressurized gas cooling device for a heat treatment furnace according to claim 1, wherein the pressurized gas cooling device is directed in a circulating direction of the cooling pressurized gas along the duct. 加熱室から搬入される処理材を冷却処理するときに、冷却用加圧ガスが供給されることによって加圧状態とされ、冷却処理後、冷却用加圧ガスが排出されることによって減圧状態とされる冷却室と、一対のダクトを介して上記冷却室と連通されるファンハウジングおよび該ファンハウジング内に設けたファンから構成され、冷却処理時、該ファンによって該冷却室との間で冷却用加圧ガスを循環させるファン装置とを有する熱処理炉の加圧ガス冷却装置の運転方法において、上記一対のダクトそれぞれに設けた第1開閉弁および第2開閉弁を、上記冷却室が加圧される際に同時に開く一方、該冷却室が減圧される前に該冷却室と上記ファン装置との間を遮断すべく同時に閉じるようにしたことを特徴とする熱処理炉の加圧ガス冷却装置の運転方法。When the processing material carried in from the heating chamber is subjected to a cooling process, a pressurized state is obtained by supplying the cooling pressurized gas, and after the cooling process, the cooled pressurized gas is discharged to reduce the pressure. A cooling chamber, a fan housing communicated with the cooling chamber via a pair of ducts, and a fan provided in the fan housing, and for cooling between the cooling chamber and the cooling chamber by the fan during cooling processing In a method of operating a pressurized gas cooling device for a heat treatment furnace having a fan device for circulating pressurized gas , the cooling chamber is pressurized with the first on-off valve and the second on-off valve provided in each of the pair of ducts. while open at the same time that, the operation of the cooling chamber and the fan device heat treatment furnace pressurized gas cooling device being characterized in that to close simultaneously in order to cut off between the before said cooling chamber is depressurized Law.
JP2003184873A 2003-06-27 2003-06-27 Pressurized gas cooling device for heat treatment furnace and operation method thereof Expired - Lifetime JP4190964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003184873A JP4190964B2 (en) 2003-06-27 2003-06-27 Pressurized gas cooling device for heat treatment furnace and operation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003184873A JP4190964B2 (en) 2003-06-27 2003-06-27 Pressurized gas cooling device for heat treatment furnace and operation method thereof

Publications (2)

Publication Number Publication Date
JP2005016893A JP2005016893A (en) 2005-01-20
JP4190964B2 true JP4190964B2 (en) 2008-12-03

Family

ID=34184501

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003184873A Expired - Lifetime JP4190964B2 (en) 2003-06-27 2003-06-27 Pressurized gas cooling device for heat treatment furnace and operation method thereof

Country Status (1)

Country Link
JP (1) JP4190964B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4376243B2 (en) * 2006-03-30 2009-12-02 エスペック株式会社 Clean oven
CN102399953B (en) * 2011-12-26 2013-05-29 天津市鼎元工业炉新技术开发有限公司 Suspended isothermal normalizing production line
JP6341626B2 (en) 2015-04-22 2018-06-13 株式会社Ihi Heat treatment equipment

Also Published As

Publication number Publication date
JP2005016893A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
KR960003788B1 (en) Evacuation system and the method thereof
WO2009113621A1 (en) Single chamber vacuum heat treating furnace and method of preventing oxidation of article to be treated in single chamber vacuum heat treating furnace
KR101399331B1 (en) Nitriding furnace
JP2007309626A (en) Hot isotropic pressure device
JP4190964B2 (en) Pressurized gas cooling device for heat treatment furnace and operation method thereof
US7101155B2 (en) Vacuum pumping system and method of controlling the same
JPS6337905A (en) Method and device for vulcanizing elastomeric article
US10690416B2 (en) Heat treatment device
JP2005534174A (en) Photoresist ashing equipment
JP2004028018A (en) Nonload test device and method for compressor
US5014281A (en) Gas laser
JP2606688B2 (en) Operation method of gas cooled vacuum heat treatment furnace
JP5407281B2 (en) Heat treatment method
JPS60152616A (en) Heat treating device
JP3075975B2 (en) Work heat treatment system
KR20200064139A (en) A method of handling an article and a method of handling an article at high pressure
KR20160046355A (en) Apparatus for Vacuum Process using Kiln and the Process Method thereof
JPH07188783A (en) Atmospheric circulating type heat treatment furnace
JPH09273659A (en) Baking device for vacuum device
JPH03104817A (en) Vacuum heat treatment device
JP2004325013A (en) Refrigerating cycle device
JP2674591B2 (en) Operating method of vacuum processing equipment
KR200294169Y1 (en) A heating device for manufacturing the wafer
JPH06256948A (en) Vacuum treating device
JP2001129383A (en) Method for controlling evacuation for substrate processing system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080917

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4190964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term