JPH04311028A - Manufacture of hetero epitaxial substrate - Google Patents

Manufacture of hetero epitaxial substrate

Info

Publication number
JPH04311028A
JPH04311028A JP7641391A JP7641391A JPH04311028A JP H04311028 A JPH04311028 A JP H04311028A JP 7641391 A JP7641391 A JP 7641391A JP 7641391 A JP7641391 A JP 7641391A JP H04311028 A JPH04311028 A JP H04311028A
Authority
JP
Japan
Prior art keywords
thin film
substrate
semiconductor
gallium arsenide
silicon wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7641391A
Other languages
Japanese (ja)
Inventor
Takashi Shimobayashi
隆 下林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP7641391A priority Critical patent/JPH04311028A/en
Publication of JPH04311028A publication Critical patent/JPH04311028A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To reproduce the crystal growth reflecting the molecular structure when another semiconductor material is bonded by a method wherein, after bonding a different material from that of a semiconductor single crystal substrate onto the substrate, substrate is removed so as to epitaxially grow the semiconductor on the surface of the different material. CONSTITUTION:A GaAs thin film 102 is formed on a silicon wafer 101 having a clean surface using an MOCVD process. Next, after removing the silicon wafer 101 by chemical etching step using fluorine base gas, the thin film 102 is cleaned up. Through these procedures, the GaAs thin film 102 exhibiting the atomic structure reflecting the crystalline structure of the silicon wafer 101 is formed. Finally, silicon is epitaxially deposited using the pressure-reduced CVD process to form an epitaxial silicon thin film 104.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、高速半導体素子、発光
素子、光演算回路素子等に使用するヘテロ・エピタキシ
ャル基板の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a heteroepitaxial substrate used for high-speed semiconductor devices, light emitting devices, optical arithmetic circuit devices, etc.

【0002】0002

【従来の技術】従来、ヘテロ・エピタキシャル基板を作
製しようとする場合、異なる材料の格子定数を整合させ
るため、ヘテロ界面に両材料の超格子構造を挟んだり、
ヘテロ界面にアモルファス状態の薄膜を挟んだり等の手
法を用いていた。
[Prior Art] Conventionally, when attempting to fabricate a hetero-epitaxial substrate, in order to match the lattice constants of different materials, a superlattice structure of both materials is sandwiched at the hetero interface, or
Techniques such as sandwiching an amorphous thin film between the hetero interfaces were used.

【0003】0003

【発明が解決しようとする課題】しかしながら、従来の
技術による手法では、その基本的な原理は、ヘテロ材料
の格子定数の差を緩和させるためのものでしかなく、そ
のため安定的に再現性よくヘテロ構造を実現することは
困難であった。
[Problems to be Solved by the Invention] However, the basic principle of conventional techniques is only to alleviate the difference in the lattice constants of heterogeneous materials, and therefore it is possible to stabilize and reproducibly create heterogeneous materials. It was difficult to realize the structure.

【0004】0004

【課題を解決するための手段】本発明は、半導体単結晶
基板の表面に前記半導体単結晶基板と異なる材料を付着
させた後、該半導体単結晶基板を取り去り、前記材料の
該半導体単結晶基板が接していた表面に半導体をエピタ
キシャル成長させることを特徴とするヘテロ・エピタキ
シャル基板の製造方法である。その原理は、半導体単結
晶基板の表面に前記材料と異なる材料を付着させると、
付着された材料の半導体単結晶基板と接した面の原子配
列が、該単結晶基板の表面の原子配列になぞられたもの
になるため、該半導体単結晶基板を取り去り、該半導体
単結晶基板が接していた表面に半導体を付着させたとき
に、該分子構造が反映された結晶成長が再現でき、エピ
タキシャル成長を行なわせることが可能になるからであ
る。
[Means for Solving the Problems] The present invention provides a method for attaching a material different from the semiconductor single crystal substrate to the surface of the semiconductor single crystal substrate, and then removing the semiconductor single crystal substrate. This is a method for manufacturing a hetero-epitaxial substrate, characterized by epitaxially growing a semiconductor on the surface that was in contact with the substrate. The principle is that when a material different from the above material is attached to the surface of a semiconductor single crystal substrate,
Since the atomic arrangement of the surface of the deposited material in contact with the semiconductor single crystal substrate is similar to the atomic arrangement of the surface of the single crystal substrate, the semiconductor single crystal substrate is removed and the semiconductor single crystal substrate is This is because when a semiconductor is attached to the surface that was in contact with it, crystal growth that reflects the molecular structure can be reproduced, making it possible to perform epitaxial growth.

