JPS59194430A - Laser beam annealing method - Google Patents
Laser beam annealing methodInfo
- Publication number
- JPS59194430A JPS59194430A JP6775283A JP6775283A JPS59194430A JP S59194430 A JPS59194430 A JP S59194430A JP 6775283 A JP6775283 A JP 6775283A JP 6775283 A JP6775283 A JP 6775283A JP S59194430 A JPS59194430 A JP S59194430A
- Authority
- JP
- Japan
- Prior art keywords
- laser beam
- semiconductor substrate
- laser
- microphone
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000137 annealing Methods 0.000 title claims abstract description 11
- 238000000034 method Methods 0.000 title claims description 17
- 239000004065 semiconductor Substances 0.000 claims abstract description 44
- 239000000758 substrate Substances 0.000 claims abstract description 44
- 238000010438 heat treatment Methods 0.000 abstract description 7
- 230000035939 shock Effects 0.000 abstract description 2
- 238000010521 absorption reaction Methods 0.000 description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 229910052814 silicon oxide Inorganic materials 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000005224 laser annealing Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000004093 laser heating Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- High Energy & Nuclear Physics (AREA)
- Toxicology (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
(技術分野)
この発明は、放射エネルギビームの半導体への照射プロ
セスを制御するレーザビームアニール方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a laser beam annealing method for controlling the process of irradiating a semiconductor with a radiant energy beam.
(従来技術)
レーザビームを用いてイオン注入後の精品性の回復を計
る他に、最近注目されている技術として、5iOzのよ
うな絶縁物上に多結晶シリコン膜を堆積した後、この多
結晶シリコン膜を単結晶シリコンに転換する方法がある
。(Prior art) In addition to using a laser beam to recover the quality after ion implantation, a technique that has been attracting attention recently is to deposit a polycrystalline silicon film on an insulator such as 5iOz, and then deposit this polycrystalline silicon film on an insulator such as 5iOz. There is a method of converting a silicon film into single crystal silicon.
これらの技術は従来の平面的な素子構造から立体的な三
次元素子の実現を可能とさせるものである。These techniques make it possible to realize three-dimensional three-dimensional elements from conventional planar element structures.
一方、レーザ照射による万2法は、半導体基板表面構造
に依存して、そのエネルギを吸収する特徴がある。On the other hand, the Manji method using laser irradiation has the characteristic that the energy is absorbed depending on the surface structure of the semiconductor substrate.
すなわち、単一波長であるレーザ波長に依存する定在波
効果によシ、吸収率が異なることは周知の事実である。That is, it is a well-known fact that the absorption rate differs depending on the standing wave effect depending on the laser wavelength, which is a single wavelength.
たとえば、第1図は発明者などにより、シュミレーショ
ンされたシリコン半導体基板上に形成された各種族にレ
ーザビーム波長6328Aを照射したときのレーザビー
ムの吸収を示すものである。For example, FIG. 1 shows the absorption of a laser beam when a laser beam wavelength of 6328A is irradiated onto various species formed on a simulated silicon semiconductor substrate by the inventors.
半導体基板上に厚さヲ0.3μm〜1μmに変化させた
酸化シリコン膜およびその上に形成された厚さ3200
Aの多結晶シリコン族、さらに、その上に厚さ500
λのシリコン屋化膜を形成したものであシ、シリコン酸
化膜厚が変化するにつれて、多結晶シリコンおよび半導
体基板のレーザビーム吸収率が周期的に極めて顕著に変
動していることを明らかにしている。図中のAは半導体
基板であシ、Bは多結晶シリコン膜の場合を示している
。A silicon oxide film with a thickness of 0.3 μm to 1 μm formed on a semiconductor substrate and a thickness of 3200 μm formed thereon.
Polycrystalline silicon group of A, furthermore, a thickness of 500 mm
It was revealed that the laser beam absorption rate of polycrystalline silicon and semiconductor substrates periodically fluctuated significantly as the silicon oxide film thickness changed. There is. In the figure, A indicates a semiconductor substrate, and B indicates a polycrystalline silicon film.
そのため、加熱を適切にコントロールすることは極めて
困難であシ、この技術が実用化され得ない一大喪因とな
っている。Therefore, it is extremely difficult to appropriately control heating, which is a major reason why this technology cannot be put into practical use.
したがって、加熱する場合、半導体基板上に吸収する熱
量を測定評価する方法の開発が望まれている。Therefore, it is desired to develop a method for measuring and evaluating the amount of heat absorbed on a semiconductor substrate when heating it.
(発明の目的)
この発明は上記の点にかんがみなされたもので、半導体
基板の温度コントロールを可能にでき、高集積半導体菓
子の製造に利用できるレーザビームアニール方法を提供
することを目的とする。(Object of the Invention) The present invention has been made in view of the above points, and an object of the present invention is to provide a laser beam annealing method that can control the temperature of a semiconductor substrate and can be used for manufacturing highly integrated semiconductor confectionery.
(発明の構成)
この発明のレーザビームアニール方法は、マイクロホン
を波層した非共鳴形セルに半導体基板を設置し、この半
導体基板上にレーザビームを照射してこのレーザビーム
の照射により半導体基板に生じる原子格子歪鳴音の音波
をマイクロホンで集音し、この集音音波に応じて半導体
基板に照射するレーザビームの加熱をコントロールする
ようにしたものである。(Structure of the Invention) In the laser beam annealing method of the present invention, a semiconductor substrate is placed in a non-resonant cell in which a microphone is layered, a laser beam is irradiated onto the semiconductor substrate, and the semiconductor substrate is irradiated with the laser beam. The resulting sound waves of atomic lattice distortion are collected by a microphone, and the heating of the laser beam irradiated to the semiconductor substrate is controlled in accordance with the collected sound waves.
(実施例)
以下この発明のレーザビームアニール方法の実施例につ
いて説明するが、具体的実施例の説明に先立ちまず、こ
の発明の特徴を概述することにする。(Example) Examples of the laser beam annealing method of the present invention will be described below, but before explaining the specific examples, first, the features of the present invention will be outlined.
この発明は、レーザ光が試料に照射されて吸収が起ると
、そのエネルギの一部が運動エネルギ(熱)にな多試料
の温度が上昇する。レーザビームのスポットは直径40
μm程度でろシ、照射部分は局所的に急激に高温度にな
る。In this invention, when a sample is irradiated with a laser beam and absorption occurs, part of the energy becomes kinetic energy (heat) and the temperature of the sample increases. The laser beam spot has a diameter of 40
The temperature of the irradiated area suddenly becomes high locally at a temperature of about μm.
この際、半導体基板は局所的原子格子歪が生じることに
より、原子格子歪鳴音を生じる。この歪鳴音を鋭敏なマ
イクロホンで測定することができる。このマイクロホン
からの出力はレーザビーム照射光の強さ、試料の吸光s
数無放射緩和(熱への変化)の割合および試料の熱拡散
′などによってきまる。At this time, local atomic lattice distortion occurs in the semiconductor substrate, thereby producing atomic lattice distortion noise. This distorted sound can be measured with a sensitive microphone. The output from this microphone is the intensity of the laser beam irradiation light, the sample absorption s
It is determined by the rate of nonradiative relaxation (change to heat) and thermal diffusion of the sample.
次に上述のような特徴を有するこの発明のレーザビーム
アニール方法の具体的な実施例について説明する。第2
図はその一実施例を説明するための図である。Next, a specific embodiment of the laser beam annealing method of the present invention having the above-mentioned features will be described. Second
The figure is a diagram for explaining one embodiment.
この第2図において、レーザアニールするための半導体
基板3を非共鳴形セル1に設置し、半導体基板3の上方
に高感度マイクロフォン2を設ける。In FIG. 2, a semiconductor substrate 3 for laser annealing is placed in a non-resonant cell 1, and a high-sensitivity microphone 2 is provided above the semiconductor substrate 3.
さらに半導体基板3の上面に対向するように、非共鳴形
セル1の上方にはレーザ光4を通過する窓5が設けられ
ている。Further, a window 5 through which the laser beam 4 passes is provided above the non-resonant cell 1 so as to face the upper surface of the semiconductor substrate 3 .
一方、6はレーザ光源であシ、このレーザ光源6から発
射したレーザ光はチョッパ7を介してビームスプリッタ
8に至シ、そこでレーザビームの一部は熱電検出器9に
入射され、残9のレーザビームは窓5全通して半導体基
板3に照射されるようになっている。On the other hand, 6 is a laser light source, and the laser light emitted from this laser light source 6 reaches a beam splitter 8 via a chopper 7, where a part of the laser beam is incident on a thermoelectric detector 9, and the remaining 9 The laser beam is configured to irradiate the semiconductor substrate 3 through the entire window 5.
熱電検出器9の出力はプリアンプ12を通してロックイ
ンアンプ13に送出されるようになっている。同様にし
て、マイクロホン2の出力はプリアンプ10を通してロ
ックインアンプ11に入力されるようになっている。The output of the thermoelectric detector 9 is sent to a lock-in amplifier 13 through a preamplifier 12. Similarly, the output of the microphone 2 is input to a lock-in amplifier 11 through a preamplifier 10.
両ロツクインア/グ11,13の出力はチョッパ7に加
えるようになっているとともに、比率計14にも加えら
れるように構成されている。この比率計14の出力と比
較更正データ機構部15の出力は第2の比率計16に加
えられるようになっている。The outputs of both lock-in pins 11 and 13 are applied to the chopper 7, and are also configured to be applied to the ratio meter 14. The output of this ratio meter 14 and the output of the comparison correction data mechanism section 15 are applied to a second ratio meter 16.
この第2の比率計16の出力はレーザコントローラ17
に送出され、このレーザコントローラ17によシ、レー
ザ光源6會刊別するようになっている。The output of this second ratio meter 16 is
The laser controller 17 separates the laser light sources into six groups.
この第2図よフ明らかなように、非共鳴形セル1内の半
導体基板3は、窓5を介してCWレーザによるレーザ光
4によシ照射され、アニールされる。そのレーザ光4に
よシ半導体基板3は加熱される。その際レーザ光は半導
体基板3上を全面にわたシ加熱するように走査される。As is clear from FIG. 2, the semiconductor substrate 3 in the non-resonant cell 1 is irradiated with laser light 4 from a CW laser through the window 5 and annealed. The semiconductor substrate 3 is heated by the laser beam 4. At this time, the laser beam is scanned so as to heat the entire surface of the semiconductor substrate 3.
このとき、半導体基板3はレーザビーム4の急激なる加
熱によるヒートショックにより原子格歪鳴音を発する。At this time, the semiconductor substrate 3 emits atomic distortion noise due to heat shock caused by the rapid heating of the laser beam 4.
この鳴音をマイクロホン2により集音する。This ringing sound is collected by the microphone 2.
一方、第2図の6はレーザ光源であり、レーザ光6はチ
ョッパ7を介して後ビームスプリッタ8によって一部が
熱電検出器9に入り、光源変動の補正用および基準信号
として用いられる。それ以外のレーザ光は非共鳴形セル
lに入シ、半導体基板3に照射し加熱する。On the other hand, 6 in FIG. 2 is a laser light source, and a portion of the laser light 6 passes through a chopper 7 and enters a thermoelectric detector 9 via a rear beam splitter 8, where it is used for correction of light source fluctuations and as a reference signal. The other laser beams enter the non-resonant cell l, irradiate the semiconductor substrate 3, and heat it.
非共鳴形セル1中のマイクロホン2によシ集音された信
号はプリアンプ10を通り、ロックインアンプ11に入
る。A signal collected by the microphone 2 in the non-resonant cell 1 passes through a preamplifier 10 and enters a lock-in amplifier 11.
一方、前記熱電検出器9の出力はプリアンプ12を通り
、ロックインアンプ13に入る。On the other hand, the output of the thermoelectric detector 9 passes through a preamplifier 12 and enters a lock-in amplifier 13.
両口ツクインアンプ11と13を通過した信号はチョッ
パ7に加えて、チョツノく7の動作をコントロールする
とともに、比率計14に加えられる。The signal that has passed through the double-ended twin-in amplifiers 11 and 13 is added to the chopper 7, which controls the operation of the chopper 7, and is also applied to the ratio meter 14.
この比率計14は両口ツクインアンプ11,130出力
に比例した出力、すなわちこの比率計14によシ、レー
ザ光源6の強度の変動とマイクロホン2の出力の変動な
どにより、レーザ光源6の変動などを補正するための出
力が第2の比率計16に加えられる。This ratio meter 14 outputs an output proportional to the outputs of the double-ended twin-in amplifiers 11 and 130. In other words, this ratio meter 14 detects fluctuations in the laser light source 6 due to fluctuations in the intensity of the laser light source 6 and fluctuations in the output of the microphone 2. An output for correction is applied to the second ratio meter 16.
この比率計14から取シ出される信号は半導体基板3に
発生した熱量に対応する信号を正確に第2の比率計16
に伝達してりる。The signal taken out from this ratio meter 14 is accurately transmitted to the second ratio meter 16, which corresponds to the amount of heat generated in the semiconductor substrate 3.
It is being communicated to.
この第2の比率計16には、比較更正データ機構部15
からの信号も入力されておシ、したがって、第2の比率
計16はこの比較更正データ機構部15の出力と比率計
14の出力とによシ、その両者の偏差に応じてレーザコ
ントローラ17に出力する。これによシレーザコントロ
ーラ17はレーザ光源6を制御して、半導体基板3の加
熱に通切なレーザビームがレーザ光源6から発射される
。This second ratio meter 16 includes a comparative correction data mechanism section 15.
Therefore, the second ratio meter 16 receives a signal from the comparison correction data mechanism 15 and the output from the ratio meter 14, and sends a signal to the laser controller 17 according to the deviation between the two. Output. Accordingly, the laser controller 17 controls the laser light source 6 so that a laser beam sufficient for heating the semiconductor substrate 3 is emitted from the laser light source 6.
したがって、この発明によるレーザビームアニール方法
は、半導体基板3上の多結晶シリコンをレーザ加熱によ
り、単結晶化するのが各易に実現できるため、三次元素
子などの高密に集積回路に利用できる利点がある。Therefore, the laser beam annealing method according to the present invention has the advantage that it can easily be used for high-density integrated circuits such as tertiary element elements, since polycrystalline silicon on the semiconductor substrate 3 can be easily made into a single crystal by laser heating. There is.
ところで、従来半導体基板表面上に存在するシリコン酸
化膜あるいは窒化膜などの膜厚の変動により、あるいは
半導体基板の反射などにレーザ光エネルゼが熱エネルギ
への転換のコントロールが極めて困難であつ罠。However, conventionally, it has been extremely difficult to control the conversion of laser light energy into thermal energy due to variations in the thickness of the silicon oxide film or nitride film existing on the surface of the semiconductor substrate, or due to reflection from the semiconductor substrate.
しかるに、第1の実施例で説明したこの発明によれば、
半導体基板3上に照射したレーザ光4のエネルギが熱に
転換した際に生じる原子格子歪の鳴音金マイクロホン2
により取り出し、加熱状態を電気的に明示することがで
きるため、半導体基板3を安定にアニーリングすること
ができる。However, according to this invention explained in the first embodiment,
Metal microphone 2 with atomic lattice distortion that occurs when the energy of laser light 4 irradiated onto a semiconductor substrate 3 is converted into heat
Since the semiconductor substrate 3 can be taken out and the heated state can be electrically indicated, the semiconductor substrate 3 can be stably annealed.
したがって、高性能高集積半導体たとえば三次元素子を
安定に形成できる利点がある。Therefore, there is an advantage that high-performance, highly integrated semiconductors, such as tertiary element elements, can be stably formed.
上記第1の実施例はレーザ光源として、CWレーザを用
いたが第2の実施例ではCWレーザに代えて、パルスレ
ーザを用いても第1の実施例と同様に安定に半導体基板
3を加熱することができた。In the first embodiment, a CW laser is used as the laser light source, but in the second embodiment, a pulsed laser can be used instead of the CW laser to stably heat the semiconductor substrate 3 in the same manner as in the first embodiment. We were able to.
したがって、第2の実施例においても第1の実施例と同
様に高集積三次元素子などのアニ’ IJンダを高安定
に用いることができる。Therefore, in the second embodiment as well, as in the first embodiment, it is possible to use highly integrated antennas such as highly integrated tertiary element elements with high stability.
(発明の効果)
以上のように、この発明のレーザビームアニール方法に
よれば、半導体基板にレーザビーム照射中に吸収された
エネルギが熱に転換した際に生じる半導体基板からの原
子格子歪鳴音をマイクロホンで集音してその出力に応じ
てレーザ光による加熱状態を監視コントロールするよう
にしたので、三次元素子等の製造において特に多結晶材
料を単結晶化させるに必要なるレーザアニール法を安定
に使用でき、したがって、高集積半導体素子の製造に利
用す°ることかできる。(Effects of the Invention) As described above, according to the laser beam annealing method of the present invention, the atomic lattice distortion noise from the semiconductor substrate is generated when the energy absorbed during laser beam irradiation on the semiconductor substrate is converted into heat. Since the sound is collected by a microphone and the heating state by laser light is monitored and controlled according to the output, it is possible to stabilize the laser annealing method, which is especially necessary for converting polycrystalline materials into single crystals in the production of tertiary elements, etc. Therefore, it can be used for manufacturing highly integrated semiconductor devices.
第1図はシリコン半導体基板上の各極膜にレーザビーム
を照射した場合のレーザビームの吸収状態を示す図、第
2図はこの発明のレーザビームアニール法の一実施例を
説明するための図である。
l・・・非共鳴形セル、2・・・マイクロフォン、3・
・・半導体基板、4・・・レーザ光、5・・・窓、6・
・・レーザ光源、7・・・チョッパ、8・・・ビームス
プリッタ、9・・・熱電検出器、11.13・・・ロッ
クインアンプ、14.16・・・比率計、15・・・比
較更正デーダ機構部、17・・・レーザコントローラ。
特許出願人 沖電気工業株式会社FIG. 1 is a diagram showing the absorption state of a laser beam when each pole film on a silicon semiconductor substrate is irradiated with a laser beam, and FIG. 2 is a diagram for explaining an embodiment of the laser beam annealing method of the present invention. It is. l...Non-resonant cell, 2...Microphone, 3.
...Semiconductor substrate, 4...Laser light, 5...Window, 6.
... Laser light source, 7... Chopper, 8... Beam splitter, 9... Thermoelectric detector, 11.13... Lock-in amplifier, 14.16... Ratio meter, 15... Comparison Correction data mechanism section, 17... laser controller. Patent applicant Oki Electric Industry Co., Ltd.
Claims (1)
置し、この半導体基板上にレーザビームを照射してこの
レーザビームにより半導体基板を照射したときに生じる
原子格子歪鳴音波をマイクロホンで集音し、この集音し
た音波に応じて上記半導体基板を照射して加熱するレー
ザビームを最適に制御することを特徴とするレーザビー
ムアニール方法。A semiconductor substrate is installed in a non-resonant cell equipped with a microphone, a laser beam is irradiated onto the semiconductor substrate, and the atomic lattice distortion sound waves generated when the semiconductor substrate is irradiated with the laser beam are collected by the microphone. A laser beam annealing method characterized by optimally controlling a laser beam that irradiates and heats the semiconductor substrate according to the collected sound waves.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6775283A JPS59194430A (en) | 1983-04-19 | 1983-04-19 | Laser beam annealing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6775283A JPS59194430A (en) | 1983-04-19 | 1983-04-19 | Laser beam annealing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59194430A true JPS59194430A (en) | 1984-11-05 |
Family
ID=13353982
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6775283A Pending JPS59194430A (en) | 1983-04-19 | 1983-04-19 | Laser beam annealing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59194430A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007059458A (en) * | 2005-08-22 | 2007-03-08 | Fuji Electric Holdings Co Ltd | Method of monitoring laser beam in laser annealing |
US9498845B2 (en) | 2007-11-08 | 2016-11-22 | Applied Materials, Inc. | Pulse train annealing method and apparatus |
CN112002640A (en) * | 2020-10-27 | 2020-11-27 | 中芯集成电路制造(绍兴)有限公司 | Method for monitoring stability of annealing process |
-
1983
- 1983-04-19 JP JP6775283A patent/JPS59194430A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007059458A (en) * | 2005-08-22 | 2007-03-08 | Fuji Electric Holdings Co Ltd | Method of monitoring laser beam in laser annealing |
US9498845B2 (en) | 2007-11-08 | 2016-11-22 | Applied Materials, Inc. | Pulse train annealing method and apparatus |
US11040415B2 (en) | 2007-11-08 | 2021-06-22 | Applied Materials, Inc. | Pulse train annealing method and apparatus |
CN112002640A (en) * | 2020-10-27 | 2020-11-27 | 中芯集成电路制造(绍兴)有限公司 | Method for monitoring stability of annealing process |
CN112002640B (en) * | 2020-10-27 | 2021-05-25 | 中芯集成电路制造(绍兴)有限公司 | Method for monitoring stability of annealing process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4543486A (en) | Method and apparatus for using a photoacoustic effect for controlling various processes utilizing laser and ion beams, and the like | |
Von Gutfeld et al. | 20‐MHz acoustic waves from pulsed thermoelastic expansions of constrained surfaces | |
US4439245A (en) | Electromagnetic radiation annealing of semiconductor material | |
KR100443856B1 (en) | Ultrafast Optical Technique for the Characterization of Altered Materials | |
Chen et al. | Time resolved heat propagation in a gold crystal by means of picosecond x‐ray diffraction | |
JPH11510960A (en) | Laser surface treatment apparatus and method | |
JPS59194430A (en) | Laser beam annealing method | |
US3610926A (en) | Dosimeter formed of a radiation sensitive thermoluminescent material and method of reading the same | |
JPH03216526A (en) | Method of measuring temperature of semiconductor material by light transmission factor | |
US4755049A (en) | Method and apparatus for measuring the ion implant dosage in a semiconductor crystal | |
JPWO2011099191A1 (en) | Photoinduced carrier lifetime measurement method, light incidence efficiency measurement method, photoinduced carrier lifetime measurement device, and light incidence efficiency measurement device | |
Linde et al. | ‘Ultrafast’extended to X-rays: Femtosecond time-resolved X-ray diffraction | |
Kishimura et al. | Picosecond structural dynamics in photoexcited Si probed by time-resolved X-ray diffraction | |
Uschmann et al. | X-ray emission produced by hot electrons from fs-laser produced plasma—diagnostic and application | |
JPS6215817A (en) | Light and heat processing method and light-intensity measuring apparatus | |
JP2007043019A (en) | Semiconductor evaluation apparatus and semiconductor processor | |
JP3433856B2 (en) | Amorphous thin film crystallization method | |
JP2715239B2 (en) | Method and apparatus for adjusting light intensity of optical system | |
JP3688383B2 (en) | Crystal defect detection method | |
JPH03232223A (en) | Photoannealing device | |
JP3939179B2 (en) | Fine particle detection device, fine particle production device | |
JPS5840332B2 (en) | Control method in semiconductor annealing process | |
JPH0685023A (en) | Device for measuring minority carrier lifetime in semiconductor wafer | |
Farrakhov et al. | An Optical Diffraction Method for Controlling the Solid-Phase Recrystallization and Heating of Implanted Semiconductors during Pulse Light Annealing | |
JPS5840331B2 (en) | Semiconductor inspection method related to annealing treatment |