JPH04310296A - Acclimation and propagation of bacteria oxidizing and decomposing reducible sulfur compound, and biological treatment of waste water containing the same compound - Google Patents

Acclimation and propagation of bacteria oxidizing and decomposing reducible sulfur compound, and biological treatment of waste water containing the same compound

Info

Publication number
JPH04310296A
JPH04310296A JP3103936A JP10393691A JPH04310296A JP H04310296 A JPH04310296 A JP H04310296A JP 3103936 A JP3103936 A JP 3103936A JP 10393691 A JP10393691 A JP 10393691A JP H04310296 A JPH04310296 A JP H04310296A
Authority
JP
Japan
Prior art keywords
reducing sulfur
microorganisms
aeration tank
wastewater
sulfur compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3103936A
Other languages
Japanese (ja)
Other versions
JP2509099B2 (en
Inventor
Masahiro Fujii
正博 藤井
Osamu Miki
理 三木
Yasushi Kamori
裕史 嘉森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3103936A priority Critical patent/JP2509099B2/en
Publication of JPH04310296A publication Critical patent/JPH04310296A/en
Application granted granted Critical
Publication of JP2509099B2 publication Critical patent/JP2509099B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Activated Sludge Processes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

PURPOSE:To biologically treat waste water containing a reducible sulfur compound with high efficiency by acclimating and propagating bacteria suitable for the treatment of the waste water. CONSTITUTION:Activated sludge for treating sewage or industrial waste water is introduced into an aeration tank to be subjected to aeration. A soluble calcium salt is added to waste water containing a reducible sulfur compound before introducing the waste water into the aeration tank.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は廃水の生物学的処理、よ
り詳細には還元性硫黄化合物を含む廃水の処理に適した
微生物の馴養、増殖方法、及び、還元性硫黄化合物を含
む廃水の生物学的処理方法に関する。
[Industrial Application Field] The present invention relates to biological treatment of wastewater, more specifically, a method for acclimating and growing microorganisms suitable for the treatment of wastewater containing reducing sulfur compounds, and Concerning biological treatment methods.

【0002】0002

【従来の技術】都市下水、団地下水、産業廃水などに含
まれている汚濁物を生物学的に処理する方法は既に知ら
れている。例えば、特開昭63−126599号公報に
は、活性汚泥が存在する生物学的反応槽を嫌気1槽、好
気1槽、嫌気2槽及び好気2槽と4分割し、各槽の好気
度、嫌気度を酸化還元電位(ORP)を指標に管理する
方法が記載されている。
BACKGROUND OF THE INVENTION Methods for biologically treating pollutants contained in municipal sewage, underground water, industrial wastewater, etc. are already known. For example, in JP-A No. 63-126599, a biological reaction tank in which activated sludge exists is divided into four: 1 anaerobic tank, 1 aerobic tank, 2 anaerobic tanks, and 2 aerobic tanks, and each tank has its own preferred method. A method for managing air temperature and anaerobic degree using oxidation-reduction potential (ORP) as an index is described.

【0003】ところで、廃水の中には写真工業、石油精
製工業、化学工業の廃水のように還元性硫黄化合物を含
む廃水があり、これらの化合物が廃水の化学的酸素要求
量(COD)を高める原因となっており、廃水のCOD
を低減するためには、これらの化合物を何等かの方法に
より除去する必要がある。
By the way, some wastewater contains reducing sulfur compounds, such as wastewater from the photographic industry, oil refining industry, and chemical industry, and these compounds increase the chemical oxygen demand (COD) of the wastewater. COD of wastewater
In order to reduce these compounds, it is necessary to remove them by some method.

【0004】還元性硫黄化合物を含む廃水の処理方法と
して、次亜塩素酸ソーダなどにより化学的に酸化処理す
る方法が知られている。
[0004] As a method for treating wastewater containing reducible sulfur compounds, a method of chemically oxidizing the wastewater using sodium hypochlorite or the like is known.

【0005】[0005]

【発明が解決しようとする課題】しかし、前述の処理方
法は処理コストが高く、しかもこれらの化合物を十分に
酸化分解して廃水のCODを下げることが困難であると
いう問題がある。
However, the above-mentioned treatment method has problems in that the treatment cost is high and it is difficult to sufficiently oxidize and decompose these compounds to lower the COD of the wastewater.

【0006】本発明は、還元性硫黄化合物を含む廃水の
生物学的処理に適した微生物を迅速に馴養、増殖し、還
元性硫黄化合物を含む廃水を高効率で生物学的に処理す
る方法を提供する。
The present invention provides a method for rapidly acclimating and multiplying microorganisms suitable for biological treatment of wastewater containing reducing sulfur compounds, and for biologically treating wastewater containing reducing sulfur compounds with high efficiency. provide.