【0005】[0005]

【実施例】図1(a)〜(c)は、本発明による実施例
を示す、ヘテロ・エピタキシャル基板の製造方法で、半
導体単結晶基板としてはシリコン・ウェハ、付着させる
材料としてはガリウム砒素を用いたものである。
[Embodiment] FIGS. 1(a) to 1(c) show a method of manufacturing a hetero-epitaxial substrate according to an embodiment of the present invention, in which a silicon wafer is used as a semiconductor single crystal substrate, and gallium arsenide is used as a material to be deposited. This is what was used.

【0006】図1(a)は、清浄な表面を持つシリコン
・ウェハ101上にMOCVD法を用いてガリウム砒素
薄膜102を形成する工程。ガリウム砒素薄膜102は
、後のハンドリングのしやすさ等から、0.3mmの厚
さになるように付着させた。ここで、103は、前記ガ
リウム砒素薄膜102の、前記シリコン・ウェハ101
の結晶構造を反映した原子構造を表面に持つ領域を示す
FIG. 1(a) shows a step of forming a gallium arsenide thin film 102 on a silicon wafer 101 having a clean surface using the MOCVD method. The gallium arsenide thin film 102 was deposited to a thickness of 0.3 mm for ease of handling later. Here, 103 is the silicon wafer 101 of the gallium arsenide thin film 102.
It shows a region whose surface has an atomic structure that reflects the crystal structure of.

【0007】図1(b)は、前記シリコン・ウェハ10
1を弗素系の気体を用いた化学エッチング法を用いて取
り去った後洗浄することにより、前記シリコン・ウェハ
101の結晶構造を反映した原子構造を表面に持つガリ
ウム砒素薄膜102を作製する工程。
FIG. 1(b) shows the silicon wafer 10.
1 using a chemical etching method using a fluorine-based gas and then cleaning, thereby producing a gallium arsenide thin film 102 having an atomic structure reflecting the crystal structure of the silicon wafer 101 on its surface.

【0008】図1(c)は、前記ガリウム砒素薄膜10
2の前記シリコン・ウェハ101に接していた面上に減
圧CVD法を用いてシリコンをエピタキシャル成長させ
て、エピタキシャル・シリコン薄膜104を形成する工
程。
FIG. 1(c) shows the gallium arsenide thin film 10.
Step 2 of epitaxially growing silicon on the surface that was in contact with the silicon wafer 101 using a low pressure CVD method to form an epitaxial silicon thin film 104.

【0009】図2(a)〜(c)は、本発明による実施
例を示す、半導体薄膜の製造方法で、半導体単結晶基板
としてはガリウム砒素・ウェハ、付着させる材料として
アルミニウム・ガリウム・砒素混晶を用いたものである
FIGS. 2(a) to 2(c) show a method for manufacturing a semiconductor thin film according to an embodiment of the present invention, in which a gallium arsenide wafer is used as the semiconductor single crystal substrate, and an aluminum-gallium-arsenic mixture is used as the material to be deposited. It uses crystal.

【0010】図2(a)は、清浄な表面を持つガリウム
砒素・ウェハ201上にMOCVD法を用いてアルミニ
ウム・ガリウム・砒素混晶薄膜202を形成する工程。 アルミニウム・ガリウム・砒素混晶薄膜202は、後の
ハンドリングのしやすさ等から、0.3mmの厚さにな
るように付着させた。ここで、203は、前記アルミニ
ウム・ガリウム砒素混晶薄膜202の、前記シリコン・
ウェハ201の結晶構造を反映した原子構造を表面に持
つ領域を示す。
FIG. 2(a) shows a step of forming an aluminum-gallium-arsenic mixed crystal thin film 202 on a gallium-arsenide wafer 201 having a clean surface by using the MOCVD method. The aluminum-gallium-arsenic mixed crystal thin film 202 was deposited to a thickness of 0.3 mm for ease of handling later. Here, 203 is the silicon layer of the aluminum gallium arsenide mixed crystal thin film 202.
A region whose surface has an atomic structure reflecting the crystal structure of the wafer 201 is shown.

