JPH04312184A - 画像処理システムのエッジ検出方法及びその装置 - Google Patents

画像処理システムのエッジ検出方法及びその装置

Info

Publication number
JPH04312184A
JPH04312184A JP3271123A JP27112391A JPH04312184A JP H04312184 A JPH04312184 A JP H04312184A JP 3271123 A JP3271123 A JP 3271123A JP 27112391 A JP27112391 A JP 27112391A JP H04312184 A JPH04312184 A JP H04312184A
Authority
JP
Japan
Prior art keywords
value
edge detection
image processing
adder
processing system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3271123A
Other languages
English (en)
Other versions
JP2977969B2 (ja
Inventor
Joon-Ki Paik
白 俊基
Yong-Cheol Park
パク ヨンチュル
Chan-Kyu Myeong
明 贊奎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JPH04312184A publication Critical patent/JPH04312184A/ja
Application granted granted Critical
Publication of JP2977969B2 publication Critical patent/JP2977969B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N17/00Diagnosis, testing or measuring for television systems or their details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/14Picture signal circuitry for video frequency region
    • H04N5/142Edging; Contouring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/20Image enhancement or restoration using local operators
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は、画像処理システムに係
り、特に多段階線形スレショルド論理要素を用いた画像
処理システムのエッジ検出装置に関する。
【0002】
【従来の技術】映像信号処理分野において、前処理過程
は映像で願っていない、いわゆるノイズのような要素を
除去することにより、たとえばモーションベクトルを検
出するとき正確性を図ることができて極めて重要な過程
である。
【0003】一般に画素当たり8ビットに示される完全
解像度の映像を、画素当たり8ビットより小さいビット
に示される他の形態の映像にマッピングすることにより
計算的な負荷を減少させる方法がある。
【0004】いくつか種類の前処理方法が提案された。 たとえば、1990年8月、IEEE Transac
tions on Consumer Electro
nics.Vol.36.No.3 pp 510〜5
19 に発表された技術は帯域フィルタリングの種類と
考え得るBERP(Band Extract Rep
resentive Bandpass Filter
ing) 法を用いる。
【0005】BERP方法はノイズのような極めて高い
空間上での周波数成分と明暗で僅かな領域のような低周
波成分を効果的にフィルタリングできる反面、いぜんB
ERP映像を示すためには画素当たり2ビット以上が必
要である。
【0006】しかし、検出されたエッジ情報は1つのピ
クセルを1ビットに表現することができる。従って、ハ
ードウェアの減少効果を奏する。
【0007】既存のエッジを検出するための色々の方法
は次の通りである。
【0008】第1に、映像空間での傾き(Gradie
nt)を用いる方法、第2に、ラプラス演算子(Lap
lacean)を用いる方法、第3に局部的な平均値の
差を利用する方法、第4に、予め定められたパターンと
比較する方法、第5に、LOG(Laplacian 
of Gaussian)法である。前述した第1から
第4までの方法は主な短所は映像信号内で高周波成分を
検出するのでノイズが存するとき、エッジ検出の性能が
著しく悪化する。一方、第5の方法は雑音除去効果を有
する反面、多量の雑音を除去するためには計算量が急増
する短所を有した。すなわち、ノイズ及びエッジ情報は
互いに異なる高周波数領域に存するので完璧なエッジ検
出のためにはより強力なローパスフィルタリングが必要
になり、エッジ検出するためにウィンドの大きさを大き
くしなければならない問題を抱えている。
【0009】
【発明が解決しようとする課題】従って、本発明の目的
はウィンドの大きさを増加せずにノイズが減少できるエ
ッジ検出方法を提供することである。
【0010】本発明の他の目的はハードウェア具現が簡
単で実時間処理が可能なエッジ検出装置を提供すること
である。
【0011】
【課題を解決するための手段】本発明の目的を達成する
ために、本発明のエッジ検出方法は、入力される画素デ
ータを多重状態値に変換する変換段階と、前記多重状態
値と予め定められた値とをマッチングするマッチング段
階と、前記マッチングされた結果に応じて判断を行い決
定段階より構成される。
【0012】本発明の他の目的を達成するために、本発
明のエッジ検出方法は、入力された画素データを多重状
態値に変換する変換手段と、前記多重状態値と予め定め
られたパターンとの内積を行うためのマッチング手段と
、前記内積の結果に応じて決定する決定手段より構成さ
れる。
【0013】
【作用】請求項2〜22記載の本発明のエッジ検出装置
を請求項1記載の本発明のエッジ検出方法に従って動作
させることによりノイズが減少でき、ハードウェア具現
が簡単で実時間処理が可能になる。
【0014】
【実施例】以下添付した図面を参照して本発明のデータ
処理装置を説明する前にそのアリゴリズムをみれば次の
通りである。
【0015】本発明は次の定義と論理によって説明され
得る多重状態線形スレショルド論理の線形分離性に基づ
く。2進入力の線形分離性は、〔P.M Lewis 
II and C.L.Coates 、 Thres
hold Logic, John Wiley an
d Sons, 1967〕で議論されたが、多重状態
入力の線形分離性に対する定義は本発明の発明者により
最初に志した。その定義は次の通りである。
【0016】PをL次のベクトル集合とする。Pでベク
トルの各成分が{−j、・・・、−1、0、1、・・・
、k}内でM=j+k+1になる一つを取る。すなわち
、P={X|Xi ∈{−j,・・・,−1,0,1・
・k},i=1,・・・,L}そのとき、P内で互いに
異なるベクトルの数はML になり、−jとkを入力状
態の極値とする。P0 とP1 はP0 ∪P1 =P
のような二つの互いに排他的な副集合としよう。
【0017】
【数1】
【0018】ここで、θはスレショルド値であり、ある
ウェイトベクトルWが与えられたとき、論理的関数Fは
、WT X>WT Y、∀X∈P1 、∀Y∈P0 の
とき線形的に分離できるクラスに属する関数に定義され
る。
【0019】多重状態線形分離性の分析は複雑な作業で
ある。しかし、提案されたエッジ検出器で使用される論
理的関数の独特なクラスは次の理論に従って線形的に分
離できることと見せられる。その理論は次の通りである
【0020】XがL次の入力ベクトルであり、その構成
成分のすべてが極値であり、P1 ={X}であり、P
0 =P−{X}とする。すなわち、P1 ={X|X
i {−j,k},i=1,・・・、L}であり、P0
 =P−P1  ここで、P、−jそしてkは前記定義で与えられた。そ
のとき、入力ベクトルXを他のベクトルから分離する線
形的に分離できる関数Fが存する。
【0021】前記理論に対する証明は次の通りである。
【0022】前記定義を使用することにより、またWT
X>WTY、∀X∈P1 、∀Y∈P0 を満たすウェ
イトベクトルWが存することを示すことによりこの理論
を証明する。
【0023】次いで、X∈P1 に対応するウェイトベ
クトルを考えよう。
【0024】
【数2】
【0025】そのとき次の不等式Wi Xi ≧Wi 
Yi ,∀i を満たす。
【0026】i=1,・・・,Lに対する前記不等式を
加えることにより、WT X>WT Yを有する。なぜ
ならば、少なくとも1つのiに大してはその等式が維持
できないからである。集合P−1={−X}を考えよう
。ここで、XとWはそれぞれ前記式で定義されたことと
等しいのである。そのとき、WT (−X)<WT Y
<WTX,∀Y∈P0 のような多重状態入力のマルチ
カテゴリ判別関数を有する。エッジ検出のための多重状
態線形スレショルド論理を使用するために連続的な画素
の値を幾つかの非連続的な状態にマッピングすべきであ
る。まず、入力状態を定義すれば次の通りである。
【0027】与えられた画素位置でエッジを検出するた
めにl×l局部ウィンドを用い映像の大きさがn=n1
 ×n2 と仮定しよう。
【0028】辞典順に配列された映像でi番目画素値を
Xi ,i=1,・・・,rとしよう。また、r=l×
lであり、Xi により中心になる局部ウィンド内部に
辞典順に配列された映像のj番目画素値をZj ,j=
1,・・・,rとしよう。そのとき、Zj はXi に
対応する局部ウィンドに対して次のようにマッピングす
ることにより得られる。
【0029】Zj =Xk ,j=1,・・・,rここ
で、 k=i{└(j−1)/l┘−└l/2┘}n2 +└
(j−1)mod l−l/2┘} 上記式で表示法└l/2┘は結果的な分けの定数部分を
示し、imod lは定数lにより定数iの除算の残り
値と同一である。一次元的配列Zjが得られた後i番目
画素に対応される局部平均は次の通りである。
【0030】
【数3】
【0031】そのとき、線形スレショルド論理にj番目
入力に対する状態は次の通り定義される。
【0032】
【数4】
【0033】ここで、εはノイズデータに対する保護係
数である。抑えられるべきノイズの量が大きければ大き
い程、εはさらに大きくなるべきである。
【0034】次いでエッジを定義することとする。
【0035】方向がそれぞれ0と180、90と270
、45と225、135と315度である4対の両方向
性エッジを定義する。
【0036】第1に、右のエッジは局部ウィンド内で右
側から左側に入力状態を増加する形態に定義される。た
とえば、l=3に対して右側エッジとその対称である右
側エッジはそれぞれ次のように与えられる。
【0037】
【数5】
【0038】ここで、Xはdon’t  care状態
を示す。
【0039】第2に、上方と下方のエッジは次のように
与えられる。
【0040】
【数6】
【0041】第3に、右上と左下のエッジはそれぞれ次
のように与えられる。
【0042】
【数7】
【0043】最後に、左上と右下のエッジはそれぞれ次
のように与えられる。
【0044】
【数8】
【0045】l=5の場合は右側エッジは第1列に1、
最後の列に−1、また残りの列はdon’t  car
e状態になる。
【0046】前記多重カテゴリ識別関数WT (−X)
<WTY<WT X,∀Y ∈P0 を使用することに
より、右側エッジと左側エッジは“W─”と表示された
同一のウェイトベクトルにより検出され得る。なぜなら
ば、それは極値より構成され右側エッジは反転された符
号を有する右側エッジと等しい。同様方法にて上側と下
側のエッジ、右上と左下のエッジ、左上と右下エッジは
それぞれ“W|”、“W/”、“W\”により検出され
る。
【0047】前記整理により示されたように、たとえば
l=3に対して右側又は左側エッジを検出するために一
つの可能なウェイトベクトルは次の通りである。
【0048】W─=〔1X  −1  1X  −1 
 1X  −1〕T  従って、残りのウェイトベクトル、すなわち、“W|”
、“W/”と“W\”は“W─”の要素を適切に配列す
ることにより得られる。
【0049】他の方法としては、LMS(Least−