【0007】[0007]

【課題を解決するための手段】本発明の要旨は、下水、
産業廃水を処理する活性汚泥より還元性硫黄化合物を酸
化分解する微生物を馴養、増殖する際、還元性硫黄化合
物を含む廃水に可溶性のカルシウム化合物を添加してか
ら活性汚泥の存在する曝気槽に供給すると共に、曝気槽
の酸化還元電位を、還元性硫黄化合物の酸化反応の自由
反応エネルギー変化量から計算で求めたORP値に維持
する事を特徴とする還元性硫黄化合物を酸化分解する微
生物の馴養、増殖方法、並びに、還元性硫黄化合物を酸
化分解する微生物が存在する曝気槽に、還元性硫黄化合
物を含む廃水に可溶性のカルシウム化合物を添加してか
ら供給し、曝気槽に於いて還元性硫黄化合物が微生物に
より酸化分解されて生成する硫酸イオンとカルシウムイ
オンとで生成する不溶性の硫酸カルシウムの粒子にこれ
らの微生物を付着、固定化することにより微生物の沈降
性を改善し、曝気槽のこれらの微生物を高濃度に維持し
て、高効率に廃水処理を行うことを特徴とする還元性硫
黄化合物を含む廃水の生物学的処理方法である。
[Means for Solving the Problems] The gist of the present invention is that sewage,
When cultivating and growing microorganisms that oxidize and decompose reducing sulfur compounds from activated sludge used to treat industrial wastewater, soluble calcium compounds are added to the wastewater containing reducing sulfur compounds before supplying it to the aeration tank where the activated sludge is present. At the same time, the oxidation-reduction potential of the aeration tank is maintained at the ORP value calculated from the free reaction energy change of the oxidation reaction of the reducing sulfur compound. , a growth method, and a method in which soluble calcium compounds are added to wastewater containing reducing sulfur compounds and then supplied to an aeration tank in which microorganisms that oxidize and decompose reducing sulfur compounds are present, and reducing sulfur is removed in the aeration tank. By attaching and immobilizing these microorganisms to insoluble calcium sulfate particles, which are produced by sulfate ions and calcium ions produced when compounds are oxidized and decomposed by microorganisms, the sedimentation properties of microorganisms are improved, and these particles in the aeration tank are This is a biological treatment method for wastewater containing reducing sulfur compounds, which is characterized by maintaining a high concentration of microorganisms and treating wastewater with high efficiency.

【0008】[0008]

【作用】図1は、本発明の方法を示す図である。[Operation] FIG. 1 is a diagram showing the method of the present invention.

【0009】本発明者らは、下水、産業廃水の処理を行
っている活性汚泥に還元性硫黄化合物を酸化分解する微
生物が存在することを見いだした。
The present inventors have discovered that microorganisms that oxidize and decompose reducing sulfur compounds exist in activated sludge used to treat sewage and industrial wastewater.

【0010】即ち、後述する本発明の微生物の馴養、増
殖方法により、下水、産業廃水を処理している活性汚泥
から優先的に培養、増殖した微生物は、還元性硫黄化合
物を酸化して硫酸を生成する機能を有している事が明ら
かになった。
That is, the microorganisms preferentially cultured and multiplied from activated sludge used to treat sewage and industrial wastewater by the microorganism acclimatization and multiplication method of the present invention, which will be described later, oxidize reducing sulfur compounds and produce sulfuric acid. It has been revealed that it has the ability to generate.

【0011】次に、本発明に於ける還元性硫黄化合物を
酸化分解する微生物の馴養、増殖方法、及びこれらの微
生物を用いてこれらの化合物を含む廃水を生物学的に処
理する方法について説明する。
[0011] Next, a method for acclimating and growing microorganisms that oxidize and decompose reducing sulfur compounds according to the present invention, and a method for biologically treating wastewater containing these compounds using these microorganisms will be explained. .

【0012】最初に、還元性硫黄化合物を酸化分解する
微生物の馴養、増殖方法について説明する。
First, a method for acclimating and growing microorganisms that oxidize and decompose reducible sulfur compounds will be explained.

【0013】まず、還元性硫黄化合物の酸化分解反応を
仮定し、この反応に於ける自由エネルギー変化量を便覧
、成書、文献などから求め、次に、この自由エネルギー
変化量から計算により、これらの酸化分解反応が起こる
ための酸化還元電位(ORP)を求める。
First, assuming an oxidative decomposition reaction of a reducing sulfur compound, the amount of free energy change in this reaction is determined from handbooks, books, literature, etc., and then these are calculated from this amount of free energy change. Find the oxidation-reduction potential (ORP) for the oxidative decomposition reaction to occur.

【0014】次に、図2に示すORPセンサー10、O
RP制御装置11、pHセンサー8、pH制御装置9な
どを備えた曝気槽3と汚泥沈降槽5より成るORP制御
活性汚泥処理装置の曝気槽3に下水又は産業廃水の処理
を行っている活性汚泥混合液を入れ、曝気槽3のORP
を先に仮定した化学反応の自由エネルギー変化量から求
めたORP値に設定する。
Next, the ORP sensor 10 shown in FIG.
Activated sludge in which sewage or industrial wastewater is being treated is placed in the aeration tank 3 of an ORP-controlled activated sludge treatment device, which consists of an aeration tank 3 and a sludge settling tank 5, which are equipped with an RP control device 11, a pH sensor 8, a pH control device 9, etc. Add the mixed solution and ORP the aeration tank 3.
is set to the ORP value obtained from the free energy change amount of the chemical reaction assumed previously.

【0015】このORP値を設定する場合、処理する廃
水に複数の還元性硫黄化合物が存在する場合、それぞれ
の化合物の酸化分解反応が起こる自由エネルギー変化量
が異なるのでORP値も異なる。例えば、廃水に還元性
硫黄化合物としてチオ硫酸ナトリウムと硫化ナトリウム
が共存する場合、計算で求めたORP値はチオ硫酸ナト
リウムが約+150mV(Ag/AgCl電極基準)、
また硫化水素のそれは約−80mV(Ag/AgCl電
極基準)である。このようにORP値が異なる場合は、
より酸化側、即ち、曝気槽のORP値を+150mV以
上に設定すると、両化合物の酸化反応あるいは分解反応
が起こる。
When setting this ORP value, if a plurality of reducing sulfur compounds are present in the wastewater to be treated, the amount of free energy change in the oxidative decomposition reaction of each compound is different, so the ORP value is also different. For example, when sodium thiosulfate and sodium sulfide coexist as reducing sulfur compounds in wastewater, the calculated ORP value is approximately +150 mV (based on Ag/AgCl electrode) for sodium thiosulfate;
Further, that of hydrogen sulfide is about -80 mV (based on Ag/AgCl electrode). If the ORP values are different like this,
When the ORP value of the aeration tank is set to be more oxidizing than +150 mV, an oxidation reaction or decomposition reaction of both compounds occurs.

【0016】この事から、還元性硫黄化合物としてチオ
硫酸ナトリウムと硫化ナトリウムとが共存する廃水に適
した微生物を馴養、増殖する場合、下水又は産業廃水を
処理している活性汚泥の混合液を入れた曝気槽のORP
値を+150mV(Ag/AgCl電極基準)以上に維
持して、これらの化合物を含有する廃水を徐々に供給す
れば、これらの化合物を酸化する微生物が活性汚泥から
容易に増殖する事が考えられる。
From this fact, when cultivating and multiplying microorganisms suitable for wastewater in which sodium thiosulfate and sodium sulfide coexist as reducing sulfur compounds, a mixed solution of activated sludge used to treat sewage or industrial wastewater should be added. ORP of aeration tank
If the value is maintained above +150 mV (Ag/AgCl electrode reference) and wastewater containing these compounds is gradually supplied, it is thought that microorganisms that oxidize these compounds will easily grow from the activated sludge.

【0017】この考えに基づいて、これらの化合物を酸
化する微生物の馴養、増殖を行った。その方法を具体的
に説明する。
Based on this idea, microorganisms that oxidize these compounds were cultivated and grown. The method will be explained in detail.

【0018】図2のORP制御活性汚泥処理装置の曝気
槽3に下水処理を行っている活性汚泥混合液を入れ、こ
の曝気槽3のORP値を+150mVに設定し、この曝
気槽3に還元性硫黄化合物としてチオ硫酸ナトリウムと
硫化ナトリウムが共存する廃水を、処理時間が8時間に
なるように供給する。廃水の供給当初はORPが設定値
まで上昇しないが、徐々に上昇し、約10〜15日間で
+150mVに上昇する。ORPが+150mVに達し
たら、廃水の供給量を、7〜10日間毎に処理時間が6
時間→4時間→3時間→2時間になるように徐々に増加
し、これらの微生物の増殖を図る。その後は、廃水の供
給量を処理時間が2〜3時間になるように設定して廃水
を連続的に処理すると、これらの化合物の酸化分解が良
好に行われて処理水に検出されず、CODが低い良好な
処理水が得られる。
The activated sludge mixed liquid undergoing sewage treatment is put into the aeration tank 3 of the ORP controlled activated sludge treatment equipment shown in FIG. 2, and the ORP value of this aeration tank 3 is set to +150 mV. Wastewater containing sodium thiosulfate and sodium sulfide as sulfur compounds is supplied so that the treatment time is 8 hours. At the beginning of wastewater supply, ORP does not rise to the set value, but gradually rises to +150 mV in about 10 to 15 days. Once the ORP reaches +150 mV, the wastewater supply is increased for 6 treatment times every 7-10 days.
The time is gradually increased as follows: time → 4 hours → 3 hours → 2 hours to increase the growth of these microorganisms. After that, if the wastewater is continuously treated by setting the amount of wastewater supplied so that the treatment time is 2 to 3 hours, the oxidative decomposition of these compounds will be carried out well and they will not be detected in the treated water, resulting in COD. Good quality treated water with low oxidation can be obtained.

【0019】次に、曝気槽に於いて還元性硫黄化合物を
酸化分解する微生物を高濃度に維持して、高効率に処理
する本発明の方法について説明する。
Next, a method of the present invention will be described in which microorganisms that oxidize and decompose reducible sulfur compounds are maintained at a high concentration in an aeration tank for highly efficient treatment.

【0020】下水等の廃水の生物学的処理に於いて、処
理時間を従来の6〜8時間よりも短くして、例えば2〜
3時間で処理を行えれば、処理装置のコンパクト化、省
面積化等のメリットがある。しかし、従来の方法では、
処理水質の悪化を招く等の問題点があった。
In the biological treatment of wastewater such as sewage, the treatment time is shorter than the conventional 6 to 8 hours, for example, 2 to 8 hours.
If the processing can be carried out in 3 hours, there are advantages such as making the processing equipment more compact and saving space. However, with the traditional method,
There were problems such as deterioration of treated water quality.

【0021】即ち、従来の活性汚泥は沈降性が不十分な
ため、処理時間を短くするとバルキングが発生し易く、
汚泥沈降槽において活性汚泥が十分に沈降せずに処理水
に流出し、このため曝気槽の活性汚泥を高濃度に維持で
きない。また、致命的な欠点は処理水質の悪化を招くこ
とである。高効率処理は、活性汚泥の汚濁物分解機能、
活性度、沈降性等を改善して、曝気槽に高活性の活性汚
泥を高濃度に維持すれば可能である。
[0021] In other words, since conventional activated sludge has insufficient sedimentation properties, bulking tends to occur when the treatment time is shortened.
The activated sludge does not settle sufficiently in the sludge settling tank and flows out into the treated water, making it impossible to maintain a high concentration of activated sludge in the aeration tank. Moreover, a fatal drawback is that it causes deterioration of the quality of treated water. High-efficiency treatment includes activated sludge's pollutant decomposition function,
This is possible by maintaining highly active activated sludge at a high concentration in the aeration tank by improving its activity, sedimentation, etc.

【0022】曝気槽の活性汚泥を高濃度に維持する方法
として、曝気槽にけい砂、ゼオライト、活性炭、高炉水
砕スラグ等を添加し、これに活性汚泥を付着、固定化さ
せて沈降性を改善して、曝気槽の活性汚泥を高濃度に維
持する方法が知られている。
[0022] As a method of maintaining activated sludge in the aeration tank at a high concentration, silica sand, zeolite, activated carbon, granulated blast furnace slag, etc. are added to the aeration tank, and activated sludge is attached and immobilized to this to improve sedimentation. There are known methods for improving activated sludge in an aeration tank and maintaining it at a high concentration.

【0023】発明者らは、曝気槽に前述の活性汚泥固定
化担体を外部から添加しなくても、前述の方法で培養、
増殖した微生物が還元性硫黄化合物を酸化分解して生成
する硫酸イオンを利用して曝気槽に活性汚泥固定化担体
を生成する方法を発明した。
[0023] The inventors have discovered that the above-mentioned method can be used to culture, without adding the above-mentioned activated sludge immobilization carrier to the aeration tank from the outside.
We have invented a method for producing activated sludge immobilization carriers in an aeration tank using sulfate ions produced by the oxidative decomposition of reducing sulfur compounds by grown microorganisms.

【0024】前述の方法で培養、増殖した微生物が還元
性硫黄化合物を含む廃水を処理すると、曝気槽のpHが
著しく低下する。この現象から、還元性硫黄化合物が生
物学的に酸化分解されて硫酸を生成することが推定され
た。発明者らは、この硫酸を利用して活性汚泥固定化担
体を生成する方法について検討した結果、予め、還元性
硫黄化合物を含む廃水に水溶性のカルシウム化合物を添
加してから、この廃水を曝気槽に供給すると、曝気槽に
固定化担体が生成し、微生物の高濃度化が可能になるこ
とを見いだした。即ち、曝気槽に於いて、この水溶性カ
ルシウム化合物と生物学的に生成した硫酸とが反応して
不溶性の硫酸カルシウム(石膏)を生成する。この石膏
は20〜200μm程度の微粒子なので微生物が付着し
易く、微生物が石膏に固定化されて沈降性が改善される
。その結果、曝気槽に前述の方法で培養した微生物を高
濃度に維持する事ができ、処理時間が2〜3時間の高効
率処理が可能になる。また、水溶性カルシウム化合物と
して水酸化カルシウムを用いると、曝気槽のpH低下を
抑制することができるので最適である。なお、還元性硫
黄化合物を含む廃水に、既にカルシウム化合物がカルシ
ウムイオンとして約100mg/l以上存在していると
上述のような効果があるので、わざわざ外部から水溶性
カルシウム化合物を添加する必要がない。
[0024] When the microorganisms cultured and propagated by the method described above treat wastewater containing reducing sulfur compounds, the pH of the aeration tank is significantly lowered. From this phenomenon, it was assumed that reducing sulfur compounds are biologically oxidized and decomposed to produce sulfuric acid. The inventors studied a method of producing an activated sludge immobilization carrier using this sulfuric acid, and found that after adding a water-soluble calcium compound to wastewater containing reducing sulfur compounds in advance, the wastewater was aerated. It was discovered that when supplied to the aeration tank, immobilized carriers are generated in the aeration tank, making it possible to increase the concentration of microorganisms. That is, in the aeration tank, this water-soluble calcium compound reacts with biologically produced sulfuric acid to produce insoluble calcium sulfate (gypsum). Since this gypsum is a fine particle of about 20 to 200 μm, microorganisms easily adhere to it, and the microorganisms are immobilized on the gypsum, improving its sedimentation properties. As a result, the microorganisms cultured by the above-described method can be maintained at a high concentration in the aeration tank, making it possible to perform highly efficient treatment with a treatment time of 2 to 3 hours. Further, it is optimal to use calcium hydroxide as the water-soluble calcium compound because it can suppress a decrease in the pH of the aeration tank. Note that if calcium compounds already exist in wastewater containing reducing sulfur compounds at an amount of approximately 100 mg/l or more as calcium ions, the above-mentioned effect will be achieved, so there is no need to add water-soluble calcium compounds from outside. .

【0025】次に、本発明の方法による還元性硫黄化合
物を含む廃水の生物学的処理について具体的に説明する
Next, biological treatment of wastewater containing reducing sulfur compounds by the method of the present invention will be specifically explained.

【0026】図2の曝気槽3に下水又は産業廃水の処理
を行っている活性汚泥混合液を入れ、曝気槽3のORP
を廃水に含まれている還元性硫黄化合物の仮定した酸化
分解反応の自由エネルギー変化量より計算で求めたOR
P値に設定し、前述の方法によりこれらの化合物を酸化
分解する微生物を培養、増殖し、馴養が完了したら曝気
槽3に前記廃水を処理時間が2〜3時間になるように連
続的に供給する。
[0026] The activated sludge mixture used for treating sewage or industrial wastewater is put into the aeration tank 3 in FIG.
is calculated from the amount of free energy change in the assumed oxidative decomposition reaction of reducing sulfur compounds contained in wastewater.
P value is set, microorganisms that oxidize and decompose these compounds are cultured and multiplied by the method described above, and after acclimatization is completed, the wastewater is continuously supplied to the aeration tank 3 for a processing time of 2 to 3 hours. do.

【0027】この廃水処理に於いて、曝気槽3への曝気
は、曝気槽3のORPを指標にして管理、制御するのが
良い。即ち、曝気槽3のORPが設定値より低下すると
ORPセンサー(金−銀/塩化銀複合電極)10がキャ
ッチし、ORP制御装置11によりルーツブロアー12
の回転数をアップして曝気量を増やし、設定値に回復し
たらルーツブロアー12の回転数を下げて曝気量を低減
する比例制御方式によるORP制御である。
In this wastewater treatment, aeration to the aeration tank 3 is preferably managed and controlled using the ORP of the aeration tank 3 as an index. That is, when the ORP of the aeration tank 3 falls below the set value, the ORP sensor (gold-silver/silver chloride composite electrode) 10 detects this, and the ORP control device 11 causes the roots blower 12 to
This is ORP control using a proportional control method in which the rotation speed of the roots blower 12 is increased to increase the amount of aeration, and when the rotation speed of the roots blower 12 is restored to the set value, the rotation speed of the Roots blower 12 is lowered to reduce the amount of aeration.

【0028】また、曝気槽3のpHは、装置の材質等か
ら5〜8の範囲が適切で、pHセンサー8、制御装置9
によりpHがこの範囲になるように酸、アルカリの添加
により制御する。また、曝気槽3の活性汚泥濃度は20
00〜5000mg/l程度が最適で、これより活性汚
泥濃度が高くなると、固定化担体から剥離した活性汚泥
が処理水に流出し、処理水質の悪化を招く懸念がある。
The pH of the aeration tank 3 is preferably in the range of 5 to 8 depending on the material of the device, etc., and the pH sensor 8 and the control device 9
The pH is controlled within this range by adding acid or alkali. In addition, the activated sludge concentration in aeration tank 3 is 20
The optimum concentration is about 00 to 5000 mg/l, and if the activated sludge concentration is higher than this, there is a concern that activated sludge separated from the immobilization carrier will flow into the treated water, leading to deterioration of the quality of the treated water.

【0029】汚泥沈降槽5から曝気槽3への汚泥返送率
は、本発明の場合、活性汚泥の沈降性が優れているので
、20〜30%程度で良い。また、処理の進行に伴い、
これらの微生物が増加するが、これは適宜余剰汚泥14
として抜き取り、処分する。例えば、焼却することによ
り石膏が回収でき、有効利用が可能である。なお、この
生物学的処理は定常的に操業処理を行うのが原則である
が、20〜30日間程度操業処理を停止した後、操業処
理を再開しても良好な処理水質が得られる。また、冬季
の低水温時期、例えば水温が5℃程度に低下しても廃水
中の還元性硫黄化合物を酸化し、夏季と変わらない処理
性能を示す。
In the case of the present invention, the sludge return rate from the sludge settling tank 5 to the aeration tank 3 may be about 20 to 30% because the activated sludge has excellent settling properties. Additionally, as the process progresses,
These microorganisms increase, but this is caused by excess sludge 14 as appropriate.
Remove and dispose of. For example, gypsum can be recovered and used effectively by incineration. In principle, this biological treatment is carried out regularly, but good treated water quality can be obtained even if the operational treatment is restarted after stopping the operational treatment for about 20 to 30 days. Furthermore, even during the low water temperature period in winter, for example, when the water temperature drops to about 5°C, it oxidizes reducing sulfur compounds in wastewater and shows the same treatment performance as in summer.

【0030】[0030]

【実施例1】下水、産業廃水の活性汚泥をORP制御活
性汚泥処理の曝気槽に投入した。この曝気槽に、還元性
硫黄化合物としてチオ硫酸化合物(S2 O3 2− 
 )が約500mg/l(S2 O3 2−  )、C
ODが約250mg/lの廃水に水酸化カルシウムを添
加してpHを13〜14に調整した廃水を曝気槽におけ
る滞留時間が8時間になるように、また曝気槽のpHが
5〜8になるようにpH制御を行いながら連続的に供給
した。廃水を供給開始した後、約10〜15日間位かか
って曝気槽のORPが+150〜200mV(ref 
 Ag/AgCl電極基準)に達し、処理水にチオ硫酸
化合物が検出されなくなり、また処理水のCODが20
mg/l以下になった。この状態で還元性硫黄化合物を
酸化分解する微生物の馴養が完了した。
[Example 1] Activated sludge from sewage and industrial wastewater was introduced into an aeration tank for ORP controlled activated sludge treatment. Thiosulfate compound (S2 O3 2-
) is approximately 500 mg/l (S2 O3 2- ), C
Wastewater with an OD of about 250 mg/l is adjusted to pH 13-14 by adding calcium hydroxide, and the residence time in the aeration tank is 8 hours, and the pH of the aeration tank is 5-8. It was continuously supplied while controlling the pH. After starting to supply wastewater, it takes about 10 to 15 days for the ORP of the aeration tank to rise to +150 to 200 mV (ref
Ag/AgCl electrode standard) was reached, thiosulfate compounds were no longer detected in the treated water, and the COD of the treated water was 20.
It became below mg/l. In this state, the acclimatization of the microorganisms that oxidize and decompose reducing sulfur compounds was completed.

【0031】[0031]

【実施例2】実施例1で馴養が完了した活性汚泥に実施
例1と同じ廃水を導入し、処理時間を1週間毎に6時間
→4時間→3時間→2時間と逐次短縮し、その後は2時
間で処理を行った。その結果、チオ硫酸化合物が検出さ
れず、CODが20mg/l以下、透視度100cm以
上、SSが10mg/l以下の清澄な処理水質が得られ
た。
[Example 2] The same wastewater as in Example 1 was introduced into the activated sludge that had been acclimatized in Example 1, and the treatment time was successively shortened from 6 hours → 4 hours → 3 hours → 2 hours every week, and then The treatment took 2 hours. As a result, no thiosulfate compounds were detected, and clear treated water was obtained with COD of 20 mg/l or less, transparency of 100 cm or more, and SS of 10 mg/l or less.

【0032】[0032]

【発明の効果】本発明により還元性硫黄化合物を酸化分
解する微生物の馴養、増殖が著しく促進され、短期間で
の馴養が可能となる。また、生物化学的反応槽内に同微
生物を高濃度に維持できるので、還元性硫黄化合物を含
む廃水の高効率処理が可能となる。
Effects of the Invention According to the present invention, the acclimatization and proliferation of microorganisms that oxidize and decompose reducing sulfur compounds are significantly promoted, and acclimatization can be achieved in a short period of time. Furthermore, since the same microorganisms can be maintained at a high concentration in the biochemical reaction tank, it becomes possible to treat wastewater containing reducing sulfur compounds with high efficiency.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明方法を示す図である。FIG. 1 is a diagram illustrating the method of the present invention.

【図2】本発明方法を自動運転する例を示す図である。FIG. 2 is a diagram showing an example of automatic operation of the method of the present invention.

【符号の説明】[Explanation of symbols]

1    廃水タンク 2    廃水供給ポンプ 3    曝気槽 4    散気管 5    汚泥沈降槽 6    レーキ 7    処理水 8    pHセンサー 9    pH制御装置 10  ORPセンサー 11  ORP制御装置 12  ルーツブロアー 13  返送汚泥ポンプ 14  余剰汚泥 1 Waste water tank 2 Wastewater supply pump 3 Aeration tank 4    Air diffuser pipe 5 Sludge settling tank 6 Rake 7. Treated water 8. pH sensor 9. pH control device 10 ORP sensor 11 ORP control device 12 Roots blower 13 Return sludge pump 14 Surplus sludge

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  下水、産業廃水を処理する活性汚泥よ
り還元性硫黄化合物を酸化分解する微生物を馴養、増殖
する際、還元性硫黄化合物を含む廃水に可溶性のカルシ
ウム化合物を添加してから活性汚泥の存在する曝気槽に
供給すると共に、曝気槽の酸化還元電位(ORP)を、
還元性硫黄化合物の酸化反応の自由反応エネルギー変化
量から計算で求めたORP値に維持する事を特徴とする
還元性硫黄化合物を酸化分解する微生物の馴養、増殖方
法。
Claim 1: When acclimating and growing microorganisms that oxidize and decompose reducing sulfur compounds from activated sludge used to treat sewage and industrial wastewater, a soluble calcium compound is added to the wastewater containing reducing sulfur compounds before the activated sludge is grown. At the same time, the oxidation-reduction potential (ORP) of the aeration tank is
A method for acclimating and growing microorganisms that oxidize and decompose reducing sulfur compounds, characterized by maintaining an ORP value calculated from the amount of free reaction energy change in the oxidation reaction of reducing sulfur compounds.
【請求項2】  請求項1記載の方法により馴養、増殖
した還元性硫黄化合物を酸化分解する微生物が存在する
曝気槽に、還元性硫黄化合物を含む廃水に可溶性のカル
シウム化合物を添加してから供給し、曝気槽に於いて還
元性硫黄化合物が請求項1の方法で馴養、培養した微生
物により酸化分解されて生成する硫酸イオンとカルシウ
ムイオンとで生成する不溶性の硫酸カルシウムの粒子に
これらの微生物を付着、固定化することにより微生物の
沈降性を改善し、曝気槽のこれらの微生物を高濃度に維
持して、高効率に廃水処理を行うことを特徴とする還元
性硫黄化合物を含む廃水の生物学的処理方法。
2. A soluble calcium compound is added to the wastewater containing the reducing sulfur compound and then supplied to the aeration tank in which the microorganisms that oxidize and decompose the reducing sulfur compound, which have been acclimatized and multiplied by the method according to claim 1, are present. In the aeration tank, the reducing sulfur compound is oxidized and decomposed by the microorganisms that have been acclimatized and cultured according to the method of claim 1, and these microorganisms are added to the insoluble calcium sulfate particles produced by the sulfate ions and calcium ions. A wastewater organism containing reducing sulfur compounds that improves the settling properties of microorganisms by adhering and immobilizing them, maintains these microorganisms at a high concentration in the aeration tank, and performs wastewater treatment with high efficiency. Scientific processing method.
【請求項3】  請求項2記載の廃水処理に於いて、曝
気槽の酸化還元電位(ORP)を、還元性硫黄化合物の
酸化分解反応の自由反応エネルギー変化量から計算で求
めたORP値に管理、制御することを特徴とする還元性
硫黄化合物を含む廃水の生物学的処理方法。
3. In the wastewater treatment according to claim 2, the oxidation-reduction potential (ORP) of the aeration tank is controlled to an ORP value calculated from the free reaction energy change amount of the oxidative decomposition reaction of the reducing sulfur compound. , a biological treatment method for wastewater containing reducing sulfur compounds, characterized in that:
JP3103936A 1991-04-09 1991-04-09 Method for acclimatizing and growing microorganisms that oxidatively decompose reducing sulfur compounds, and method for biological treatment of wastewater containing reducing sulfur compounds Expired - Fee Related JP2509099B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3103936A JP2509099B2 (en) 1991-04-09 1991-04-09 Method for acclimatizing and growing microorganisms that oxidatively decompose reducing sulfur compounds, and method for biological treatment of wastewater containing reducing sulfur compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3103936A JP2509099B2 (en) 1991-04-09 1991-04-09 Method for acclimatizing and growing microorganisms that oxidatively decompose reducing sulfur compounds, and method for biological treatment of wastewater containing reducing sulfur compounds

Publications (2)

Publication Number Publication Date
JPH04310296A true JPH04310296A (en) 1992-11-02
JP2509099B2 JP2509099B2 (en) 1996-06-19

Family

ID=14367327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3103936A Expired - Fee Related JP2509099B2 (en) 1991-04-09 1991-04-09 Method for acclimatizing and growing microorganisms that oxidatively decompose reducing sulfur compounds, and method for biological treatment of wastewater containing reducing sulfur compounds

Country Status (1)

Country Link
JP (1) JP2509099B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116143294A (en) * 2023-04-18 2023-05-23 天津创业环保集团股份有限公司 Granular sludge for denitrification and dephosphorization of town sewage and treatment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116143294A (en) * 2023-04-18 2023-05-23 天津创业环保集团股份有限公司 Granular sludge for denitrification and dephosphorization of town sewage and treatment method
CN116143294B (en) * 2023-04-18 2023-08-11 天津创业环保集团股份有限公司 Granular sludge for denitrification and dephosphorization of town sewage and treatment method

Also Published As

Publication number Publication date
JP2509099B2 (en) 1996-06-19

Similar Documents

Publication Publication Date Title
JP4570069B2 (en) Method for removing ammonia nitrogen from wastewater
JP2006205097A (en) Biological treatment method of wastewater
JP2799247B2 (en) How to remove sulfur compounds from water
JPH11299481A (en) Breeding of bacterium oxidizing sulfur and removal of nitrogen from waste water with the bacterium oxidizing sulfur
JP4104311B2 (en) How to remove nitrogen from wastewater
JP2622649B2 (en) Immobilized carrier suitable for sulfur oxidizing bacteria, method of immobilizing sulfur oxidizing bacteria on immobilized carrier, method of acclimating and growing sulfur oxidizing bacteria in fixed bed bioreactor, and biology of wastewater containing reducing sulfur compounds Processing method
KR100292432B1 (en) Modified oxidation ditch for organic wastewater treatment
JP3358388B2 (en) Treatment method for selenium-containing water
JP2614580B2 (en) Wastewater biological treatment method
JP2509099B2 (en) Method for acclimatizing and growing microorganisms that oxidatively decompose reducing sulfur compounds, and method for biological treatment of wastewater containing reducing sulfur compounds
JP2618164B2 (en) Conditioning and propagation of sulfur oxidizing bacteria by addition of inorganic coagulant and biological treatment of wastewater containing reducing sulfur compounds
JP2582695B2 (en) Biological treatment method for wastewater containing hydrogen sulfide
JP2002018479A (en) Method for removing nitrogen from water
JP2509098B2 (en) Microorganisms for oxidizing or degrading reducing sulfur compounds and aromatic organic compounds having sulfone groups, method of breeding, and biological of wastewater containing reducing sulfur compounds and aromatic organic compounds having sulfone groups Processing method
JP3837757B2 (en) Method for treating selenium-containing water
JP3270652B2 (en) Wastewater nitrogen removal method
JP4596533B2 (en) Wastewater treatment method
JPH06106189A (en) Domestication and multiplication of sulfur oxidizing bacteria by addition of carbonate and biological treatment of waste water containing reducing sulfur compound
JPH06106187A (en) Domestication and multiplication of sulfur oxidizing bacteria by addition of organic compound and biological treatment of waste water containing reducing sulfur compound
JPH0253117B2 (en)
JP2663227B2 (en) Biological treatment of wastewater containing reducing sulfur compounds
JP2622643B2 (en) Biological treatment of wastewater containing reducing sulfur compounds
JP2693099B2 (en) Biological treatment method and acclimation method of microorganisms
JP3241565B2 (en) Treatment of wastewater containing reducing sulfur compounds by microorganisms
JPH0647114B2 (en) Wastewater purification method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960130

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090416

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100416

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees