JPH04312909A - Production of laminate - Google Patents
Production of laminateInfo
- Publication number
- JPH04312909A JPH04312909A JP1360091A JP1360091A JPH04312909A JP H04312909 A JPH04312909 A JP H04312909A JP 1360091 A JP1360091 A JP 1360091A JP 1360091 A JP1360091 A JP 1360091A JP H04312909 A JPH04312909 A JP H04312909A
- Authority
- JP
- Japan
- Prior art keywords
- conductive material
- sheets
- sheet
- thin film
- material film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 25
- 239000004020 conductor Substances 0.000 claims abstract description 47
- 238000002788 crimping Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 10
- 239000010409 thin film Substances 0.000 description 61
- 239000010408 film Substances 0.000 description 31
- 238000005520 cutting process Methods 0.000 description 9
- 239000003990 capacitor Substances 0.000 description 8
- 238000003825 pressing Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
Landscapes
- Ceramic Capacitors (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、複数の導電性材料膜が
絶縁層を介して積層された積層体の製造方法に関するも
のである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a laminate in which a plurality of conductive material films are laminated with insulating layers interposed therebetween.
【0002】0002
【従来の技術】この種の積層体は積層コンデンサや圧電
アクチュエータ等に好適に使用されている。以下に積層
コンデンサに使用される積層体を例にあげて、従来の製
造方法について説明する。2. Description of the Related Art This type of laminate is suitably used in multilayer capacitors, piezoelectric actuators, and the like. A conventional manufacturing method will be described below, taking as an example a laminate used in a multilayer capacitor.
【0003】まず、未焼成セラミックから成る厚さ数十
μmのシ−トの一面に、内部電極となる金属粉ペ−スト
を所定パタ−ンで、例えば矩形状をなす厚さ数μmの薄
膜が間隔をおいてマトリクス状に並ぶように印刷する。
次いで、図9に示すように最上層を未印刷シ−ト1で覆
うようにして複数枚の印刷シ−ト2を積み重ねる。次い
で、図10に示すように積み重ねられたシ−トの上面に
圧力をかけて各シ−ト1,2を相互に圧着させる。この
圧着時において各シ−ト1,2及び薄膜3は平面方向に
圧延される。次いで、圧着後のシ−トを格子状に切断し
て角形の積層体(未焼成積層チップ)を得ている。得ら
れた未焼成積層チップには、内部電極となる複数の薄膜
が未焼成セラミック層を介して積層されるている。First, on one surface of a sheet of unfired ceramic several tens of micrometers thick, metal powder paste, which will become an internal electrode, is deposited in a predetermined pattern, for example, a rectangular thin film several micrometers thick. Print so that they are arranged in a matrix at intervals. Next, as shown in FIG. 9, a plurality of printed sheets 2 are stacked so that the top layer is covered with the unprinted sheet 1. Next, as shown in FIG. 10, pressure is applied to the upper surfaces of the stacked sheets to press the sheets 1 and 2 together. During this press-bonding, each sheet 1, 2 and thin film 3 are rolled in a planar direction. Next, the crimped sheet is cut into a grid pattern to obtain a rectangular laminate (unfired laminate chip). In the obtained green multilayer chip, a plurality of thin films serving as internal electrodes are laminated with green ceramic layers interposed therebetween.
【0004】上記の未焼成積層チップを用いて積層コン
デンサを作成する場合には、該チップの対向壁に外部電
極用の金属粉ペ−ストを塗布しこれを適当な温度で焼成
するか、未焼成積層チップを焼成した後に外部電極を形
成する。When manufacturing a multilayer capacitor using the above-mentioned unfired multilayer chip, a metal powder paste for external electrodes is applied to the opposing wall of the chip and then fired at an appropriate temperature, or External electrodes are formed after firing the laminated chip.
【0005】[0005]
【発明が解決しようとする課題】ところで、従来の製造
方法では、各シ−トに形成された薄膜3が同一形状を成
しているため、積み重ねられたシ−トの上面に圧力をか
けると加圧面に近い上層の薄膜3が大きく圧延されて、
各層の薄膜3の形状に大きなばらつきを生じる欠点があ
る。By the way, in the conventional manufacturing method, since the thin film 3 formed on each sheet has the same shape, it is difficult to apply pressure to the top surface of the stacked sheets. The upper thin film 3 close to the pressure surface is rolled to a large extent,
There is a drawback that the shape of the thin film 3 of each layer varies greatly.