Mean−Square)アルゴリズムもウェイトベク
トルを得るために用いられる。
【0050】前記エッジの定義を基にするとき、エッジ
は適切に得られたウェイトベクトルを有する4個の多重
状態線形スレショルド論理の出力を論理和することによ
り検出される。
【0051】完全なエッジ検出過程は次の段階によって
説明される。
【0052】第1に局部ウィンドlの大きさを選択する
【0053】第2に、i=1、・・・、nに対して次を
行う。
【0054】1)Zを得る。
【0055】2)V0 =1に置き入力状態をVを計算
する。
【0056】3)内積W─T V、W|T V、W/T
 V、W\T Vを計算する。
【0057】もしそれらのうち少なくとも1つが出力ス
レショルドθより大きいか等しいか、または−θより小
さいか等しければORゲートの出力は1と等しい、この
とき位置iでエッジがある。そうでなければ、位置iで
エッジがない。
【0058】前記アルゴリズムを具現する際に、下の非
線形関数g(・)が用いられる。
【0059】
【数9】
【0060】ここで、θはスレショルド値であり、前記
ウェイトベクトルが使用されるとき、θは6に設定され
る。マスク大きさの選択に関しては次の問題が考慮され
るべきである。マスク大きさが大きければ大きいほど、
前記アルゴリズムの2番目段階2)で局部的な平均によ
るノイズを制御しやすい。
【0061】しかし、マクス大きさを増加させるにおい
て、2つの短所がある。一つ、0、45、90、135
、180、225、270、315度以外の他の方向に
エッジを検出しにくくなる。
【0062】二つ、多くの入力が線形スレショルド論理
のために要求されるので多くの相互連結と計算が要求さ
れる。l=3のマスク大きさは一番小さい対称的なウィ
ンドなのでどの方向へでもエッジに敏感なウィンドであ
り、この理由に基づいて極めて効果的であろうと考えら
れる。
【0063】図1は本発明の信号流れを示すためのフロ
ーチャートである。
【0064】図1を使用することによりソフトウェア具
現に直接実現され得る。第1段階でインデクスiは辞書
順に配列された画素位置を示す。第2段階でi番目画素
Xi を中心に局部映像パターンの隣の画素(Zj ,
j=1,・・・,m)を求める。第3段階で、Zj は
i番目画素Xi を含む局部ウィンドの画素の集合を示
し、mは局部ウィンドで画素の数を示す。
【0065】第3段階で、Zj (j=1,・・・,m
)は対応される多重状態値(Vj ,j=1,・・・,
m)にマッピングされる。
【0066】第4段階で、V=〔Vi ,・・・,Vm
 〕T は予め定形化されたエッジパターンW1 、W
2 、W3 、W4 とそれぞれ比較される。
【0067】第5段階でもしVが予め定形化されたエッ
ジパターンW1 、W2 、W3 、W4 中の少なく
ともいずれか一つと一致するとき、第6段階でi番目画
素Xi はエッジと判断され、いずれのものとも一致し
ないときは第7段階でi番目画素Xi はエッジでない
ことと判断される。第8段階でi番目画素Xi が総画
素値でない場合は、第9段階でi値を1増加させ第2段
階にフィードバックして主ループを続けて行う。また、
第8段階でi番目画素Xi が総画素値の場合は動作を
中止する。
【0068】図2は本発明のエッジ検出装置の一般的な
ブロック図を示したもので、その構成と機能は次の通り
である。
【0069】図2は次のような3個のブロックより構成
されている。
【0070】原画像信号Xi をウィンドを用いて辞書
順に配列された信号(Z1 ,・・・,Zm )を用い
て多重状態信号(V1 ,・・・,Vm )に変換する
エンコーディングブロックと多重態信号(V1 ,・・
・,Vm )と、予め定められたエッジ形態W1 、W
2 、W3 、W4 ;W─、W|、W/、W\との内
積をそれぞれ行うマッチングブロックと内積された値と
出力スレショルド値とを比較し、比較された結果を論理
和して原画像データXi がエッジであるか否かを判断
する決定ブロックより構成されている。
【0071】前記3個のブロックは次のような機能を行
う。
【0072】原画像の任意の画素Xi を処理するため
に周辺画素の相関関係によるエッジ与否を決定するため
にウィンドの概念が必要になる。それでエンコーディン
グブロックはこの隣の画素を一次元的に配列(Z1 ,
Z2 ,・・・,Zm )して線形的な明度を有するデ
ータを平均値を求めて隣の画素(Z1 ,Z2 ,・・
・,Zm)を対応される多重状態値(V1 ,V2 ,
・・・,Vm )に変換する。もしVj がM(M>2
)個の状態を有すると、Vj を示すために┌log2
 M┐が要求される。表示法┌log2 M┐はもしM
が2の倍数であればlog2 Mを示し、そうでなけれ
ば(log2 M+1)の定数部分を示す。ここで平均
値を雑音除去効果のあるパラメータであるεという要素
を挿入して各画素平均値+εより大きい範囲、平均値−
εより小さい範囲、またその間の範囲に対応する平均値
+εと平均値−εとの間の値を有する3個のレベルを設
定して各画素を対応レベルの値にコード変換する。ここ
で、εの値により雑音の減少が目立つ。
【0073】マッチングブロックは変換された映像信号
と4個の予め定められたエッジ形態ベクトルとのマッチ
ング与否を出力する。すなわち、マッチングブロックは
水平,垂直及び左右対角線方向に対して予想される4種
類の予め定形化された各エッジパターンW1 、W2 
、W3 、W4 とコード変換された映像データV1 
,V2 ,・・・,Vm ;Vの内積演算をする。ここ
でW1 T Vは水平方向エッジ形態ベクトルデータW
1 と映像データV1 ,V2 ,・・・,Vm ;V
の内積を示す。4種類の内積演算を一括処理して画像処
理の基本となる実時間具現が可能である。
【0074】決定ブロックは内積(W1 T ・V,W
2 T ・V,W3 T ・V,W4 T ・V)の各
出力値と与えられた常数を比較し、出力値のうち少なく
とも一つが与えられた常数より大きいときエッジと判断
する機能を行う。 そして内積の出力値と比較する与えられた常数はマイコ
ン等でユーザーにより調整できる。
【0075】図3は本発明の実施例のエッジ検出装置を
示したもので、その構成と機能は次の通りである。
【0076】エンコーディング手段は入力された映像信
号の1水平走査期間遅延された信号を出力するための第
1遅延素子10と、2水平走査期間遅延された信号を出
力するための第1遅延素子10に直列連結された第2遅
延素子20と、入力端と第1遅延素子10の出力端と第
2遅延素子20の出力端に連結され3×3ウィンド内の
9個の画素データを貯蔵するための3×3ウィンド30
と、3×3ウィンド内の中心画素データを除いた8個の
画素データの平均値を求めるための平均値計算回路40
と、平均値と与えられたスレショルド値εで3個のレベ
ルより区分し中心画素値を除いた8個の画素データを3
個のレベルに該当するコードに変換する3状態エンコー
ダ回路50より構成されている。
【0077】マッチング手段は各予想エッジパターンW
1 、W2、W3 、W4 と3状態エンコーダ回路5
0の出力との内積をする内積回路60,61,62,6
3より構成されている。
【0078】決定手段は各内積回路60,61,62,
63の出力と与えられた定数とを比較してマッチング信
号を出力するための比較回路70,71,72,73と
各比較回路70,71,72,73の出力を論理和する
ORゲート80より構成されている。
【0079】図4はエンコーディング手段の実施例を示
したものである。
【0080】3×3ウィンド30は8ビットより表現さ
れた順次に走査されたディジタル映像信号を入力するた
めに入力端に直列連結され、8個の並列連結されたDフ
リップフロップよりなる3個のレジスタ90,91,9
2と第1遅延素子10の出力信号を入力するために第1
遅延素子10の出力端に連結され、8個の並列連結され
たDフリップフロップよりなる3個のレジスタ100,
101,102と第2遅延素子20の出力信号を入力す
るために第2遅延素子の出力端に直列連結され、8個の
並列連結されたDフリップフロップよりなる3個のレジ
スタ110,111,112よりなり3×3ウィンド3
0内の9個の画素データを貯蔵する。そして、実際的な
平均値計算回路120は中心画素データが貯蔵されたレ
ジスタ101の出力信号を除いたレジスタ90,91,
92,100,102,110,111,112の出力
信号を入力して2つずつ加えるための加算器121,1
22,123,124と加算器121,122,123
,124の出力信号から最下位ビットLSBを捨てた後
に残される信号を2つずつ加えるための加算器130,
131と、加算器130,131の出力信号から最下位
ビットLSBを捨てた後残された信号を加え、その出力
信号の最下位1ビットを捨てた後残された信号を出力す
るための加算器140より構成される。8個の出力信号
レジスタ90,91,92,100,102,110,
111,112の出力信号と加算器140の出力信号は
レジスタに貯蔵される。
【0081】すなわち、平均値計算回路120は次によ
り平均値を計算する。レジスタ90,91,92,10
0,102,110,111,112の出力がZ1 ,
Z2 ,Z3 ,Z4 ,Z5 ,Z6 ,Z7 ,Z
8 ,Z9 とするとき、中心画素Z5 を除いた2つ
ずつのデータを加えた値をA,B,C,Dとすれば、A
=Z1 +Z2   B=Z3 +Z4   C=Z6
 +Z7   D=Z8 +Z9 になる。ここで、値
A,B,C,DのLSB1ビットを捨てた値をE,F,
G,Hとすれば、E=A/2=(Z1 +Z2 )/2
,  F=B/2=(Z3 +Z4 )/2,G=C/
2=(Z6 +Z7 )/2,  H=D/2=(Z8
 +Z9 )/2になる。また、E,F,G,Hをそれ
ぞれ二つずつ加算した値をI,Jとすれば、I=E+F
=(Z1 +Z2 +Z3 +Z4 )/2,J=G+
F=(Z6 +Z7 +Z8 +Z9 )/2になる。 ここでLSB1ビットを捨てた値をK,Lとすれば、K
=(E+F)/2=(Z1 +Z2 +Z3 +Z4 
)/4,L=(G+H)/2=(Z6 +Z7 +Z8
 +Z9 )/4になる。そしてK,Lを加えてLSB
1ビットを捨てた値が平均値Mとすれば、M=(K+L
)/2=(Z1+Z2+Z3+Z4+Z6+Z7+Z8
+Z9)/8になる。求められた平均値は正確な平均値
ではない。しかし、正確な平均値と求められた平均値と
の差が結果的なエッジの質に影響を及ぼさない。
【0082】何故ならば、平均値が次の段階の3状態エ
ンコーディングのために使われるからである。
【0083】そして3状態エンコーダ150は平均値M
と雑音除去効果のあるパラメータであるεを加算してM
+ε値を出力する加算器160、平均値Mとパラメータ
−εとを加えて値M−εを出力するための加算器161
と、中心画素データZ5 を除いた各画素データZ1 
,Z2 ,・・・Z9 値をM+ε値と比較するための
比較器170と、中心画素データZ5 を除いた各画素
データ(Z1 ,Z2 ・・・,Z9 )の値とM−ε
を比較するための比較器171、前記比較器170の上
位ビット信号V11,V21,・・・,V91を出力す
るためのインバータ180と、前記比較器171の出力
信号と3状態信号の下位ビット信号V10,V20,・
・・,V90をそれぞれ論理和するためのORゲート1
90より構成されている。
【0084】すなわち、3状態エンコーダ150は入力
される画素データがM−εより小さい値の場合は値11
をデータ力し、M−εより大きいか等しくM+εより小
さいか等しい値の場合は00を、M+εより大きい値の
場合は01を出力することになる。ここで、上位ビット
信号を符号ビット、下位ビット信号を大きさビットとす
るとき、11、00、01はそれぞれ3状態−1,0,
1を示す。
【0085】図5は4個の予め定形化されたエッジパタ
ーンW1 ,W2 ,W3 ,W4 を示したものであ
る。
【0086】図6A,図6B,図7C,図7Dは本発明
のマッチング手段の内積を行うための回路を示した定形
化された4個エッジパターンW1 ,W2 ,W3 ,
W4 データの2の補数値と入力画素データの3状態に
変換された値V11,V10,V21,V20,・・・
,V91,V90の内積を行うことになる。
【0087】図8はその内積のための真理表を示したも
のである。
【0088】図9は内積を求めるためのカルノー図(K
arnaugh’s map)及び特性方程式を示した
ものである。
【0089】図9に示した式は次の通りである。
【0090】
【数10】
【0091】前記式は4個の定形化されたエッジパター
ンの性質を用いてさらに簡略化され得る。
【0092】第1に、Wj1=Wj0=1の場合は、

0093】
【数11】
【0094】のようになる。
【0095】第2にWj1=Wj0=0の場合は、Uj
1(MSB)=Uj0(LSB)=0である。すなわち
、内積出力は映像データに拘らず常に0なのでエッジ結
果に影響を与えない。
【0096】第3にWj1=0,Wj0=1の場合は、
Uj1(MSB)=Vj1 Uj0(LSB)=Vj0 のようになる。
【0097】結局、ハードウェアを具現する場合、4個
の定形化されたエッジパターンは暗示的にのみ存し、3
状態値のみ内積の出力に影響を与えるように構成される
【0098】このように得られた各内積の出力は−1、
0、1値に示され2ビット表現され、3×3ウィンドの
9個の画素データ中でウェイト値が0である画素は除い
て残りの6画素に対してのみハードウェア具現時考慮す
る。
【0099】各定形化されたエッジパターンのウェイト
値と3状態値の内積回路を具現してみれば次の通りであ
る。
【0100】第1にW1 ・Vのマッチング回路はそれ
ぞれ
【0101】
【数12】
【0102】を出力する。
【0103】第2にW2 ・Vのマッチング回路はそれ
ぞれ
【0104】
【数13】
【0105】を出力する。
【0106】第3にW3 ・Vのマッチング回路はそれ
ぞれ
【0107】
【数14】
【0108】を出力する。
【0109】第4にW4 ・Vのマッチング回路はそれ
ぞれ
【0110】
【数15】
【0111】を出力する。
【0112】前記論理式は図6A,図6B,図7C,図
7Dに示したようにインバータ200とANDゲート2
10を使用することにより具現される。次いで、対応す
るマッチング回路でANDゲート210の出力とインバ
ータ200の出力は内積のために加えられる。ここで、
加算は加算器220を使い絶対値回路230を付加する
ことにより具現される。絶対値回路230の付加はAN
Dゲート210の出力が2の補数で表現されるので加算
の最終結果が負の値の場合に等しいエッジ結果を得るた
めに行われる。また、ANDゲート210の出力とイン
バータ200の出力の加算は符号拡張法を使用する。絶
対値を得るための図6A,図6B,図7C,図7Dに示
した絶対値回路230は図10に更に詳しく示されてい
る。
【0113】図10において、4ビットの入力データを
A3 A2A1 A0 とし、出力をB2 B1 B0
 としよう。 絶対値回路230は入力データA1 とA0 を論理和
するORゲート240と前記ORゲートの出力信号と入
力データA3 のすべてが“1”の場合にのみ“0”を
出力するためのNANDゲート250と、入力データA
3 とA0 のすべてが“1”の場合にのみ“0”を出
力するためのNANDゲート260と、入力データA2
 と前記NANDゲート250の出力が相違の場合に“
1”を出力するためのEXNORゲート270と、入力
データA1 と前記NANDゲート260の出力が相違
の場合に“1”を出力するためのEXNORゲート28
0より構成されている。それで、前記EXNORゲート
270、EXNORゲート280、入力データA0 の
出力値がそれぞれ絶対値回路230の出力B2 B1 
B0 値になる。
【0114】図11は決定手段の具体的な実施例の回路
を示したものである。決定手段は前記絶対値回路230
の出力信号out1,out2,out3,out4と
エッジを示すスレショルド値110を入力する4個の比
較器290と前記4個の比較器290の出力信号をそれ
ぞれ2つずつ論理和する2つのORゲート300と、前
記2つのORゲートの出力信号を論理和するORゲート
310より構成されている。そして、もし出力信号ou
t1,out2,out3,out4のうち少なくとも
1つ以上が6以上の値を示す場合にORゲート310の
出力は“1”になりエッジと判断される。
【0115】図12は本発明のエッジ検出回路の動作を
説明するための実施例の動作タイニング図である。
【0116】任意的に3×3ウィンド90,91,92
,100,101,102,110,111,112に
それぞれ図11に示した入力映像データが貯蔵されてい
たとしよう。ここでεの値は10とした。そして、3状
態の値V1 ,V2 ,V3 ,V4 ,V5 ,V6
 ,V7 ,V8 ,V9 が図11に示されている。 ここで点線で表示した部分のデータが予め整形化された
エッジパターンと一致することが分かる。すなわち、1
番目点線で表示した部分はW1、2番目点線で表示した
部分はW2 とそれぞれ一致することが分かる。従って
、出力信号out1,out2の少なくとも1つが“1
”のとき出力信号(edge)が  “1”になる。
【0117】
【発明の効果】以上述べたように、本発明のエッジ検出
装置は次のような利点を有する。
【0118】第1に、多重状態エンコーディング方法で
ノイズ除去効果のあるパラメータを使用することにより
付加的なローパスフィルタを使用せずノイズが大幅に減
少できる。
【0119】第2に、最小の2次元対称的なウィンドで
ある3×3局部ウィンドを使用することによりハードウ
ェア減少効果を極大化し演算時間を最小化する。
【0120】第3に、色々の線形スレショルド論理を同
時に使用することにより多段階線形スレショルド論理の
方向変化に無関係の特性が利用できる。
【図面の簡単な説明】
【図1】  本発明の画像処理システムのエッジ検出装
置の信号の流れを示す流れ図である。
【図2】  本発明の一般的なエッジ検出装置を示すブ
ロック図である。
【図3】  本発明の一実施例のエッジ検出装置を示す
ブロック図である。
【図4】  本発明のエンコーディング回路の一実施例
を示すブロック図である。
【図5】  本発明の整形化されたエッジパターンを示
したものである。
【図6】  Aは本発明のマッチング回路W1 ・Vの
演算を行うための内積回路図である。Bは本発明のマッ
チング回路W2 ・Vの演算を行うための内積回路図で
ある。
【図7】  Cは本発明のマッチング回路W3 ・Vの
演算を行うための内積回路図である。Dは本発明のマッ
チング回路W4 ・Vの演算を行うための内積回路図で
ある。
【図8】  本発明のマッチング回路の内積のための真
理表である。
【図9】  本発明のエッジ検出装置における内積を求
めるためのカルノー図及び特性方程式を示したものであ
る。
【図10】  本発明のマッチング回路の絶対値回路の
論理回路図を示したものである。
【図11】  本発明の決定回路の論理回路図を示した
ものである。
【図12】  本発明のエッジ検出動作を説明するため
の動作タイミング図である。
【符号の説明】

Claims (22)

    【特許請求の範囲】
  1. 【請求項1】  入力される画素データを多重状態値に
    変換する変換段階と、前記多重状態値と予め定められた
    値とをマッチングするマッチング段階と、前記マッチン
    グされた結果に応じて判断を行う決定段階を備えること
    を特徴とする画像処理システムのエッジ検出方法。
  2. 【請求項2】  入力された画素データを多重状態値に
    変換する変換手段と、前記多重状態値を予め定められた
    値とをマッチングするマッチング手段と、前記マッチン
    グされた結果に応じて判断を行う決定手段を備えたこと
    を特徴とする画像処理システムのエッジ検出装置。
  3. 【請求項3】  前記変換手段が画素データを貯蔵する
    ための貯蔵手段を更に具備したことを特徴とする請求項
    2記載の画像処理システムのエッジ検出装置。
  4. 【請求項4】  前記貯蔵手段はl×l個のデータを貯
    蔵することを特徴とする請求項3記載の画像処理システ
    ムのエッジ検出装置。
  5. 【請求項5】  前記変換手段はl×l個のデータの平
    均値を計算する平均値計算回路と、前記平均値と任意の
    常数を用いて、前記l×l個のデータを多重状態値に変
    換するマッピング回路を具備したことを特徴とする請求
    項4記載の画像処理システムのエッジ検出装置。
  6. 【請求項6】  前記任意の常数はノイズを制御するパ
    ラメータであることを特徴とする請求項5記載の画像処
    理システムのエッジ検出装置。
  7. 【請求項7】  前記l値が3であることを特徴とする
    請求項6記載の画像処理システムのエッジ検出装置。
  8. 【請求項8】  前記貯蔵手段は前記入力された画素デ
    ータを1水平ライン遅延させるための第1遅延素子と、
    前記第1遅延素子に直列に連結され前記入力される画素
    データを2水平ライン遅延させるための第2遅延素子と
    、前記入力される画素データを入力するために入力端子
    に直列に連結された第1の3個組レジスタと、前記1水
    平ライン遅延された信号を入力するために前記第1遅延
    素子に直列に連結された第2の3個組レジスタと、前記
    2水平ライン遅延された信号を入力するために前記第2
    遅延素子に直列に連結された第3の3個組レジスタより
    構成されたことを特徴とする請求項7記載の画像処理シ
    ステムのエッジ検出装置。
  9. 【請求項9】  前記第1,第2,第3レジスタはそれ
    ぞれ複数のDフリップフロップより構成されたことを特
    徴とする請求項8記載の画像処理システムのエッジ検出
    装置。
  10. 【請求項10】  前記平均値計算回路は中心画素デー
    タを有する前記第2レジスタ中の一つを除いた前記第1
    ,第2,第3レジスタの4対の出力信号を加えるための
    第1の4個組の加算器と、前記第1の4個組加算器の出
    力の最下位1ビットを捨てた値をそれぞれ2個ずつ加算
    する第2の2個組加算器と、前記第2の2個組加算器の
    出力の最下位1ビットを捨てた値を加算し、この加算さ
    れた信号の最下位1ビットを捨てた値を出力する第3加
    算器より構成されたことを特徴とする請求項9記載の画
    像処理システムのエッジ検出装置。
  11. 【請求項11】  前記マッピング回路は前記入力され
    た画素データを3状態の値に変換することを特徴とする
    請求項10記載の画像処理システムのエッジ検出装置。
  12. 【請求項12】  前記3状態の値は2の補数表現でそ
    れぞれ11,01,00であることを特徴とする請求項
    11記載の画像処理システムのエッジ検出装置。
  13. 【請求項13】  前記マッピング回路は前記第3加算
    器の出力信号と前記任意の常数を加算する第4加算器と
    、前記第3加算器の出力信号と前記任意の常数の負の値
    を加算する第5加算器と、前記中心画素データを除いた
    8個の画素データと前記第4加算器の出力信号をそれぞ
    れ比較する第1の8個組比較回路と、前記8個の画素デ
    ータと前記第5加算器の出力信号をそれぞれ比較する第
    2の8個組比較回路と、前記第1比較回路の出力信号を
    それぞれ反転し、前記3状態値の上位ビット信号をそれ
    ぞれ出力する8個のインバータと前記8個のインバータ
    の出力信号と前記第2の8個組比較回路の出力信号を論
    理和し、前記3状態値の下位ビット信号をそれぞれ出力
    する8個のORゲートより構成されることを特徴とする
    請求項12記載の画像処理システムのエッジ検出装置。
  14. 【請求項14】  前記マッチング手段は前記3状態値
    と前記予め定められた4個のエッジパターンの内積を行
    うことを特徴とする請求項13記載の画像処理システム
    のエッジ検出装置。
  15. 【請求項15】  前記予め定められた4個のエッジパ
    ターンは3×3行列よりなることを特徴とする請求項1
    3記載の画像処理システムのエッジ検出装置。
  16. 【請求項16】  前記予め定められた4個のエッジパ
    ターンは第1列が−1の値、第2列が0の値、第3列が
    1の値を有する第1パターンと、第1行が−1の値、第
    2行が0の値、第3行が1の値を有する第2パターンと
    、第1行が−1,−1,0の値、第2行が−1,0,1
    の値、第3行が0,1,1の値を有する第3パターンと
    、第1行が0,−1,−1の値、第2行が1,0,−1
    の値、第3行が1,1,0の値を有する第4パターンを
    具備したことを特徴とする請求項15記載の画像処理シ
    ステムのエッジ検出装置。
  17. 【請求項17】  前記3状態値と前記第1パターンの
    前記内積回路は前記3状態値の第1,第4,第7値の上
    位ビットをそれぞれ反転するための3個のインバータと
    、前記3状態値の第1,第4,第7値の下位ビットと前
    記3個のインバータの出力信号を論理的に掛けるための
    3個のANDゲートと、符号拡張により前記3状態値の
    第3,第6,第9値と前記3個のANDゲートの出力信
    号を加えるための第8の5個組加算器と、前記第8の5
    個組加算器の最後の出力信号が陰の値のとき絶対値を得
    るための絶対値回路を具備したことを特徴とする請求項
    16記載の画像処理システムのエッジ検出装置。
  18. 【請求項18】  前記3状態値と前記第2パターンの
    前記内積回路は前記3状態値の第1,第2,第3値の上
    位ビットをそれぞれ反転するための3個のインバータと
    、前記3状態値の第1,第2,第3値の下位ビットと前
    記3個のインバータの出力信号を論理的にかけるための
    3個のANDゲートと、符号拡張により前記3個のAN
    Dゲートの出力信号と前記3状態値の第7,第8,第9
    値を加えるための第9の5個組加算器と、前記第9の5
    個組加算器の最終出力信号が陰の値のとき絶対値を得る
    ための絶対値回路を具備したことを特徴とする請求項1
    7記載の画像処理システムのエッジ検出装置。
  19. 【請求項19】  前記3状態値と前記第3パターンの
    前記内積回路は前記3状態値の第1,第2,第4値の上
    位ビットをそれぞれ反転するための3個のインバータと
    、前記3状態値の第1,第2,第4値の下位ビットと前
    記3個のインバータの出力信号を論理的にかけるための
    3個のANDゲートと、符号拡張により前記3状態値の
    第6,第8,第9値と前記3個のANDゲートの出力信
    号を加えるための第10の5個組加算器と、前記第10
    の5個組加算器の最終出力信号が陰の値のとき絶対値を
    得るための絶対値回路を具備したことを特徴とする請求
    項18記載の画像処理システムのエッジ検出装置。
  20. 【請求項20】  前記3状態値と前記第4パターンの
    前記内積回路は前記3状態値の第2,第3,第6値の上
    位ビットをそれぞれ反転するための3個のインバータと
    、前記3状態値の第2,第3,第6値の下位ビットと前
    記3個のインバータの出力信号を論理的にかけるための
    3個のANDゲートと、符号拡張により前記3状態値の
    第4,第7,第8値と前記3個のANDゲートの出力信
    号を加えるための第11の5個組加算器と、前記第11
    の5個組加算器の最終出力信号が陰の値のとき絶対値を
    得るための絶対値回路を具備したことを特徴とする請求
    項19記載の画像処理システムのエッジ検出装置。
  21. 【請求項21】  前記絶対値回路は入力される4ビッ
    ト信号の下位2ビットを論理和するORゲートと前記O
    Rゲートの出力信号と前記4ビットのうち最上位ビット
    を入力する第1NANDゲートと前記入力された4ビッ
    トのうち最上位ビットと最下位ビットを入力する第2N
    ANDゲートと前記入力された4ビットのうち上位から
    2番目ビット信号と前記第1NANDの出力信号を入力
    する第1EXNORゲートと前記4ビットのうち下位か
    ら2番目ビット信号と前記第2NANDゲートの出力信
    号を入力する第2EXNORゲートより構成され前記第
    1EXNORゲートの出力が絶対値最上位ビットであり
    、前記第2EXNORゲートの出力が絶対値中のビット
    であり、前記第8加算器の最下位ビット信号が絶対値の
    最下位ビットであることを特徴とする請求項20記載の
    画像処理システムのエッジ検出装置。
  22. 【請求項22】  前記決定手段は前記4個の絶対値回
    路の出力信号と与えられたスレショルド値をそれぞれ入
    力する第3の4個比較回路と前記第3の4個組比較回路
    の出力信号の2個ずつを論理和する2個のORゲートと
    前記2個のORゲートの出力信号を論理和するORゲー
    トより構成されることを特徴とする請求項21記載の画
    像処理システムのエッジ検出装置。
JP3271123A 1991-03-28 1991-10-18 画像処理システムのエッジ検出方法及びその装置 Expired - Fee Related JP2977969B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019910004871A KR940007346B1 (ko) 1991-03-28 1991-03-28 화상 처리 시스템의 엣지 검출 장치
KR1991-004871 1991-03-28

Publications (2)

Publication Number Publication Date
JPH04312184A true JPH04312184A (ja) 1992-11-04
JP2977969B2 JP2977969B2 (ja) 1999-11-15

Family

ID=19312579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3271123A Expired - Fee Related JP2977969B2 (ja) 1991-03-28 1991-10-18 画像処理システムのエッジ検出方法及びその装置

Country Status (10)

Country Link
US (1) US5212740A (ja)
JP (1) JP2977969B2 (ja)
KR (1) KR940007346B1 (ja)
CN (1) CN1079555C (ja)
DE (1) DE4131778C2 (ja)
FR (1) FR2674653B1 (ja)
GB (1) GB2254217B (ja)
IT (1) IT1251897B (ja)
RU (1) RU2020582C1 (ja)
TW (1) TW211609B (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060556A (ja) * 2007-09-04 2009-03-19 Panasonic Corp 画像表示装置
WO2011145436A1 (en) * 2010-05-18 2011-11-24 Sharp Kabushiki Kaisha Methods, apparatus, program and media for edge detection technique having improved feature visibility

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3073599B2 (ja) * 1992-04-22 2000-08-07 本田技研工業株式会社 画像のエッジ検出装置
JP2917661B2 (ja) * 1992-04-28 1999-07-12 住友電気工業株式会社 交通流計測処理方法及び装置
JP2940317B2 (ja) * 1992-06-24 1999-08-25 三菱電機株式会社 画像処理装置
US5519793A (en) * 1992-11-05 1996-05-21 The United States Of America As Represented By The Secretary Of The Interior Apparatus and method for computer vision measurements
KR940017695A (ko) * 1992-12-09 1994-07-27 정용문 블럭간의 유사성을 고려한 중간조 화상의 부호화 방법
WO1995006283A1 (en) 1993-08-24 1995-03-02 Downs Roger C Topography processor system
GB9317600D0 (en) * 1993-08-24 1993-10-06 Downs Roger C Image pattern thread processor
GB2319688B (en) * 1993-08-24 1998-09-09 Downs Roger C Topography processor system
KR0174454B1 (ko) * 1995-06-30 1999-03-20 배순훈 특징점 기반 움직임 보상에서의 에지 검출, 세선화 방법 및 장치
US5970166A (en) * 1996-09-24 1999-10-19 Cognex Corporation System or method for identifying contents of a semi-opaque envelope
US5987159A (en) * 1996-09-24 1999-11-16 Cognex Corporation System or method for detecting defect within a semi-opaque enclosure
US6408109B1 (en) 1996-10-07 2002-06-18 Cognex Corporation Apparatus and method for detecting and sub-pixel location of edges in a digital image
US5949905A (en) * 1996-10-23 1999-09-07 Nichani; Sanjay Model-based adaptive segmentation
US6154577A (en) * 1996-11-13 2000-11-28 Eastman Kodak Company Digital image processing method and computer program product
US5912984A (en) * 1996-12-19 1999-06-15 Cognex Corporation Method and apparatus for in-line solder paste inspection
US5995900A (en) * 1997-01-24 1999-11-30 Grumman Corporation Infrared traffic sensor with feature curve generation
US5966475A (en) * 1997-02-20 1999-10-12 Hewlett-Packard Company System for enlarging and smoothing textual characters
US6192162B1 (en) * 1998-08-17 2001-02-20 Eastman Kodak Company Edge enhancing colored digital images
JP3699873B2 (ja) * 1999-10-27 2005-09-28 オリンパス株式会社 画像処理装置
US6862368B1 (en) 2000-01-12 2005-03-01 Koninklijke Philips Electronics N.V. Method and apparatus for edge detection
US6657677B1 (en) 2000-01-12 2003-12-02 Koninklijke Philips Electronics N.V. Method and apparatus for improving conversion from SD to HDTV
US6717622B2 (en) * 2001-03-30 2004-04-06 Koninklijke Philips Electronics N.V. System and method for scalable resolution enhancement of a video image
US7003161B2 (en) * 2001-11-16 2006-02-21 Mitutoyo Corporation Systems and methods for boundary detection in images
US20030095113A1 (en) * 2001-11-21 2003-05-22 Yue Ma Index and retrieval system and method for scanned notes from whiteboard
US6941331B2 (en) * 2002-05-14 2005-09-06 Kwe International, Inc. Interpolation of video and audio digital data
CN1759599A (zh) * 2003-03-11 2006-04-12 皇家飞利浦电子股份有限公司 从一维数据流产生同步的多维数据流的方法和系统
DE10326032B4 (de) * 2003-06-10 2006-08-31 Hema Electronic Gmbh Verfahren zum Selbsttest eines Bildverarbeitungssystems
DE10326033B4 (de) * 2003-06-10 2005-12-22 Hema Electronic Gmbh Verfahren zur adaptiven Fehlererkennung auf einer inhomogenen Oberfläche
DE10326035B4 (de) * 2003-06-10 2005-12-22 Hema Electronic Gmbh Verfahren zur adaptiven Fehlererkennung auf einer strukturierten Oberfläche
DE10326031B4 (de) * 2003-06-10 2005-12-22 Hema Electronic Gmbh Verfahren zur adaptiven Kantenerkennung
JP4557843B2 (ja) * 2005-08-31 2010-10-06 キヤノン株式会社 画像処理装置及びその方法
TWI296178B (en) * 2005-12-12 2008-04-21 Novatek Microelectronics Corp Image vibration-compensating apparatus and the method thereof
US20080208948A1 (en) * 2007-02-27 2008-08-28 Panetta Karen A Methods and apparatus for using boolean derivatives to process data
US7881497B2 (en) * 2007-03-08 2011-02-01 Honeywell International Inc. Vision based navigation and guidance system
JP4952796B2 (ja) * 2007-12-25 2012-06-13 富士通株式会社 画像処理装置
US8406554B1 (en) * 2009-12-02 2013-03-26 Jadavpur University Image binarization based on grey membership parameters of pixels
JP2012042720A (ja) * 2010-08-19 2012-03-01 Sony Corp 画像処理装置および方法、並びにプログラム
TWI469084B (zh) * 2010-12-23 2015-01-11 Nat Univ Chung Hsing Gradient weighting unit and method, edge detection system and method
US9876501B2 (en) 2013-05-21 2018-01-23 Mediatek Inc. Switching power amplifier and method for controlling the switching power amplifier

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152777A (ja) * 1984-08-21 1986-03-15 Seiko Epson Corp 平均誤差最小法を用いた高速画像処理装置
JPS62133581A (ja) * 1985-11-30 1987-06-16 ア−・エヌ・テ−・ナツハリヒテンテヒニ−ク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 画像信号における輪郭構造を認識する方法
JPS62262180A (ja) * 1986-05-08 1987-11-14 Hitachi Ltd 画質検査方法
JPS63155273A (ja) * 1986-12-18 1988-06-28 Fujitsu Ltd 画像処理装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4213150A (en) * 1978-04-21 1980-07-15 Northrop Corporation Real-time edge processing unit
JPS6136876A (ja) * 1984-07-30 1986-02-21 Ricoh Co Ltd 画像情報のマスク処理回路
GB2170373B (en) * 1984-12-28 1989-03-15 Canon Kk Image processing apparatus
US4791677A (en) * 1985-12-16 1988-12-13 Matsushita Electric Industrial Co., Ltd. Image signal processor
JP2659198B2 (ja) * 1986-11-12 1997-09-30 日本電気株式会社 画像2値化装置
US4962542A (en) * 1988-08-29 1990-10-09 Eastman Kodak Company Method for reducing artifacts in error diffused images
JPH0638274B2 (ja) * 1989-07-31 1994-05-18 工業技術院長 画像認識装置および画像認識方法
US5048099A (en) * 1990-05-21 1991-09-10 Eastman Kodak Company Polygon-based method for automatic extraction of selected text in a digitized document
US5050222A (en) * 1990-05-21 1991-09-17 Eastman Kodak Company Polygon-based technique for the automatic classification of text and graphics components from digitized paper-based forms

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6152777A (ja) * 1984-08-21 1986-03-15 Seiko Epson Corp 平均誤差最小法を用いた高速画像処理装置
JPS62133581A (ja) * 1985-11-30 1987-06-16 ア−・エヌ・テ−・ナツハリヒテンテヒニ−ク・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング 画像信号における輪郭構造を認識する方法
JPS62262180A (ja) * 1986-05-08 1987-11-14 Hitachi Ltd 画質検査方法
JPS63155273A (ja) * 1986-12-18 1988-06-28 Fujitsu Ltd 画像処理装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060556A (ja) * 2007-09-04 2009-03-19 Panasonic Corp 画像表示装置
JP4702340B2 (ja) * 2007-09-04 2011-06-15 パナソニック株式会社 画像表示装置
WO2011145436A1 (en) * 2010-05-18 2011-11-24 Sharp Kabushiki Kaisha Methods, apparatus, program and media for edge detection technique having improved feature visibility

Also Published As

Publication number Publication date
KR920019204A (ko) 1992-10-22
CN1079555C (zh) 2002-02-20
GB2254217B (en) 1995-02-22
JP2977969B2 (ja) 1999-11-15
RU2020582C1 (ru) 1994-09-30
DE4131778A1 (de) 1992-10-01
US5212740A (en) 1993-05-18
GB2254217A (en) 1992-09-30
GB9120754D0 (en) 1991-11-13
ITMI912584A0 (it) 1991-09-27
CN1065347A (zh) 1992-10-14
KR940007346B1 (ko) 1994-08-13
ITMI912584A1 (it) 1993-03-27
DE4131778C2 (de) 1996-10-10
FR2674653A1 (fr) 1992-10-02
TW211609B (ja) 1993-08-21
IT1251897B (it) 1995-05-26
FR2674653B1 (fr) 1997-03-14

Similar Documents

Publication Publication Date Title
JPH04312184A (ja) 画像処理システムのエッジ検出方法及びその装置
US11308406B2 (en) Method of operating neural networks, corresponding network, apparatus and computer program product
US5721809A (en) Maximum value selector
US5031037A (en) Method and apparatus for vector quantizer parallel processing
US6192160B1 (en) Hardware architectures for image dilation and erosion operations
US5652625A (en) Multi-stage pipeline architecture for motion estimation block matching
US4728927A (en) Apparatus and method for performing comparison of two signals
US6728745B1 (en) Semiconductor circuit for arithmetic operation and method of arithmetic operation
EP1038215B9 (en) Hamming value comparison for unweighted bit arrays
US5376915A (en) Absolute value comparing apparatus for comparing absolute values of data at high speed
JP3627872B2 (ja) 動きベクトル検出方法及び装置
US4972502A (en) Image signal binary encoder
Turton et al. An architecture for enhancing image processing via parallel genetic algorithms and data compression
US11475288B2 (en) Sorting networks using unary processing
Valle Permutation-based finite implicative fuzzy associative memories
US4933978A (en) Method and apparatus for determining the value of a sample in the mth position of an ordered list of a plurality of samples
CN111783876A (zh) 自适应智能检测电路及图像智能检测方法
US11467831B2 (en) System and method for pipelined time-domain computing using time-domain flip-flops and its application in time-series analysis
Gasteratos et al. Realisation of soft morphological filters
Abdulsalyamova et al. Theoretical Analysis of the Convolutional Neural Networks Acceleration by Organizing Calculations According to the Winograd Method
Bonagiri et al. Low area FPGA implementation of modified histogram estimation architecture with CSAC-DPROM-OBC for medical image enhancement application
JP2837969B2 (ja) 画像処理方法
JP3880665B2 (ja) 多階調画像の濃度ヒストグラム算出装置
JP2984606B2 (ja) 3入力加減算回路
JPH04101284A (ja) 高精度ハフ変換装置

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees