JPH0795031B2 - Method for measuring impurity concentration in polycrystalline silicon - Google Patents

Method for measuring impurity concentration in polycrystalline silicon

Info

Publication number
JPH0795031B2
JPH0795031B2 JP15418491A JP15418491A JPH0795031B2 JP H0795031 B2 JPH0795031 B2 JP H0795031B2 JP 15418491 A JP15418491 A JP 15418491A JP 15418491 A JP15418491 A JP 15418491A JP H0795031 B2 JPH0795031 B2 JP H0795031B2
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
impurity concentration
sample
heat treatment
measurement sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15418491A
Other languages
Japanese (ja)
Other versions
JPH04310513A (en
Inventor
晴美 柴田
正人 今井
Original Assignee
コマツ電子金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コマツ電子金属株式会社 filed Critical コマツ電子金属株式会社
Priority to JP15418491A priority Critical patent/JPH0795031B2/en
Publication of JPH04310513A publication Critical patent/JPH04310513A/en
Publication of JPH0795031B2 publication Critical patent/JPH0795031B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多結晶シリコン中の不
純物濃度を簡便に測定する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for easily measuring the impurity concentration in polycrystalline silicon.

【0002】[0002]

【従来の技術】従来、赤外吸収法によるシリコン(S
i)中の不純物濃度の測定は、単結晶シリコンについて
のみ実施されている。その概要を図8に示す赤外吸収法
で使用されている複光束形分光装置のブロック線図で説
明する。光源1からの光束は光束スイッチ2により測定
試料3のある試料光束側と標準試料4のある標準光束側
に交互に切り換えられ、検知器5には両光束の強度差が
交流信号として入射する。検知器5の出力を増幅器6a
等で増幅してサーボモータ7を作動させ標準光束側に入
れられた光束減衰器8を動かし、両光束の強度を平衡さ
せる。両光束の強度が平衡したら検知器5の出力は0と
なりサーボモータ7は停止する。この時、光束減衰器8
の移動量は試料光束強度Isと標準光束強度Irの比C
・Is/Ir(Cは定数)となっており、光束減衰器8
の移動量が記録器9に記録される。従って、記録曲線は
透過率Is/Irを記録しており透過率曲線がただちに
得られる。
2. Description of the Related Art Conventionally, silicon (S
The measurement of the impurity concentration in i) is performed only for single crystal silicon. The outline will be described with reference to the block diagram of the double-beam spectroscopic device used in the infrared absorption method shown in FIG. The light flux from the light source 1 is alternately switched to the sample light flux side with the measurement sample 3 and the standard light flux side with the standard sample 4 by the light flux switch 2, and the intensity difference between the two light fluxes is incident on the detector 5 as an AC signal. The output of the detector 5 is the amplifier 6a
And the like to operate the servo motor 7 to move the luminous flux attenuator 8 placed on the standard luminous flux side to balance the intensity of both luminous fluxes. When the intensities of the two light beams are balanced, the output of the detector 5 becomes 0 and the servo motor 7 stops. At this time, the luminous flux attenuator 8
Is the ratio C of the sample luminous flux intensity Is and the standard luminous flux intensity Ir.
・ Is / Ir (C is a constant) and the luminous flux attenuator 8
Is recorded in the recorder 9. Therefore, the recording curve records the transmittance Is / Ir, and the transmittance curve is immediately obtained.

【0003】他方、多結晶シリコンについては、透過率
Is/Irの変動が大きいため不純物の吸収ピークを測
定することができない。このため、破壊検査である放射
化分析で測定するか、あるいは一度フローティングゾー
ン法によって単結晶引上げを行い、得られた単結晶シリ
コンの不純物濃度を赤外吸収法により測定している。
On the other hand, regarding polycrystalline silicon, the absorption peak of impurities cannot be measured because the fluctuation of the transmittance Is / Ir is large. Therefore, it is measured by activation analysis which is a destructive inspection, or single crystal pulling is performed by the floating zone method once, and the impurity concentration of the obtained single crystal silicon is measured by the infrared absorption method.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、放射化
分析は破壊検査であるため、すぐ隣の点の不純物濃度を
測定したり、繰り返し測定することができないという問
題がある。また、フローティングゾーン法で単結晶シリ
コンにすると、多結晶シリコン全体の平均値として不純
物濃度は測定できるが、限定した部分の不純物濃度は測
定できないという問題がある。
However, since activation analysis is a destructive inspection, there is a problem that it is not possible to measure the impurity concentration at a point immediately next to it or repeatedly measure it. Further, when single crystal silicon is formed by the floating zone method, the impurity concentration can be measured as an average value of the entire polycrystalline silicon, but the impurity concentration in a limited portion cannot be measured.

【0005】本発明はかかる従来技術の欠点を解消する
ためになされたもので、多結晶シリコンの不純物濃度分
布を細かく且つ繰り返し測定できる多結晶シリコン中の
不純物濃度の測定方法を提供することを目的としてい
る。
The present invention has been made in order to solve the drawbacks of the prior art, and an object of the present invention is to provide a method for measuring the impurity concentration in polycrystalline silicon, which enables fine and repeated measurement of the impurity concentration distribution in polycrystalline silicon. I am trying.

【0006】[0006]

【課題を解決するための手段と作用】上記の目的を達成
するために本発明者等は鋭意研究を続けてきた。その結
果、多結晶シリコンの測定試料を熱処理した後表面仕上
げし、次いで赤外吸収法により不純物濃度を測定するこ
とにより、赤外吸収法でも精度よく不純物濃度を測定で
きることを見出した。
Means and Actions for Solving the Problems In order to achieve the above object, the inventors of the present invention have conducted extensive research. As a result, it has been found that the impurity concentration can be accurately measured by the infrared absorption method by subjecting the measurement sample of polycrystalline silicon to a heat treatment, surface finishing, and then measuring the impurity concentration by the infrared absorption method.

【0007】即ち、非酸化性雰囲気中で加熱温度120
0℃以上、加熱時間1H以上熱処理し、測定試料の厚さ
が標準試料の厚さとほぼ同一となるように表面仕上げす
ることにより、多結晶シリコンの不純物濃度分布を細か
く且つ繰り返し測定でき、しかも測定までのリードタイ
ムが短かくなるという利点を見出し、前記問題点を解決
した。
That is, the heating temperature is 120 in a non-oxidizing atmosphere.
By heat-treating at 0 ° C or more and heating time for 1H or more, and by finishing the surface so that the thickness of the measurement sample is almost the same as the thickness of the standard sample, the impurity concentration distribution of polycrystalline silicon can be measured finely and repeatedly The present invention has solved the above-mentioned problems by finding the advantage that the lead time until the product becomes short.

【0008】[0008]

【実施例】本発明に係る多結晶シリコン中の不純物濃度
の測定方法の好ましい実施例を、添付図面により詳説す
る。図1は本発明の実施例に係る多結晶シリコン中のカ
ーボン濃度の測定方法を示す概要工程図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the method for measuring the impurity concentration in polycrystalline silicon according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic process diagram showing a method for measuring the carbon concentration in polycrystalline silicon according to an example of the present invention.

【0009】先ず、図1の第1工程において、多結晶シ
リコンの丸棒から長さ15mm以上の試料を入手し、第
2工程では、この試料からダイヤモンドカッターによ
り、15×20mm以上の角状の測定試料を切り出す。
第3工程では、この測定試料をグラインダー研削、超音
波洗浄及びエッチングにより粗加工する。
First, in the first step of FIG. 1, a sample having a length of 15 mm or more is obtained from a round rod of polycrystalline silicon, and in the second step, a diamond cutter is used to cut a rectangular piece of 15 × 20 mm or more from the sample. Cut out the measurement sample.
In the third step, this measurement sample is roughly processed by grinder grinding, ultrasonic cleaning and etching.

【0010】第4工程では、粗加工した測定試料を非酸
化性雰囲気中で1200℃以上×1H以上加熱して,熱
処理を施す。好ましい加熱温度は1250〜1300℃
である。
In the fourth step, the rough-processed measurement sample is heated in a non-oxidizing atmosphere at 1200 ° C. or higher × 1 H or higher for heat treatment. The preferred heating temperature is 1250 to 1300 ° C.
Is.

【0011】第5工程では、熱処理した測定試料をラッ
ピング、超音波洗浄、エッチング及びダイヤモンドペー
ストによる鏡面仕上げにより仕上げを施す。簡便法の場
合はエッチングのみでもよい。
In the fifth step, the heat-treated measurement sample is finished by lapping, ultrasonic cleaning, etching and mirror finishing with diamond paste. In the case of a simple method, only etching may be used.

【0012】第6工程では、仕上げをした測定試料のカ
ーボンの吸収ピークを赤外吸収法により測定し、標準の
較正曲線によりカーボン濃度に換算する。
In the sixth step, the absorption peak of carbon of the finished measurement sample is measured by the infrared absorption method and converted into carbon concentration by a standard calibration curve.

【0013】図2は本発明に係る熱処理を施した測定試
料の透過率曲線であり、縦軸は透過率を、横軸は波長を
示す。透過率曲線は吸収ピークのベースラインがほぼ平
坦となっているため、カーボンの吸収ピーク(Pc)を
測定できる。比較のために、熱処理前の測定試料の透過
率曲線(従来技術)を図3に示す。透過率曲線は大きく
変動しており、カーボンの吸収ピーク(Pc)は測定で
きない。
FIG. 2 is a transmittance curve of a measurement sample subjected to the heat treatment according to the present invention, in which the vertical axis represents the transmittance and the horizontal axis represents the wavelength. Since the baseline of the absorption peak of the transmittance curve is almost flat, the absorption peak (Pc) of carbon can be measured. For comparison, the transmittance curve (prior art) of the measurement sample before heat treatment is shown in FIG. The transmittance curve fluctuates greatly, and the carbon absorption peak (Pc) cannot be measured.

【0014】図4は熱処理条件とカーボン濃度の関係を
示す図表で、縦軸はカーボン濃度、横軸は熱処理時間で
ある。熱処理温度が1200℃以上であればカーボン濃
度を測定できるが、好ましい熱処理温度は1250〜1
300℃である。
FIG. 4 is a table showing the relationship between the heat treatment conditions and the carbon concentration. The vertical axis is the carbon concentration and the horizontal axis is the heat treatment time. If the heat treatment temperature is 1200 ° C or higher, the carbon concentration can be measured, but the preferable heat treatment temperature is 1250 to 1
It is 300 ° C.

【0015】図5は標準試料の厚さが1880μmのと
きの本発明に係る測定試料の種々の厚さの透過率曲線で
あり、同図(A)は厚さが1900μmの場合、同図
(B)は厚さが1880μmの場合、同図(C)は厚さ
が1860μmの場合を示す。同図(B)のように、測
定試料と標準試料の厚さが同じであればベースラインは
ほぼ平坦であり、このことから測定試料と標準試料の厚
さの差は10μm以内に納めればよい。
FIG. 5 shows transmittance curves of various thicknesses of the measurement sample according to the present invention when the thickness of the standard sample is 1880 μm, and FIG. 5A shows the case where the thickness is 1900 μm. B) shows the case where the thickness is 1880 μm, and FIG. 7C shows the case where the thickness is 1860 μm. If the thickness of the measurement sample is the same as that of the standard sample as shown in FIG. 7B, the baseline is almost flat. Therefore, if the thickness difference between the measurement sample and the standard sample is within 10 μm, Good.

【0016】図6は本発明に係る測定試料の種々のカー
ボン濃度の透過率曲線であり、同図(A)は吸収係数α
が1.108cm−1,カーボン濃度[Cs]が0.8
2×1017atoms/ccの場合、同図(B)は吸
収係数αが0.435cm−1,カーボン濃度[Cs]
が0.32×1017atoms/ccの場合、同図
(C)は吸収係数αが0.141cm−1,カーボン濃
度[Cs]が0.11×1017atoms/ccの場
合、同図(D)は吸収係数αが0,カーボン濃度[C
s]が測定不能の場合を示す。これらの結果から、0.
11×1017atoms/ccのカーボン濃度[C
s]まで吸収ピーク(Pc)を測定可能である。
FIG. 6 shows transmittance curves of various carbon concentrations of the measurement sample according to the present invention. FIG. 6A shows the absorption coefficient α.
Is 1.108 cm -1 , and the carbon concentration [Cs] is 0.8.
In the case of 2 × 10 17 atoms / cc, the figure (B) shows that the absorption coefficient α is 0.435 cm −1 and the carbon concentration [Cs].
Is 0.32 × 10 17 atoms / cc, the same figure (C) shows that the absorption coefficient α is 0.141 cm −1 and the carbon concentration [Cs] is 0.11 × 10 17 atoms / cc. D) has an absorption coefficient α of 0 and carbon concentration [C
[s] indicates that measurement is impossible. From these results, 0.
Carbon concentration of 11 × 10 17 atoms / cc [C
The absorption peak (Pc) can be measured up to [s].

【0017】図7は本発明に係る測定試料の酸素濃度の
実施例であって、同図(A)は熱処理を施した測定試料
の透過率曲線であり、1105cm−1付近に酸素濃度
の吸収ピーク(Pc)か認められる。同図(B)は熱処
理前の測定試料の透過率曲線(従来技術)であり、11
05cm−1付近で下がっているが吸収ピークの幅が広
すぎるため測定できない。
FIG. 7 shows an example of the oxygen concentration of the measurement sample according to the present invention. FIG. 7A is a transmittance curve of the measurement sample subjected to the heat treatment, and shows the oxygen concentration absorption at around 1105 cm −1. A peak (Pc) is recognized. FIG. 11B is a transmittance curve (prior art) of the measurement sample before heat treatment.
Although it decreased at around 05 cm -1 , it cannot be measured because the width of the absorption peak is too wide.

【発明の効果】以上説明したように、本発明によれば多
結晶シリコンの測定試料を熱処理し、その厚さと標準試
料の厚さの差を10μm以内に納めることにより、赤外
吸収法で不純物濃度を測定できる。このために、多結晶
シリコンの不純物濃度分布を細かく且つ繰り返し測定で
き、しかも測定までのリードタイムが短かくなるという
効果が得られる。
As described above, according to the present invention, the sample to be measured of polycrystalline silicon is heat-treated, and the difference between the thickness of the sample and the thickness of the standard sample is set within 10 μm. The concentration can be measured. Therefore, it is possible to obtain an effect that the impurity concentration distribution of the polycrystalline silicon can be measured finely and repeatedly and the lead time until the measurement becomes short.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る多結晶シリコン中のカー
ボン濃度の測定方法を示す概要工程図である。
FIG. 1 is a schematic process chart showing a method for measuring carbon concentration in polycrystalline silicon according to an example of the present invention.

【図2】本発明に係る熱処理を施した測定試料の透過率
曲線を示す図表である。
FIG. 2 is a chart showing a transmittance curve of a measurement sample subjected to a heat treatment according to the present invention.

【図3】従来技術における熱処理前の測定試料の透過率
曲線を示す図表である。
FIG. 3 is a chart showing a transmittance curve of a measurement sample before heat treatment in a conventional technique.

【図4】熱処理条件とカーボン濃度の関係を示す図表で
ある。
FIG. 4 is a chart showing the relationship between heat treatment conditions and carbon concentration.

【図5】同図(A)、(B)及び(C)は本発明に係る
測定試料の種々の厚さの透過率曲線を示す図表である。
5 (A), (B) and (C) are charts showing transmittance curves of various thicknesses of measurement samples according to the present invention.

【図6】同図(A)、(B)、(C)及び(D)は本発
明に係る測定試料の種々のカーボン濃度の透過率曲線を
示す図表である。
6 (A), (B), (C) and (D) are charts showing transmittance curves of various carbon concentrations of a measurement sample according to the present invention.

【図7】同図(A)は熱処理を施した測定試料に係る酸
素の透過率曲線を示す図表、同図(B)は熱処理前の測
定試料に係る酸素の透過率曲線を示す図表である。
FIG. 7 (A) is a chart showing an oxygen transmittance curve of a measurement sample subjected to heat treatment, and FIG. 7 (B) is a chart showing an oxygen transmittance curve of a measurement sample before heat treatment. .

【図8】赤外吸収法で使用されている複光束形分光装置
のブロック線図である。
FIG. 8 is a block diagram of a double-beam spectroscopic device used in the infrared absorption method.

【符号の説明】[Explanation of symbols]

2・・・光束スイッチ 3・・・測定試料 4・・・標準試料 8・・・光束減衰器 2 ... Luminous flux switch 3 ... Measurement sample 4 ... Standard sample 8 ... Luminous flux attenuator

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】多結晶シリコンの測定試料を熱処理した
後、これを表面仕上げし、次いで赤外吸収法により不純
物濃度を測定することを特徴とする多結晶シリコン中の
不純物濃度の測定方法。
1. A method for measuring the impurity concentration in polycrystalline silicon, which comprises subjecting a sample for measurement of polycrystalline silicon to a heat treatment, finishing the surface of the sample, and then measuring the impurity concentration by an infrared absorption method.
【請求項2】前記熱処理は、非酸化性雰囲気中で加熱温
度1200℃以上、加熱時間1H以上熱処理することを
特徴とする請求項1記載の多結晶シリコン中の不純物濃
度の測定方法。
2. The method for measuring the impurity concentration in polycrystalline silicon according to claim 1, wherein the heat treatment is performed in a non-oxidizing atmosphere at a heating temperature of 1200 ° C. or higher and a heating time of 1 H or longer.
【請求項3】前記表面仕上げは、測定試料の厚さが標準
試料の厚さがほぼ同一となるように表面仕上げすること
を特徴とする請求項1記載の多結晶シリコン中の不純物
濃度の測定方法。
3. The measurement of the impurity concentration in polycrystalline silicon according to claim 1, wherein the surface finish is such that the thickness of the measurement sample is substantially the same as that of the standard sample. Method.
JP15418491A 1991-04-05 1991-04-05 Method for measuring impurity concentration in polycrystalline silicon Expired - Lifetime JPH0795031B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15418491A JPH0795031B2 (en) 1991-04-05 1991-04-05 Method for measuring impurity concentration in polycrystalline silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15418491A JPH0795031B2 (en) 1991-04-05 1991-04-05 Method for measuring impurity concentration in polycrystalline silicon

Publications (2)

Publication Number Publication Date
JPH04310513A JPH04310513A (en) 1992-11-02
JPH0795031B2 true JPH0795031B2 (en) 1995-10-11

Family

ID=15578676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15418491A Expired - Lifetime JPH0795031B2 (en) 1991-04-05 1991-04-05 Method for measuring impurity concentration in polycrystalline silicon

Country Status (1)

Country Link
JP (1) JPH0795031B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5524894B2 (en) * 2011-04-04 2014-06-18 信越化学工業株式会社 Method for measuring carbon concentration in polycrystalline silicon

Also Published As

Publication number Publication date
JPH04310513A (en) 1992-11-02

Similar Documents

Publication Publication Date Title
US4505586A (en) Laser Raman spectrophotometry system and adjustment thereof
CA1220643A (en) Method of laser emission spectroscopic analysis of steel and apparatus therefor
US4812036A (en) Stress evaluation apparatus
JP3536203B2 (en) Method and apparatus for measuring crystal defects in wafer
JPS6231288B2 (en)
US5302832A (en) Method for evaluation of spatial distribution of deep level concentration in semiconductor crystal
Holman Novel uses of gravimetry in the processing of crystalline ceramics
WO2023051617A1 (en) Measurement method and system for nitrogen element in nitrogen-doped monocrystalline silicon
DE4315386C2 (en) High temperature thermocouple calibration
Fukuda et al. Growth of LiTaO3 single crystal for SAW device applications
US4799788A (en) Process for measuring the temperature of a body by optical detection and modulated heating
JPH0795031B2 (en) Method for measuring impurity concentration in polycrystalline silicon
JPH07508591A (en) Raman analyzer and method
JPH03216526A (en) Method of measuring temperature of semiconductor material by light transmission factor
Boumans et al. Studies of photodiodes and phototransistors as detection devices for multichannel emission spectrometry
JPH0574019B2 (en)
JPS5571934A (en) Method of evaluating impurity doping amount in semiconductor
JP2003177093A (en) Infrared analysis apparatus
JP3046724B2 (en) Wafer thickness measurement method
JPH0749305A (en) Apparatus and method for measuring interstitial oxygen concentration in silicon single crystal
JPS6127904B2 (en)
Goodman Improvements in method and apparatus for determining minority carrier diffusion length
JPS59194430A (en) Laser beam annealing method
JPH0425729A (en) Temperature measuring instrument
JPH04223264A (en) Measurement of oxygen concentration in silicon