【0006】即ち、シ−ト中心部分では、図11に示す
ように加圧面に近い薄膜3ほど四方に延びて各薄膜3の
断面幅が上方に向かって大きくなり、最上層の薄膜3の
断面幅WHが最下層の断面幅WLに比べてかなり大きく
なる。また、シ−ト中心部から離れた部分では、図12
に示すように加圧面に近い薄膜3ほど周縁方向に延びて
各薄膜3が一側に偏ってしまい、最上層の薄膜3の断面
幅WHが最下層の断面幅WLに比べてかなり大きくなる
。That is, in the central part of the sheet, as shown in FIG. 11, the thin films 3 closer to the pressurizing surface extend in all directions, and the cross-sectional width of each thin film 3 increases upward. The width WH is considerably larger than the cross-sectional width WL of the lowest layer. In addition, in the part away from the center of the seat,
As shown in the figure, the thin film 3 closer to the pressurizing surface extends in the peripheral direction, and each thin film 3 is biased to one side, and the cross-sectional width WH of the uppermost thin film 3 becomes considerably larger than the cross-sectional width WL of the lowermost layer.
【0007】つまり、図11及び図12のような圧着後
のシ−トを切断して未焼成積層チップを得る場合に、最
上層の薄膜3と切断位置(図中の破線位置)との間に所
定のカットマ−ジンを確保しようとすると、最下層寄り
の薄膜3と切断端面との間に上記以上の隔りができて大
きなデッドスペ−スが存在するようになる。That is, when cutting the sheet after pressure bonding as shown in FIGS. 11 and 12 to obtain an unfired laminated chip, there is If an attempt is made to secure a predetermined cut margin, a gap greater than the above is created between the thin film 3 near the bottom layer and the cut end surface, resulting in a large dead space.
【0008】従って、上記の未焼成積層チップを用いて
積層コンデンサを作成しても、積層コンデンサの静電容
量と密接な関係にある内部電極の対向面積が最下層の薄
膜3の断面幅WLに制約されて、所期の静電容量を得る
ことが困難になることに加え、取得静電容量が小さくな
る等の問題を発生する。Therefore, even if a multilayer capacitor is fabricated using the above unfired multilayer chip, the opposing area of the internal electrodes, which is closely related to the capacitance of the multilayer capacitor, will be smaller than the cross-sectional width WL of the lowermost thin film 3. Due to this restriction, it becomes difficult to obtain the desired capacitance, and other problems arise, such as the obtained capacitance becoming smaller.
【0009】本発明は上記問題点に鑑みてなされたもの
で、その目的とするところは、薄膜等の導電性材料膜の
形状にばらつきを生じることがない積層体の製造方法を
提供することにある。The present invention has been made in view of the above problems, and its purpose is to provide a method for manufacturing a laminate that does not cause variations in the shape of conductive material films such as thin films. be.
【0010】0010
【課題を解決するための手段】上記目的を達成するため
、請求項1では、所定形状の導電性材料膜が多数並設さ
れた絶縁性シ−トを複数枚積み重ねた後、該シ−トの一
面に圧力をかけて各シ−トを相互に圧着させ、圧着後の
シ−トを切断するようにした積層体の製造方法において
、積み重ねられたシ−トの加圧面寄りに位置する導電性
材料膜を、他面側の導電性材料膜よりも小さくしている
。[Means for Solving the Problems] In order to achieve the above object, in claim 1, after stacking a plurality of insulating sheets each having a plurality of conductive material films of a predetermined shape arranged in parallel, In a method for manufacturing a laminate in which sheets are crimped together by applying pressure to one side, and the sheets are cut after being crimped, the conductive material located near the pressure side of the stacked sheets is The conductive material film is made smaller than the conductive material film on the other side.
【0011】また、請求項2では、所定形状の導電性材
料膜が多数並設された絶縁性シ−トを複数枚積み重ねた
後、該シ−トの一面に圧力をかけて各シ−トを相互に圧
着させ、圧着後のシ−トを切断するようにした積層体の
製造方法において、積み重ねられたシ−トの加圧面寄り
に位置する導電性材料膜を、他面側の導電性材料膜より
もシ−ト中心方向にずらしている。Further, in claim 2, after stacking a plurality of insulating sheets in which a large number of conductive material films of a predetermined shape are arranged in parallel, pressure is applied to one surface of the sheets to separate each sheet. In a method for manufacturing a laminate in which sheets are crimped together and the sheets are cut after crimping, a conductive material film located on the pressure side of the stacked sheets is attached to a conductive material film on the other side. It is shifted toward the center of the sheet from the material film.
【0012】更に、請求項3では、所定形状の導電性材
料膜が多数並設された絶縁性シ−トを複数枚積み重ねた
後、該シ−トの一面に圧力をかけて各シ−トを相互に圧
着させ、圧着後のシ−トを切断するようにした積層体の
製造方法において、積み重ねられたシ−トの加圧面寄り
に位置する導電性材料膜を、他面側の導電性材料膜より
も小さくすると共に他面側の導電性材料膜よりもシ−ト
中心方向にずらしている。Furthermore, in claim 3, after stacking a plurality of insulating sheets in which a large number of conductive material films of a predetermined shape are arranged in parallel, pressure is applied to one surface of the sheets to separate each sheet. In a method for manufacturing a laminate in which sheets are crimped together and the sheets are cut after crimping, a conductive material film located on the pressure side of the stacked sheets is attached to a conductive material film on the other side. It is made smaller than the material film and is shifted toward the center of the sheet from the conductive material film on the other side.
【0013】[0013]
【作用】請求項1記載の製造方法は、シ−トに形成され
る導電性材料膜の数が少ない場合に有用である。即ち、
積み重ねられたシ−トの加圧面寄りに位置する導電性材
料膜が他面側の導電性材料膜よりも小さくなっているの
で、圧着時に加圧面に近い上層の導電性材料膜が大きく
圧延され四方に延びても、圧着後の導電性材料膜はほぼ
同じような形状となる。The manufacturing method according to claim 1 is useful when the number of conductive material films formed on a sheet is small. That is,
Since the conductive material film located near the pressure surface of the stacked sheets is smaller than the conductive material film on the other side, the upper conductive material film near the pressure surface is rolled significantly during crimping. Even if it extends in all directions, the conductive material film after pressure bonding has almost the same shape.
【0014】また、請求項2記載の製造方法は、シ−ト
の中心部以外に導電性材料膜が形成される場合に有用で
ある。即ち、積み重ねられたシ−トの加圧面寄りに位置
する導電性材料膜が他面側の導電性材料膜よりもシ−ト
中心方向にずらされているので、圧着時に加圧面に近い
上層の導電性材料膜が大きく圧延されシ−ト周縁方向に
延びても、圧着後の導電性材料膜は偏りなくほぼ同じよ
うな形状となる。Furthermore, the manufacturing method according to claim 2 is useful when a conductive material film is formed in a region other than the center of the sheet. In other words, since the conductive material film located near the pressure surface of the stacked sheets is shifted toward the center of the sheet from the conductive material film on the other surface, the upper layer near the pressure surface during crimping is Even if the conductive material film is rolled to a large extent and extends in the direction of the sheet periphery, the conductive material film after crimping will have substantially the same shape without deviation.
【0015】更に、請求項3記載の製造方法は、シ−ト
に多数の導電性材料膜が形成される場合に有用である。
即ち、積み重ねられたシ−トの加圧面寄りに位置する導
電性材料膜が他面側の導電性材料膜よりも小さく、しか
も他面側の導電性材料膜よりもシ−ト中心方向にずらさ
れているので、圧着時に加圧面に近い上層の導電性材料
膜が大きく圧延されて四方及びシ−ト周縁方向に延びて
も、圧着後の導電性材料膜は偏りなくほぼ同じような形
状となる。Furthermore, the manufacturing method according to claim 3 is useful when a large number of conductive material films are formed on a sheet. That is, the conductive material film located closer to the pressure surface of the stacked sheets is smaller than the conductive material film on the other side, and furthermore, it is shifted toward the center of the sheet than the conductive material film on the other side. Therefore, even if the upper conductive material film near the pressurized surface is greatly rolled during crimping and extends in all directions and in the direction of the sheet periphery, the conductive material film after crimping will have almost the same shape without deviation. Become.
【0016】[0016]
【実施例1】図1及び図2は本発明の第1実施例を示す
もので、積み重ねられたシ−トの加圧面寄りに位置する
薄膜を他面側の薄膜よりも小さくしたものである。[Embodiment 1] Figures 1 and 2 show a first embodiment of the present invention, in which the thin film located closer to the pressure side of the stacked sheets is made smaller than the thin film on the other side. .
【0017】図1には積み重ねられたシ−トの部分断面
図を、図2には圧着されたシ−トの部分断面図を夫々示
してあり、また従来例と構成を一致する部分には同一符
号を用いてある。FIG. 1 shows a partial sectional view of stacked sheets, and FIG. 2 shows a partial sectional view of crimped sheets. The same symbols are used.
【0018】図において、1は未印刷シ−ト、2は印刷
シ−ト、3は薄膜で、シ−ト2に形成される薄膜3は、
最下層のものが最も大きく加圧面に近くなるに従って一
回り宛徐々に小さくなっている。また、各薄膜3は夫々
の中心を上下方向に一致している。In the figure, 1 is an unprinted sheet, 2 is a printed sheet, 3 is a thin film, and the thin film 3 formed on the sheet 2 is as follows:
The one on the bottom layer is the largest and gradually gets smaller as it gets closer to the pressure surface. Further, the centers of each thin film 3 are aligned in the vertical direction.
【0019】各シ−ト1,2は図1に示すように積み重
ねられ、積み重ねられたシ−トはその上面を加圧されて
相互に圧着される。The sheets 1 and 2 are stacked as shown in FIG. 1, and the stacked sheets are pressurized on their upper surfaces to be pressed together.
【0020】上記の製造方法は、シ−ト2に形成される
薄膜の数が少ない場合に有用である。即ち、圧着時に加
圧面に近い上層の薄膜3が大きく圧延され四方に延びる
場合でも、積み重ねられたシ−トの加圧面寄りに位置す
る薄膜3が他面側の薄膜3よりも小さくなっているので
、図4に示すように圧着後の各薄膜3はその断面幅Wが
全て一致し形状は同一になる。The above manufacturing method is useful when the number of thin films formed on the sheet 2 is small. That is, even if the upper thin film 3 near the pressure surface is rolled significantly and extends in all directions during crimping, the thin film 3 located closer to the pressure surface of the stacked sheets is smaller than the thin film 3 on the other side. Therefore, as shown in FIG. 4, the cross-sectional widths W of the thin films 3 after pressure bonding are all the same, and the shapes are the same.
【0021】つまり、図2に示す圧着後のシ−トを切断
して積層体を得る場合でも、各層の薄膜3と切断位置(
図中の破線位置)との距離が等しくなるので、従来のよ
うにカットマ−ジンが過剰になる部分がなく、デッドス
ペ−スを極力減少することができる。In other words, even when a laminate is obtained by cutting the sheet after pressure bonding as shown in FIG. 2, the thin film 3 of each layer and the cutting position (
Since the distance from the cut line to the dotted line position in the figure becomes equal, there is no part where the cut margin becomes excessive as in the conventional case, and the dead space can be reduced as much as possible.
【0022】[0022]
【実施例2】図3及び図4は本発明の第2実施例を示す
もので、第1実施例と同様に、積み重ねられたシ−トの
加圧面寄りに位置する薄膜を他面側の薄膜よりも小さく
したものである。[Embodiment 2] FIGS. 3 and 4 show a second embodiment of the present invention. Similar to the first embodiment, the thin film located near the pressure side of the stacked sheets is removed from the other side. It is smaller than a thin film.
【0023】図3には積み重ねられたシ−トの部分断面
図を、図4には圧着されたシ−トの部分断面図を夫々示
してあり、また従来例と構成を一致する部分には同一符
号を用いてある。FIG. 3 shows a partial sectional view of the stacked sheets, and FIG. 4 shows a partial sectional view of the crimped sheets. The same symbols are used.
【0024】図において、1は未印刷シ−ト、2は印刷
シ−ト、3は薄膜で、シ−ト2に形成される薄膜3は、
下層2つが大きく加圧面に近い上層2つが下層のものよ
り一回り小さくなっている。つまり、薄膜3は加圧面に
近くなるに従って段階的に小さくなっている。また、各
薄膜3は夫々の中心を上下方向に一致している。In the figure, 1 is an unprinted sheet, 2 is a printed sheet, 3 is a thin film, and the thin film 3 formed on the sheet 2 is as follows:
The two lower layers are larger and the two upper layers closer to the pressure surface are one size smaller than the lower layers. In other words, the thin film 3 gradually becomes smaller as it approaches the pressurizing surface. Further, the centers of each thin film 3 are aligned in the vertical direction.
【0025】各シ−ト1,2は図1に示すように積み重
ねられ、積み重ねられたシ−トはその上面を加圧されて
相互に圧着される。The sheets 1 and 2 are stacked as shown in FIG. 1, and the stacked sheets are pressed together by applying pressure to their upper surfaces.
【0026】上記の製造方法は、実施例1と同様、シ−
ト2に形成される薄膜の数が少ない場合に有用である。
即ち、圧着時に加圧面に近い上層の薄膜3が大きく圧延
され四方に延びる場合でも、積み重ねられたシ−トの加
圧面寄りに位置する薄膜3が他面側の薄膜3よりも小さ
くなっているので、図4に示すように圧着後の薄膜3に
2種類の断面幅W1,W2が生じるものの、その形状は
ほぼ同一となる。[0026] The above manufacturing method is similar to that in Example 1.
This is useful when the number of thin films formed on the sheet 2 is small. That is, even if the upper thin film 3 near the pressure surface is rolled significantly and extends in all directions during crimping, the thin film 3 located closer to the pressure surface of the stacked sheets is smaller than the thin film 3 on the other side. Therefore, as shown in FIG. 4, although two types of cross-sectional widths W1 and W2 are generated in the thin film 3 after pressure bonding, the shapes thereof are almost the same.
【0027】つまり、図4に示す圧着後のシ−トを切断
して積層体を得る場合でも、各層の薄膜3と切断位置(
図中の破線位置)との距離がほぼ等しくなるので、従来
のようにカットマ−ジンが過剰になる部分がなく、デッ
ドスペ−スを極力減少することができる。In other words, even when a laminate is obtained by cutting the sheet after pressure bonding as shown in FIG. 4, the thin film 3 of each layer and the cutting position (
Since the distances from the dotted line position in the figure are approximately equal, there is no excessive cut margin as in the conventional case, and the dead space can be reduced as much as possible.
【0028】[0028]
【実施例3】図5及び図6は本発明の第3実施例を示す
もので、積み重ねられたシ−トの加圧面寄りに位置する
薄膜を他面側の薄膜よりもシ−ト中心方向にずらしたも
のである。[Embodiment 3] FIGS. 5 and 6 show a third embodiment of the present invention, in which the thin film located closer to the pressure side of the stacked sheets is moved toward the center of the sheet than the thin film on the other side. It has been shifted to
【0029】図5には積み重ねられたシ−トの部分断面
図を、図6には圧着されたシ−トの部分断面図を夫々示
してあり、また従来例と構成を一致する部分には同一符
号を用いてある。FIG. 5 shows a partial sectional view of the stacked sheets, and FIG. 6 shows a partial sectional view of the crimped sheets. The same symbols are used.
【0030】図において、1は未印刷シ−ト、2は印刷
シ−ト、3は薄膜で、シ−ト2に形成される薄膜3は夫
々が同一形状を有しており、加圧面に近い上層2つが下
層のものよりシ−トの中心方向に僅かにずらされている
。また、上記のずらし寸法は、圧着時における延びが周
縁部分で最大になることを考慮し、シ−ト中心部から離
れるほど徐々に大きくしてある。In the figure, 1 is an unprinted sheet, 2 is a printed sheet, and 3 is a thin film. The two upper layers that are close together are slightly offset toward the center of the sheet than the lower layer. Further, the above-mentioned shift dimension is gradually increased as the distance from the center of the sheet increases, taking into consideration that the elongation during crimping is maximum at the peripheral edge portion.
【0031】各シ−ト1,2は図1に示すように積み重
ねられ、積み重ねられたシ−トはその上面を加圧されて
相互に圧着される。The sheets 1 and 2 are stacked as shown in FIG. 1, and the stacked sheets are pressurized on their upper surfaces to be pressed together.
【0032】上記の製造方法は、シ−トの中心部以外に
薄膜が形成される場合に有用である。即ち、圧着時に加
圧面に近い上層の薄膜3が大きく圧延されシ−トの周縁
方向に延びる場合でも、積み重ねられたシ−トの加圧面
寄りに位置する薄膜3が他面側の薄膜3よりもシ−ト中
心方向にずらされているので、図6に示すように圧着後
の薄膜3の断面幅に多少のばらつきを生じるものの、薄
膜3の偏りを従来に比べて防止することができる。The above manufacturing method is useful when a thin film is formed in areas other than the center of the sheet. In other words, even if the upper thin film 3 near the pressure surface is rolled significantly and extends toward the periphery of the sheet during crimping, the thin film 3 located closer to the pressure surface of the stacked sheets is smaller than the thin film 3 on the other side. Since the thin film 3 is also shifted toward the center of the sheet, as shown in FIG. 6, although some variation occurs in the cross-sectional width of the thin film 3 after pressure bonding, deviation of the thin film 3 can be prevented compared to the conventional method.
【0033】つまり、図8に示す圧着後のシ−トを切断
して積層体を得る場合でも、各層の薄膜3と切断位置(
図中の破線位置)との左右の距離がほぼ等しくなるので
、従来のようにカットマ−ジンが過剰になる部分がない
。That is, even when cutting the crimped sheet shown in FIG. 8 to obtain a laminate, the thin film 3 of each layer and the cutting position (
Since the left and right distances from the dotted line position in the figure are approximately equal, there is no part where the cut margin is excessive as in the conventional case.
【0034】[0034]
【実施例4】図7及び図8は本発明の第4実施例を示す
もので、積み重ねられたシ−トの加圧面寄りに位置する
薄膜を、他面側の薄膜よりも小さくすると共に他面側の
薄膜よりもシ−ト中心方向にずらしたものである。[Embodiment 4] FIGS. 7 and 8 show a fourth embodiment of the present invention, in which the thin film located near the pressure side of the stacked sheets is made smaller than the thin film on the other side. It is shifted toward the center of the sheet from the thin film on the front side.
【0035】図7には積み重ねられたシ−トの部分断面
図を、図8には圧着されたシ−トの部分断面図を夫々示
してあり、また従来例と構成を一致する部分には同一符
号を用いてある。FIG. 7 shows a partial sectional view of the stacked sheets, and FIG. 8 shows a partial sectional view of the crimped sheets. The same symbols are used.
【0036】図において、1は未印刷シ−ト、2は印刷
シ−ト、3は薄膜で、シ−ト2に形成される薄膜3は、
最下層のものが最も大きく加圧面に近くなるに従って一
回り宛徐々に小さくなっており、またその中心位置が加
圧面に近くなるに従ってシ−ト中心方向に僅かにずらさ
れている。また、上記のずらし寸法は、圧着時における
延びが周縁部分で最大になることを考慮し、シ−ト中心
部から離れるほど徐々に大きくしてある。In the figure, 1 is an unprinted sheet, 2 is a printed sheet, 3 is a thin film, and the thin film 3 formed on the sheet 2 is as follows:
The one on the bottom layer is the largest, and as it gets closer to the pressure surface, it gradually becomes smaller, and its center position is slightly shifted toward the center of the sheet as it gets closer to the pressure surface. Further, the above-mentioned shift dimension is gradually increased as the distance from the center of the sheet increases, taking into consideration that the elongation during crimping is maximum at the peripheral edge portion.
【0037】各シ−ト1,2は図1に示すように積み重
ねられ、積み重ねられたシ−トはその上面を加圧されて
相互に圧着される。The sheets 1 and 2 are stacked as shown in FIG. 1, and the stacked sheets are pressed together by applying pressure to their upper surfaces.
【0038】上記の製造方法は、シ−ト2に多数の薄膜
が形成される場合に有用である。即ち、圧着時に加圧面
に近い上層の薄膜3が大きく圧延され四方に延び、且つ
シ−トの周縁方向に延びる場合でも、積み重ねられたシ
−トの加圧面寄りに位置する薄膜3が他面側の薄膜3よ
りも小さく、しかも他面側の薄膜3よりもシ−ト中心方
向にずらされているので、図8に示すように圧着後の各
薄膜3は偏りがなく、その断面幅Wが全て一致し形状は
同一になる。The above manufacturing method is useful when a large number of thin films are formed on the sheet 2. That is, even if the upper thin film 3 near the pressure surface is rolled and extended in all directions during crimping, and also extends in the direction of the periphery of the sheet, the thin film 3 located closer to the pressure surface of the stacked sheets will be Since it is smaller than the thin film 3 on one side and is shifted toward the center of the sheet than the thin film 3 on the other side, each thin film 3 after pressure bonding has no bias as shown in FIG. 8, and its cross-sectional width W all match and the shapes are the same.
【0039】つまり、図8に示す圧着後のシ−トを切断
して積層体を得る場合でも、各層の薄膜3と切断位置(
図中の破線位置)との左右の距離が等しくなるので、従
来のようにカットマ−ジンが過剰になる部分がなく、デ
ッドスペ−スを極力減少することができる。In other words, even when a laminate is obtained by cutting the sheet after pressure bonding as shown in FIG. 8, the thin film 3 of each layer and the cutting position (
Since the left and right distances from the dotted line position in the figure are equal, there is no part where the cut margin is excessive as in the conventional case, and the dead space can be reduced as much as possible.
【0040】[0040]
【発明の効果】以上詳述したように、請求項1及び3記
載の製造方法によれば、圧着時に加圧面に近い上層の導
電性材料膜が大きく圧延されても、圧着後の導電性材料
膜をほぼ同じような形状にすることができる。従って、
上記の積層体を用いて積層コンデンサを作成すれば、従
来に比べて大きな容量を有し、しかも容量にばらつきの
ない積層コンデンサを供給することが可能となる。As described in detail above, according to the manufacturing method according to claims 1 and 3, even if the upper conductive material film near the pressing surface is rolled significantly during crimping, the conductive material after crimping is The membranes can be made into approximately similar shapes. Therefore,
By producing a multilayer capacitor using the above-mentioned multilayer body, it becomes possible to supply a multilayer capacitor that has a larger capacitance than conventional capacitors and has no variation in capacitance.
【図1】第1実施例を示す積み重ねられたシ−トの部分
断面図FIG. 1 is a partial sectional view of stacked sheets showing a first embodiment.
【図2】圧着されたシ−トの部分断面図[Figure 2] Partial cross-sectional view of the crimped sheet
【図3】第2実
施例を示す積み重ねられたシ−トの部分断面図FIG. 3 is a partial cross-sectional view of stacked sheets showing a second embodiment.
【図4】圧着されたシ−トの部分断面図[Figure 4] Partial cross-sectional view of the crimped sheet
【図5】第3実
施例を示す積み重ねられたシ−トの部分断面図FIG. 5 is a partial cross-sectional view of stacked sheets showing the third embodiment.
【図6】圧着されたシ−トの部分断面図[Figure 6] Partial sectional view of crimped sheet
【図7】第4実
施例を示す積み重ねられたシ−トの部分断面図FIG. 7 is a partial cross-sectional view of stacked sheets showing the fourth embodiment.
【図8】圧着されたシ−トの部分断面図[Figure 8] Partial sectional view of crimped sheet
【図9】従来例
を示す積み重ね前のシ−トの側面図[Fig. 9] Side view of sheets before stacking, showing a conventional example
【図10】積み重ね
られたシ−トの部分断面図[Fig. 10] Partial cross-sectional view of stacked sheets
【図11】圧着されたシ−ト
の部分断面図[Fig. 11] Partial cross-sectional view of the crimped sheet
【図12】圧着されたシ−トの部分断面図
[Figure 12] Partial sectional view of crimped sheet
1,2…シ−ト、3…薄膜。 1, 2... Sheet, 3... Thin film.
Claims (3)
絶縁性シ−トを複数枚積み重ねた後、該シ−トの一面に
圧力をかけて各シ−トを相互に圧着させ、圧着後のシ−
トを切断するようにした積層体の製造方法において、積
み重ねられたシ−トの加圧面寄りに位置する導電性材料
膜を、他面側の導電性材料膜よりも小さくした、ことを
特徴とする積層体の製造方法。Claim 1: After stacking a plurality of insulating sheets in which a large number of conductive material films of a predetermined shape are arranged side by side, pressure is applied to one side of the sheets to press the sheets together. , Seat after crimping
A method for producing a laminate in which sheets are cut, characterized in that the conductive material film located near the pressure side of the stacked sheets is made smaller than the conductive material film on the other side. A method for manufacturing a laminate.
絶縁性シ−トを複数枚積み重ねた後、該シ−トの一面に
圧力をかけて各シ−トを相互に圧着させ、圧着後のシ−
トを切断するようにした積層体の製造方法において、積
み重ねられたシ−トの加圧面寄りに位置する導電性材料
膜を、他面側の導電性材料膜よりもシ−ト中心方向にず
らした、ことを特徴とする積層体の製造方法。2. After stacking a plurality of insulating sheets in which a large number of conductive material films of a predetermined shape are arranged side by side, pressure is applied to one side of the sheets to press the sheets together. , Seat after crimping
In a method for manufacturing a laminate in which sheets are cut, a conductive material film located closer to the pressure side of the stacked sheets is shifted toward the center of the sheet relative to a conductive material film on the other side. A method for manufacturing a laminate, characterized by the following.
絶縁性シ−トを複数枚積み重ねた後、該シ−トの一面に
圧力をかけて各シ−トを相互に圧着させ、圧着後のシ−
トを切断するようにした積層体の製造方法において、積
み重ねられたシ−トの加圧面寄りに位置する導電性材料
膜を、他面側の導電性材料膜よりも小さくすると共に他
面側の導電性材料膜よりもシ−ト中心方向にずらした、
ことを特徴とする積層体の製造方法。3. After stacking a plurality of insulating sheets in which a large number of conductive material films of a predetermined shape are arranged side by side, pressure is applied to one side of the sheets to press the sheets together. , Seat after crimping
In a method for manufacturing a laminate in which sheets are cut, the conductive material film located near the pressure side of the stacked sheets is made smaller than the conductive material film on the other side. Shifted toward the center of the sheet from the conductive material film,
A method for manufacturing a laminate, characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1360091A JPH04312909A (en) | 1991-02-04 | 1991-02-04 | Production of laminate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1360091A JPH04312909A (en) | 1991-02-04 | 1991-02-04 | Production of laminate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04312909A true JPH04312909A (en) | 1992-11-04 |
Family
ID=11837708
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1360091A Withdrawn JPH04312909A (en) | 1991-02-04 | 1991-02-04 | Production of laminate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04312909A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010003891A (en) * | 2008-06-20 | 2010-01-07 | Murata Mfg Co Ltd | Multilayer ceramic electronic component, and manufacturing method thereof |
-
1991
- 1991-02-04 JP JP1360091A patent/JPH04312909A/en not_active Withdrawn
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010003891A (en) * | 2008-06-20 | 2010-01-07 | Murata Mfg Co Ltd | Multilayer ceramic electronic component, and manufacturing method thereof |
US9190212B2 (en) | 2008-06-20 | 2015-11-17 | Murata Manufacturing Co., Ltd. | Method of manufacturing multilayer ceramic electronic component |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH047574B2 (en) | ||
JPH03108306A (en) | Manufacture of multilayer capacitor | |
JP2742414B2 (en) | Manufacturing method of multilayer ceramic electronic component | |
JPH04312909A (en) | Production of laminate | |
JPS6159522B2 (en) | ||
JPH06224072A (en) | Manufacture of multilayer ceramic capacitor | |
JPH04282812A (en) | Manufacture of laminate | |
JP2002299149A (en) | Laminated ceramic capacitor | |
JPH047575B2 (en) | ||
JP2001044059A (en) | Multilayer ceramic capacitor | |
JPH0618148B2 (en) | Method for manufacturing porcelain capacitor | |
JPS5875827A (en) | Internal electrode structure for multilayer ceramic condenser | |
JPH0528888B2 (en) | ||
JPH0684690A (en) | Multilayer capacitor | |
JPH0828138B2 (en) | Method for manufacturing ceramic laminate | |
JPH0738168A (en) | Layer-built piezo-electric device | |
JPH03225903A (en) | Multilayer ceramic capacitor | |
JPH08316093A (en) | Laminated ceramic electronic component manufacturing method | |
JPH07120600B2 (en) | Manufacturing method of multilayer capacitor | |
JPS63265413A (en) | Manufacture of laminated ceramic capacitor | |
JPH0341968B2 (en) | ||
JPH10112420A (en) | Method for manufacturing multilayer capacitor | |
JPH04286107A (en) | Laminated ceramic capacitor | |
JP2603154B2 (en) | Manufacturing method of multilayer electronic component | |
JPH09102437A (en) | Manufacturing method for lamination electronic component |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980514 |