JPH04310513A - Measurement of concentration of impurities in polycrystalline silicon - Google Patents

Measurement of concentration of impurities in polycrystalline silicon

Info

Publication number
JPH04310513A
JPH04310513A JP3154184A JP15418491A JPH04310513A JP H04310513 A JPH04310513 A JP H04310513A JP 3154184 A JP3154184 A JP 3154184A JP 15418491 A JP15418491 A JP 15418491A JP H04310513 A JPH04310513 A JP H04310513A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
measurement
specimen
impurity concentration
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3154184A
Other languages
Japanese (ja)
Other versions
JPH0795031B2 (en
Inventor
Harumi Shibata
晴美 柴田
Masato Imai
正人 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Techxiv Corp
Original Assignee
Komatsu Electronic Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Electronic Metals Co Ltd filed Critical Komatsu Electronic Metals Co Ltd
Priority to JP15418491A priority Critical patent/JPH0795031B2/en
Publication of JPH04310513A publication Critical patent/JPH04310513A/en
Publication of JPH0795031B2 publication Critical patent/JPH0795031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Silicon Compounds (AREA)

Abstract

PURPOSE:To enable to finely and repeatedly measure the concentration distribution of impurities in polycrystalline silicon even by an IR ray absorption method by thermally treating a measurement specimen of the polycrystalline silicon, and subsequently subjecting the treated specimen to a surface finishing treatment. CONSTITUTION:The measurement is characterized by heating a measurement specimen of polycrystalline silicon at a temperature of >=1200 deg.C in a non- oxidative atmosphere for one hr or longer, and subsequently subjecting the treated specimen to a surface-finishing treatment so that the thickness of the measurement specimen is substantially the same as that of a standard specimen. A leading time until the measurement is thereby shortened.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、多結晶シリコン中の不
純物濃度を簡便に測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for easily measuring impurity concentration in polycrystalline silicon.

【0002】0002

【従来の技術】従来、赤外吸収法によるシリコン(Si
)中の不純物濃度の測定は、単結晶シリコンについての
み実施されている。その概要を図8に示す赤外吸収法で
使用されている複光束形分光装置のブロック線図で説明
する。光源1からの光束は光束スイッチ2により測定試
料3のある試料光束側と標準試料4のある標準光束側に
交互に切り換えられ、検知器5には両光束の強度差が交
流信号として入射する。検知器5の出力を増幅器6a等
で増幅してサーボモータ7を作動させ標準光束側に入れ
られた光束減衰器8を動かし、両光束の強度を平衡させ
る。両光束の強度が平衡したら検知器5の出力は0とな
りサーボモータ7は停止する。この時、光束減衰器8の
移動量は試料光束強度Isと標準光束強度Irの比C・
Is/Ir(Cは定数)となっており、光束減衰器8の
移動量が記録器9に記録される。従って、記録曲線は透
過率Is/Irを記録しており透過率曲線がただちに得
られる。
[Prior Art] Conventionally, silicon (Si)
) has only been measured for single crystal silicon. The outline will be explained with reference to a block diagram of a double beam spectrometer used in the infrared absorption method shown in FIG. The luminous flux from the light source 1 is alternately switched by a luminous flux switch 2 to the sample luminous flux side where the measurement sample 3 is located and the standard luminous flux side where the standard sample 4 is located, and the intensity difference between the two luminous fluxes is incident on the detector 5 as an alternating current signal. The output of the detector 5 is amplified by an amplifier 6a, etc., and the servo motor 7 is operated to move the beam attenuator 8 placed on the standard beam side, thereby balancing the intensities of both beams. When the intensities of both light beams are balanced, the output of the detector 5 becomes 0 and the servo motor 7 stops. At this time, the amount of movement of the luminous flux attenuator 8 is the ratio C of the sample luminous flux intensity Is and the standard luminous flux intensity Ir.
Is/Ir (C is a constant), and the amount of movement of the light flux attenuator 8 is recorded on the recorder 9. Therefore, the recording curve records the transmittance Is/Ir, and the transmittance curve can be obtained immediately.

【0003】他方、多結晶シリコンについては、透過率
Is/Irの変動が大きいため不純物の吸収ピークを測
定することができない。このため、破壊検査である放射
化分析で測定するか、あるいは一度フローティングゾー
ン法によって単結晶引上げを行い、得られた単結晶シリ
コンの不純物濃度を赤外吸収法により測定している。
On the other hand, for polycrystalline silicon, the absorption peak of impurities cannot be measured because the transmittance Is/Ir varies greatly. For this reason, the impurity concentration of the single crystal silicon is measured either by activation analysis, which is a destructive test, or by pulling a single crystal by the floating zone method and then measuring the impurity concentration in the obtained single crystal silicon by an infrared absorption method.

【0004】0004

【発明が解決しようとする課題】しかしながら、放射化
分析は破壊検査であるため、すぐ隣の点の不純物濃度を
測定したり、繰り返し測定することができないという問
題がある。また、フローティングゾーン法で単結晶シリ
コンにすると、多結晶シリコン全体の平均値として不純
物濃度は測定できるが、限定した部分の不純物濃度は測
定できないという問題がある。
[Problems to be Solved by the Invention] However, since activation analysis is a destructive test, there is a problem in that it is not possible to measure the impurity concentration at immediately adjacent points or to repeatedly measure it. Furthermore, when monocrystalline silicon is produced using the floating zone method, the impurity concentration can be measured as an average value for the entire polycrystalline silicon, but there is a problem in that the impurity concentration in a limited portion cannot be measured.

【0005】本発明はかかる従来技術の欠点を解消する
ためになされたもので、多結晶シリコンの不純物濃度分
布を細かく且つ繰り返し測定できる多結晶シリコン中の
不純物濃度の測定方法を提供することを目的としている
The present invention was made in order to eliminate the drawbacks of the prior art, and an object of the present invention is to provide a method for measuring the impurity concentration in polycrystalline silicon, which allows detailed and repeated measurements of the impurity concentration distribution in polycrystalline silicon. It is said that

【0006】[0006]

【課題を解決するための手段と作用】上記の目的を達成
するために本発明者等は鋭意研究を続けてきた。その結
果、多結晶シリコンの測定試料を熱処理した後表面仕上
げし、次いで赤外吸収法により不純物濃度を測定するこ
とにより、赤外吸収法でも精度よく不純物濃度を測定で
きることを見出した。
[Means and effects for solving the problems] In order to achieve the above object, the present inventors have continued their intensive research. As a result, they discovered that by heat-treating a polycrystalline silicon measurement sample, then surface-finishing it, and then measuring the impurity concentration using an infrared absorption method, the impurity concentration can be measured with high accuracy using an infrared absorption method.

【0007】即ち、非酸化性雰囲気中で加熱温度120
0℃以上、加熱時間1H以上熱処理し、測定試料の厚さ
が標準試料の厚さとほぼ同一となるように表面仕上げす
ることにより、多結晶シリコンの不純物濃度分布を細か
く且つ繰り返し測定でき、しかも測定までのリードタイ
ムが短かくなるという利点を見出し、前記問題点を解決
した。
That is, the heating temperature is 120℃ in a non-oxidizing atmosphere.
By heat-treating at 0°C or higher for 1 hour or more and finishing the surface so that the thickness of the measurement sample is almost the same as that of the standard sample, it is possible to precisely and repeatedly measure the impurity concentration distribution of polycrystalline silicon. We have found the advantage of shortening the lead time and solved the above problems.

【0008】[0008]

【実施例】本発明に係る多結晶シリコン中の不純物濃度
の測定方法の好ましい実施例を、添付図面により詳説す
る。図1は本発明の実施例に係る多結晶シリコン中のカ
ーボン濃度の測定方法を示す概要工程図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the method for measuring impurity concentration in polycrystalline silicon according to the present invention will be explained in detail with reference to the accompanying drawings. FIG. 1 is a schematic process diagram showing a method for measuring carbon concentration in polycrystalline silicon according to an embodiment of the present invention.

【0009】先ず、図1の第1工程において、多結晶シ
リコンの丸棒から長さ15mm以上の試料を入手し、第
2工程では、この試料からダイヤモンドカッターにより
、15×20mm以上の角状の測定試料を切り出す。 第3工程では、この測定試料をグラインダー研削、超音
波洗浄及びエッチングにより粗加工する。
First, in the first step shown in FIG. 1, a sample with a length of 15 mm or more is obtained from a round rod of polycrystalline silicon, and in the second step, a square shape of 15 x 20 mm or more is cut from this sample using a diamond cutter. Cut out the measurement sample. In the third step, this measurement sample is roughly processed by grinding with a grinder, ultrasonic cleaning, and etching.

【0010】第4工程では、粗加工した測定試料を非酸
化性雰囲気中で1200℃以上×1H以上加熱して,熱
処理を施す。好ましい加熱温度は1250〜1300℃
である。
[0010] In the fourth step, the rough-processed measurement sample is heated in a non-oxidizing atmosphere at 1200° C. or more for 1 hour or more to perform heat treatment. The preferred heating temperature is 1250-1300℃
It is.

【0011】第5工程では、熱処理した測定試料をラッ
ピング、超音波洗浄、エッチング及びダイヤモンドペー
ストによる鏡面仕上げにより仕上げを施す。簡便法の場
合はエッチングのみでもよい。
In the fifth step, the heat-treated measurement sample is finished by lapping, ultrasonic cleaning, etching, and mirror finishing with diamond paste. In the case of a simple method, only etching may be used.

【0012】第6工程では、仕上げをした測定試料のカ
ーボンの吸収ピークを赤外吸収法により測定し、標準の
較正曲線によりカーボン濃度に換算する。
In the sixth step, the carbon absorption peak of the finished measurement sample is measured by an infrared absorption method and converted into carbon concentration using a standard calibration curve.

【0013】図2は本発明に係る熱処理を施した測定試
料の透過率曲線であり、縦軸は透過率を、横軸は波長を
示す。透過率曲線は吸収ピークのベースラインがほぼ平
坦となっているため、カーボンの吸収ピーク(Pc)を
測定できる。比較のために、熱処理前の測定試料の透過
率曲線(従来技術)を図3に示す。透過率曲線は大きく
変動しており、カーボンの吸収ピーク(Pc)は測定で
きない。
FIG. 2 is a transmittance curve of a measurement sample subjected to heat treatment according to the present invention, where the vertical axis shows the transmittance and the horizontal axis shows the wavelength. Since the baseline of the absorption peak in the transmittance curve is almost flat, the absorption peak (Pc) of carbon can be measured. For comparison, FIG. 3 shows a transmittance curve (prior art) of the measurement sample before heat treatment. The transmittance curve fluctuates greatly and the carbon absorption peak (Pc) cannot be measured.

【0014】図4は熱処理条件とカーボン濃度の関係を
示す図表で、縦軸はカーボン濃度、横軸は熱処理時間で
ある。熱処理温度が1200℃以上であればカーボン濃
度を測定できるが、好ましい熱処理温度は1250〜1
300℃である。
FIG. 4 is a chart showing the relationship between heat treatment conditions and carbon concentration, where the vertical axis is the carbon concentration and the horizontal axis is the heat treatment time. Carbon concentration can be measured if the heat treatment temperature is 1200℃ or higher, but the preferable heat treatment temperature is 1250-1
The temperature is 300°C.

【0015】図5は標準試料の厚さが1880μmのと
きの本発明に係る測定試料の種々の厚さの透過率曲線で
あり、同図(A)は厚さが1900μmの場合、同図(
B)は厚さが1880μmの場合、同図(C)は厚さが
1860μmの場合を示す。同図(B)のように、測定
試料と標準試料の厚さが同じであればベースラインはほ
ぼ平坦であり、このことから測定試料と標準試料の厚さ
の差は10μm以内に納めればよい。
FIG. 5 shows transmittance curves of various thicknesses of the measurement sample according to the present invention when the thickness of the standard sample is 1880 μm, and FIG.
B) shows a case where the thickness is 1880 μm, and FIG. 2C shows a case where the thickness is 1860 μm. As shown in Figure (B), if the thickness of the measurement sample and the standard sample are the same, the baseline is almost flat. Therefore, if the difference in thickness between the measurement sample and the standard sample is kept within 10 μm, good.

【0016】図6は本発明に係る測定試料の種々のカー
ボン濃度の透過率曲線であり、同図(A)は吸収係数α
が1.108cm−1,カーボン濃度[Cs]が0.8
2×1017atoms/ccの場合、同図(B)は吸
収係数αが0.435cm−1,カーボン濃度[Cs]
が0.32×1017atoms/ccの場合、同図(
C)は吸収係数αが0.141cm−1,カーボン濃度
[Cs]が0.11×1017atoms/ccの場合
、同図(D)は吸収係数αが0,カーボン濃度[Cs]
が測定不能の場合を示す。これらの結果から、0.11
×1017atoms/ccのカーボン濃度[Cs]ま
で吸収ピーク(Pc)を測定可能である。
FIG. 6 shows transmittance curves for various carbon concentrations of the measurement sample according to the present invention, and (A) of the same figure shows the absorption coefficient α
is 1.108 cm-1, carbon concentration [Cs] is 0.8
In the case of 2 x 1017 atoms/cc, the same figure (B) shows that the absorption coefficient α is 0.435 cm-1 and the carbon concentration [Cs]
When is 0.32×1017 atoms/cc, the same figure (
In C), the absorption coefficient α is 0.141 cm-1 and the carbon concentration [Cs] is 0.11×1017 atoms/cc. In the same figure (D), the absorption coefficient α is 0 and the carbon concentration [Cs]
Indicates the case where is not measurable. From these results, 0.11
Absorption peaks (Pc) can be measured up to a carbon concentration [Cs] of x1017 atoms/cc.

【0017】図7は本発明に係る測定試料の酸素濃度の
実施例であって、同図(A)は熱処理を施した測定試料
の透過率曲線であり、1105cm−1付近に酸素濃度
の吸収ピーク(Pc)か認められる。同図(B)は熱処
理前の測定試料の透過率曲線(従来技術)であり、11
05cm−1付近で下がっているが吸収ピークの幅が広
すぎるため測定できない。
FIG. 7 shows an example of the oxygen concentration of a measurement sample according to the present invention. FIG. A peak (Pc) is observed. The same figure (B) is the transmittance curve (prior art) of the measurement sample before heat treatment, and 11
Although the absorption peak decreases around 0.05 cm-1, it cannot be measured because the width of the absorption peak is too wide.

【発明の効果】以上説明したように、本発明によれば多
結晶シリコンの測定試料を熱処理し、その厚さと標準試
料の厚さの差を10μm以内に納めることにより、赤外
吸収法で不純物濃度を測定できる。このために、多結晶
シリコンの不純物濃度分布を細かく且つ繰り返し測定で
き、しかも測定までのリードタイムが短かくなるという
効果が得られる。
As explained above, according to the present invention, impurities can be detected by infrared absorption method by heat treating a polycrystalline silicon measurement sample and keeping the difference between its thickness and that of a standard sample within 10 μm. Concentration can be measured. Therefore, the impurity concentration distribution of polycrystalline silicon can be precisely and repeatedly measured, and the lead time until measurement can be shortened.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例に係る多結晶シリコン中のカー
ボン濃度の測定方法を示す概要工程図である。
FIG. 1 is a schematic process diagram showing a method for measuring carbon concentration in polycrystalline silicon according to an example of the present invention.

【図2】本発明に係る熱処理を施した測定試料の透過率
曲線を示す図表である。
FIG. 2 is a chart showing transmittance curves of measurement samples subjected to heat treatment according to the present invention.

【図3】従来技術における熱処理前の測定試料の透過率
曲線を示す図表である。
FIG. 3 is a chart showing transmittance curves of measurement samples before heat treatment in the prior art.

【図4】熱処理条件とカーボン濃度の関係を示す図表で
ある。
FIG. 4 is a chart showing the relationship between heat treatment conditions and carbon concentration.

【図5】同図(A)、(B)及び(C)は本発明に係る
測定試料の種々の厚さの透過率曲線を示す図表である。
FIGS. 5A, 5B, and 5C are charts showing transmittance curves of various thicknesses of measurement samples according to the present invention.

【図6】同図(A)、(B)、(C)及び(D)は本発
明に係る測定試料の種々のカーボン濃度の透過率曲線を
示す図表である。
FIG. 6 (A), (B), (C), and (D) are charts showing transmittance curves of various carbon concentrations of measurement samples according to the present invention.

【図7】同図(A)は熱処理を施した測定試料に係る酸
素の透過率曲線を示す図表、同図(B)は熱処理前の測
定試料に係る酸素の透過率曲線を示す図表である。
FIG. 7 (A) is a chart showing the oxygen transmittance curve of a measurement sample subjected to heat treatment, and FIG. 7 (B) is a chart showing the oxygen transmittance curve of the measurement sample before heat treatment. .

【図8】赤外吸収法で使用されている複光束形分光装置
のブロック線図である。
FIG. 8 is a block diagram of a double beam spectrometer used in infrared absorption method.

【符号の説明】[Explanation of symbols]

2・・・光束スイッチ 3・・・測定試料 4・・・標準試料 8・・・光束減衰器 2... Luminous flux switch 3...Measurement sample 4...Standard sample 8... Luminous flux attenuator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】多結晶シリコンの測定試料を熱処理した後
、これを表面仕上げし、次いで赤外吸収法により不純物
濃度を測定することを特徴とする多結晶シリコン中の不
純物濃度の測定方法。
1. A method for measuring impurity concentration in polycrystalline silicon, which comprises heat-treating a polycrystalline silicon measurement sample, surface-finishing the sample, and then measuring the impurity concentration by an infrared absorption method.
【請求項2】前記熱処理は、非酸化性雰囲気中で加熱温
度1200℃以上、加熱時間1H以上熱処理することを
特徴とする請求項1記載の多結晶シリコン中の不純物濃
度の測定方法。
2. The method for measuring impurity concentration in polycrystalline silicon according to claim 1, wherein the heat treatment is performed in a non-oxidizing atmosphere at a heating temperature of 1200° C. or more and a heating time of 1 H or more.
【請求項3】前記表面仕上げは、測定試料の厚さが標準
試料の厚さがほぼ同一となるように表面仕上げすること
を特徴とする請求項1記載の多結晶シリコン中の不純物
濃度の測定方法。
3. Measurement of impurity concentration in polycrystalline silicon according to claim 1, wherein the surface finishing is performed so that the thickness of the measurement sample is approximately the same as the thickness of the standard sample. Method.
JP15418491A 1991-04-05 1991-04-05 Method for measuring impurity concentration in polycrystalline silicon Expired - Lifetime JPH0795031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15418491A JPH0795031B2 (en) 1991-04-05 1991-04-05 Method for measuring impurity concentration in polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15418491A JPH0795031B2 (en) 1991-04-05 1991-04-05 Method for measuring impurity concentration in polycrystalline silicon

Publications (2)

Publication Number Publication Date
JPH04310513A true JPH04310513A (en) 1992-11-02
JPH0795031B2 JPH0795031B2 (en) 1995-10-11

Family

ID=15578676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15418491A Expired - Lifetime JPH0795031B2 (en) 1991-04-05 1991-04-05 Method for measuring impurity concentration in polycrystalline silicon

Country Status (1)

Country Link
JP (1) JPH0795031B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137480A1 (en) * 2011-04-04 2012-10-11 信越化学工業株式会社 Method for measuring carbon concentration in polycrystalline silicon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012137480A1 (en) * 2011-04-04 2012-10-11 信越化学工業株式会社 Method for measuring carbon concentration in polycrystalline silicon
CN103477207A (en) * 2011-04-04 2013-12-25 信越化学工业株式会社 Method for measuring carbon concentration in polycrystalline silicon
US8963070B2 (en) 2011-04-04 2015-02-24 Shin-Etsu Chemical Co., Ltd. Method for measuring carbon concentration in polycrystalline silicon

Also Published As

Publication number Publication date
JPH0795031B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
CA1220643A (en) Method of laser emission spectroscopic analysis of steel and apparatus therefor
US5490728A (en) Non-contact optical techniques for measuring surface conditions
US4812036A (en) Stress evaluation apparatus
US20020189757A1 (en) Method of wafer band-edge measurement using transmission spectroscopy and a process for controlling the temperature uniformity of a wafer
US5302832A (en) Method for evaluation of spatial distribution of deep level concentration in semiconductor crystal
WO2023051617A1 (en) Measurement method and system for nitrogen element in nitrogen-doped monocrystalline silicon
Krenn et al. Investigation of localized surface plasmons with the photon scanning tunneling microscope
JP2000031229A (en) Inspection method of semiconductor thin film and manufacture of semiconductor thin film by use thereof
JPH0529423A (en) Evaluation of bonding state and impurity on surface of silicon wafer
JPH04310513A (en) Measurement of concentration of impurities in polycrystalline silicon
JP2790020B2 (en) Method for measuring substitutional carbon concentration in silicon single crystal and automatic measuring device
JPH04130746A (en) Radiation thermometer and method for wafer temperature measurement
US4890915A (en) Method and apparatus for determining optical absorption and emission characteristics of a crystal or non-crystalline fiber
JPH03108639A (en) Easy and quick method of estimating generation amount of internal oxide layer of electromagnetic steel plate
JPH09330966A (en) Method for detecting carbon in silicon substrate
JP3046724B2 (en) Wafer thickness measurement method
JPH10267845A (en) At-site analyzer for sample surface and controller of form of oxide film on steel plate
JPH08219891A (en) Surface condition measuring method for steel sheet and steel sheet temperature measuring method
JPH07226428A (en) Evaluation for precipitation amount of oxygen in silicon crystal
JPH0749305A (en) Apparatus and method for measuring interstitial oxygen concentration in silicon single crystal
JPS5483371A (en) Measurement method of impurity concentration of semiconductor
JPH07318426A (en) Temperature measuring device by raman scattering and method therefor
JPS59194430A (en) Laser beam annealing method
JPH09167791A (en) Method and device of evaluating silicon semiconductor substrate
JPH0333642A (en) Method for measuring oxygen deposition amount in silicon single crystal