【0011】図2(b)は、前記ガリウム砒素・ウェハ
201を硫酸・過酸化水素系の溶液を用いてエッチング
することにより取り去った後洗浄することにより、前記
ガリウム砒素・ウェハ201の結晶構造を反映した原子
構造を表面に持つアルミニウム・ガリウム・砒素混晶薄
膜202を作製する工程。
FIG. 2(b) shows that the crystal structure of the gallium arsenide wafer 201 is removed by etching the gallium arsenide wafer 201 using a sulfuric acid/hydrogen peroxide solution and then cleaning it. A step of producing an aluminum/gallium/arsenic mixed crystal thin film 202 having a reflected atomic structure on its surface.

【0012】図2(c)は、前記アルミニウム・ガリウ
ム・砒素混晶薄膜202の前記ガリウム砒素・ウェハ2
01に接していた面上にMOCVD法を用いてガリウム
砒素をエピタキシャル成長させて、エピタキシャル・ガ
リウム砒素薄膜204を形成する工程。
FIG. 2(c) shows the gallium arsenide wafer 2 of the aluminum gallium arsenide mixed crystal thin film 202.
A step of epitaxially growing gallium arsenide on the surface that was in contact with 01 using the MOCVD method to form an epitaxial gallium arsenide thin film 204.

【0013】なお、本発明による実施例では、単結晶材
料としてシリコン、ガリウム砒素を、その上に付着させ
る材料としてガリウム砒素、アルミニウム・ガリウム・
砒素混晶を用いたが、他の材料を用いても同様な効果が
得られるのは明らかであり、それらも本発明の範疇に属
する。
In the embodiment according to the present invention, silicon and gallium arsenide are used as the single crystal material, and gallium arsenide, aluminum, gallium, and gallium arsenide are used as the materials to be deposited thereon.
Although arsenic mixed crystal is used, it is clear that similar effects can be obtained by using other materials, and these also belong to the scope of the present invention.

【0014】[0014]

【発明の効果】以上説明したように本発明の実施例によ
る製造方法を用いて、従来作製することが困難であった
ヘテロ・エピタキシャル基板を、原材料に用いる単結晶
基板の大きさまでの大面積のものまで、安価に、安定的
に作製することが可能になった。
[Effects of the Invention] As explained above, by using the manufacturing method according to the embodiment of the present invention, a hetero-epitaxial substrate, which has been difficult to produce in the past, can be manufactured with a large area up to the size of a single crystal substrate used as a raw material. It has become possible to stably produce many things at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明による実施例を示す、ヘテロ・エピタキ
シャル基板の製造方法で、半導体単結晶基板としてはシ
リコン・ウェハ、付着させる材料としてはガリウム砒素
を用いた図である。
FIG. 1 is a diagram showing a method for manufacturing a hetero-epitaxial substrate according to an embodiment of the present invention, in which a silicon wafer is used as the semiconductor single crystal substrate and gallium arsenide is used as the material to be deposited.

【図2】本発明による実施例を示す、半導体薄膜の製造
方法で、半導体単結晶基板としてはガリウム砒素・ウェ
ハ、付着させる材料としてアルミニウム・ガリウム・砒
素混晶を用いた図である。
FIG. 2 is a diagram showing a method for manufacturing a semiconductor thin film according to an embodiment of the present invention, in which a gallium arsenide wafer is used as a semiconductor single crystal substrate and an aluminum-gallium-arsenide mixed crystal is used as a material to be deposited.

【符号の説明】[Explanation of symbols]

101  シリコン・ウェハ 102  ガリウム砒素薄膜 103  ガリウム砒素102の、シリコン・ウェハ1
01の結晶構造を反映した原子構造を表面に持つ領域1
04  エピタキシャル・シリコン薄膜201  ガリ
ウム砒素・ウェハ 202  アルミニウム・ガリウム・砒素混晶薄膜10
3  アルミニウム・ガリウム・砒素混晶薄膜202の
、ガリウム砒素・ウェハ
101 Silicon wafer 102 Gallium arsenide thin film 103 Silicon wafer 1 of gallium arsenide 102
Region 1 whose surface has an atomic structure reflecting the crystal structure of 01
04 Epitaxial silicon thin film 201 Gallium arsenide wafer 202 Aluminum gallium arsenide mixed crystal thin film 10
3 Gallium arsenide wafer of aluminum gallium arsenide mixed crystal thin film 202

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  半導体単結晶基板の表面に前記半導体
単結晶基板と異なる材料を付着させた後、該半導体単結
晶基板を取り去り、前記材料の該半導体単結晶基板が接
していた表面に半導体をエピタキシャル成長させること
を特徴とするヘテロ・エピタキシャル基板の製造方法。
1. After attaching a material different from the semiconductor single-crystal substrate to the surface of the semiconductor single-crystal substrate, the semiconductor single-crystal substrate is removed, and a semiconductor is applied to the surface of the material that was in contact with the semiconductor single-crystal substrate. A method for manufacturing a hetero-epitaxial substrate characterized by epitaxial growth.
【請求項2】  エピタキシャル成長させる半導体材料
が、半導体単結晶基板と同一の材料であることを特徴と
する請求項1記載のヘテロ・エピタキシャル基板の製造
方法。
2. The method of manufacturing a heteroepitaxial substrate according to claim 1, wherein the semiconductor material to be epitaxially grown is the same material as the semiconductor single crystal substrate.
JP7641391A 1991-04-09 1991-04-09 Manufacture of hetero epitaxial substrate Pending JPH04311028A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7641391A JPH04311028A (en) 1991-04-09 1991-04-09 Manufacture of hetero epitaxial substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7641391A JPH04311028A (en) 1991-04-09 1991-04-09 Manufacture of hetero epitaxial substrate

Publications (1)

Publication Number Publication Date
JPH04311028A true JPH04311028A (en) 1992-11-02

Family

ID=13604540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7641391A Pending JPH04311028A (en) 1991-04-09 1991-04-09 Manufacture of hetero epitaxial substrate

Country Status (1)

Country Link
JP (1) JPH04311028A (en)

Similar Documents

Publication Publication Date Title
US4876219A (en) Method of forming a heteroepitaxial semiconductor thin film using amorphous buffer layers
JPH10321911A (en) Method for manufacturing epitaxial layer of compound semiconductor on single-crystal silicon and light-emitting diode manufactured therewith
KR100319300B1 (en) Semiconductor Device with Quantum dot buffer in heterojunction structures
JP2003282551A (en) Single-crystal sapphire substrate and its manufacturing method
JP3094965B2 (en) Crystal growth method of gallium nitride thick film
KR101933778B1 (en) Method for manufacturing a gallium nitride substrate
JPH08172056A (en) Growing method of compound semiconductor layer
WO2023040237A1 (en) Method for manufacturing self-supporting gallium nitride substrate
JP2000150388A (en) Iii nitride semiconductor thin film and manufacture thereof
WO2003007393A3 (en) Semiconductor structures comprising a piezoelectric material and corresponding processes and systems
JPH04311028A (en) Manufacture of hetero epitaxial substrate
KR100359739B1 (en) Method of fusion for heteroepitaxial layers and overgrowth thereon
JPH04311029A (en) Manufacture of semiconductor thin film
JPH04162614A (en) Bonded substrate of different kinds of materials and its manufacture
KR100425092B1 (en) method for fabricating silicon compliant substrate
JPS6066811A (en) Manufacture of compound semiconductor device
JP2002151409A (en) Semiconductor device, and method of manufacturing the same
JP3685838B2 (en) Compound semiconductor device and manufacturing method thereof
US6417077B1 (en) Edge growth heteroepitaxy processes with reduced lattice mismatch strain between a deposited semiconductor material and a semiconductor substrate
JPH03247597A (en) Epitaxial growth method of iii-v compound semiconductor on silicon substrate
KR100407955B1 (en) method for forming GaAs on fusion substrate
JPH01179797A (en) Method for growing semiconductor crystal
JPH01120011A (en) Inp semiconductor thin film
JPH0737819A (en) Semiconductor wafer and manufacture thereof
JPH04106915A (en) Semiconductor substrate and its manufacture