JP2618164B2 - Conditioning and propagation of sulfur oxidizing bacteria by addition of inorganic coagulant and biological treatment of wastewater containing reducing sulfur compounds - Google Patents

Conditioning and propagation of sulfur oxidizing bacteria by addition of inorganic coagulant and biological treatment of wastewater containing reducing sulfur compounds

Info

Publication number
JP2618164B2
JP2618164B2 JP27914392A JP27914392A JP2618164B2 JP 2618164 B2 JP2618164 B2 JP 2618164B2 JP 27914392 A JP27914392 A JP 27914392A JP 27914392 A JP27914392 A JP 27914392A JP 2618164 B2 JP2618164 B2 JP 2618164B2
Authority
JP
Japan
Prior art keywords
sulfur
wastewater
oxidizing bacteria
aeration tank
reducing sulfur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27914392A
Other languages
Japanese (ja)
Other versions
JPH06106188A (en
Inventor
正博 藤井
理 三木
裕史 嘉森
和久 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27914392A priority Critical patent/JP2618164B2/en
Publication of JPH06106188A publication Critical patent/JPH06106188A/en
Application granted granted Critical
Publication of JP2618164B2 publication Critical patent/JP2618164B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、排水の生物学的処理、
より詳細には還元性硫黄化合物を含む排水の処理に適し
た硫黄酸化細菌の迅速馴養、増殖方法及び還元性硫黄化
合物を含む排水の生物学的処理方法に関する。
The present invention relates to biological treatment of wastewater,
More particularly, the present invention relates to a method of rapidly acclimating and growing a sulfur-oxidizing bacterium suitable for treating wastewater containing a reducing sulfur compound, and a biological treatment method of wastewater containing a reducing sulfur compound.

【0002】[0002]

【従来の技術】還元性硫黄化合物を含む排水は、写真工
業、石油精製工業、化学工業、金属精練工業、鉱山など
から発生し、これらの排水に含まれている還元性硫黄化
合物は、硫化物(S2-)、チオ硫酸化合物(S
23 2-)、ポリチオン酸化合物(S36 2-)などであ
り、これらの還元性硫黄化合物を含む排水は、還元性硫
黄化合物に起因するCOD(化学的酸素要求量)値が高
く、このまゝ公共用水域に放流することができない。
2. Description of the Related Art Wastewater containing reducing sulfur compounds is generated from the photographic industry, petroleum refining industry, chemical industry, metal refining industry, mines, etc., and the reducing sulfur compounds contained in these wastewaters are sulfides. (S 2− ), thiosulfate compound (S
2 O 3 2− ), polythionic acid compound (S 3 O 6 2− ), etc., and the wastewater containing these reducing sulfur compounds has a COD (chemical oxygen demand) due to the reducing sulfur compounds. It is expensive and cannot be released to public water bodies.

【0003】この還元性硫黄化合物を含む排水の処理方
法として還元性硫黄化合物を次亜塩素酸ソーダ等の酸化
剤を用いて酸化する方法が知られている。
[0003] As a method of treating wastewater containing this reducing sulfur compound, a method of oxidizing the reducing sulfur compound using an oxidizing agent such as sodium hypochlorite is known.

【0004】また、化学的方法に代わり還元性硫黄化合
物を微生物、いわゆる硫黄酸化細菌により酸化してCO
Dを除去する方法がある。
[0004] Instead of chemical methods, reducing sulfur compounds are oxidized by microorganisms, so-called sulfur-oxidizing bacteria, to reduce CO2.
There is a method of removing D.

【0005】例えば、特開昭56―67589号、特開
昭57―4296号、特開平3―296497号に記載
の方法がある。
[0005] For example, there are methods described in JP-A-56-67589, JP-A-57-4296, and JP-A-3-296497.

【0006】特開昭56―67589号記載の方法は、
23 2-、S36 2-、S48 2-またはこれに類するポリ
チオン酸を含有する工場排水に、家庭用浄化槽えつ流
水、下水処理場のエアレーションタンク水、または金属
鉱山排水の1種又は2種以上を添加して酸素を吹き込ん
で該硫黄化合物を硫酸に酸化して排水のCODを除去す
る方法である。
[0006] The method described in JP-A-56-67589 is
Factory wastewater containing S 2 O 3 2− , S 3 O 6 2− , S 4 O 8 2− or similar polythionic acid, household septic tank drainage, sewage treatment plant aeration tank water, or metal mine This is a method in which one or more of wastewater is added and oxygen is blown in to oxidize the sulfur compound to sulfuric acid to remove COD in the wastewater.

【0007】特開昭57―4296号に記載の方法は、
チオ硫酸、ポリチオン酸、ジチオン酸またはこれらに類
する硫黄酸化物に起因する各種排水中のCODを除去す
る際に発生する石膏を硫黄酸化細菌の担体物質として使
用し、同時に培養増殖した菌を該石膏に吸着させ濃縮し
た後、繰り返し使用して排水中のCODを生物学的に除
去する方法である。
The method described in JP-A-57-4296 is
Gypsum generated when removing COD in various wastewaters caused by thiosulfuric acid, polythionic acid, dithionic acid or similar sulfur oxides is used as a carrier substance for sulfur-oxidizing bacteria, and bacteria grown and cultured at the same time are treated with the gypsum. This is a method of removing COD in wastewater biologically by repeatedly using it after adsorbing it and concentrating it.

【0008】下水もしくはし尿汚泥中及び金属鉱山廃水
中等には、チオシアンやチオ硫酸を分解する硫黄酸化細
菌が多種類存在していることが良く知られており、特開
昭56―67589号、特開昭57―4296号に記載
されている硫黄酸化細菌は、これらの明細書の実施例等
に記述されているようにpHが1.9〜2.0と著しく
低いところでチオ硫酸、ポリチオン酸、ジチオン酸また
はこれらに類する硫黄酸化物を硫酸まで酸化して排水の
CODを除去している。このような低いpHで棲息ある
いは活性な硫黄酸化細菌は、成書(例えば、今井 和民
著化学同人発行“独立栄養細菌”の63〜67頁)に
記載されているようにThiobacillus属の硫
黄酸化細菌と推定される。
It is well known that there are many types of sulfur-oxidizing bacteria which decompose thiocyanate and thiosulfate in sewage or human waste sludge, metal mine wastewater, etc., as disclosed in JP-A-56-67589. As described in the Examples and the like of these specifications, the sulfur-oxidizing bacteria described in Japanese Utility Model Laid-Open No. 57-4296 have thiosulfate, polythioic acid, Dithionic acid or a similar sulfur oxide is oxidized to sulfuric acid to remove COD from wastewater. Sulfur-oxidizing bacteria living or active at such a low pH are described in a compendium (for example, “Autotrophic Bacteria” published by Kazunori Imai, pages 63 to 67), and are sulfur-oxidizing bacteria belonging to the genus Thiobacillus. It is estimated to be.

【0009】特開平3―296497号に記載の方法
は、高炉スラグ浸漬水を硫黄細菌を含む活性汚泥の入っ
た槽中に供給し、この時に硫黄細菌を含む活性汚泥の入
った槽のpHを4〜5に維持して好気的条件で高炉スラ
グ浸漬水のCODを生物学的に処理する方法である。
In the method described in JP-A-3-296497, blast furnace slag immersion water is supplied into a tank containing activated sludge containing sulfur bacteria, and at this time, the pH of the tank containing activated sludge containing sulfur bacteria is adjusted. This is a method of biologically treating COD of blast furnace slag immersion water under aerobic conditions while maintaining the COD at 4 to 5.

【0010】次に、硫黄化合物を含む排水を処理する際
に酸素ガスを吹き込む指標として酸化還元電位(OR
P)を用いる方法が特開昭58―122093号により
公知になっている。
Next, an oxidation-reduction potential (OR) is used as an index for blowing oxygen gas when treating wastewater containing sulfur compounds.
A method using P) is known from JP-A-58-122093.

【0011】即ち、この方法は、硫化ソーダ及び/また
は水硫化ソーダ等の硫化物を含む廃水に分子状酸素を含
有するガス又は過酸化水素を接触させ、排水中の硫化ソ
ーダ及び/または水硫化ソーダをチオ硫酸ソーダとした
後、白色硫黄細菌により微生物処理する際に、排水中の
硫化ソーダ及び/または水硫化ソーダを分子状酸素を含
有するガス又は過酸化水素を接触させ、排水中の硫化ソ
ーダ及び/または水硫化ソーダをチオ硫酸ソーダに化学
的に酸化する過程で、ORPが−550mV以上(基準
電極不明)、好ましくは、−500mV(基準電極不
明)以上になるまで分子状酸素を含有するガス又は過酸
化水素を供給するものである。
That is, this method comprises contacting a wastewater containing sulfides such as sodium sulfide and / or sodium hydrosulfide with a gas containing molecular oxygen or hydrogen peroxide to form sodium sulfide and / or hydrosulfide in wastewater. After soda is converted to sodium thiosulfate and then subjected to microbial treatment with white sulfur bacteria, the sodium sulfide and / or sodium hydrosulfide in the wastewater is brought into contact with a gas containing molecular oxygen or hydrogen peroxide, and the sulfuric acid in the wastewater is removed. In the process of chemically oxidizing soda and / or sodium hydrosulfide to sodium thiosulfate, contains molecular oxygen until the ORP becomes -550 mV or more (reference electrode unknown), preferably -500 mV (reference electrode unknown) or more. To supply gas or hydrogen peroxide.

【0012】この方法は、白色硫黄細菌を用いた生物学
的処理の段階では本発明のようにORPを指標にして空
気等を曝気していない。
In this method, air or the like is not aerated using ORP as an index at the stage of biological treatment using white sulfur bacteria as in the present invention.

【0013】なお、本発明のように無機系凝集剤を添加
して硫黄酸化細菌の凝集性、沈降性を向上させて処理水
への流出を抑制して、曝気槽の硫黄酸化細菌の濃度を高
める方法は、知られていない。
[0013] As in the present invention, an inorganic coagulant is added to improve the cohesiveness and sedimentation of sulfur oxidizing bacteria, suppress the outflow into treated water, and reduce the concentration of sulfur oxidizing bacteria in the aeration tank. There is no known way to enhance it.

【0014】[0014]

【発明が解決しようとする課題】従来の次亜塩素酸ソー
ダなどの酸化剤を用いて還元性硫黄化合物を酸化して処
理する方法は、処理技術が十分に確立していないため処
理水質が安定せず、また、処理コストが高いという致命
的欠点がある。
The conventional method of oxidizing a reducing sulfur compound using an oxidizing agent such as sodium hypochlorite and treating it is not stable because the treatment technology is not sufficiently established. And a fatal disadvantage of high processing cost.

【0015】また、従来の硫黄化合物を含む排水の生物
学的処理方法は、低いpHで棲息或は活性な硫黄酸化細
菌を用いているため処理プロセスが複雑になり、また、
処理設備も耐酸性仕様にするため処理のランニングコス
ト、設備費が高くなる欠点がある。
Further, the conventional biological treatment method for wastewater containing sulfur compounds uses a low-pH living or active sulfur-oxidizing bacterium, which complicates the treatment process.
There is a disadvantage that the running cost and the equipment cost of the processing are increased because the processing equipment is also made to have the acid resistance specification.

【0016】このような低いpHで棲息或は活性な硫黄
酸化細菌により還元性硫黄化合物を含むアルカリ性の排
水を処理する場合、例えば、特開昭57―4296号公
報に記載されている方法によりpHの高い高炉スラグ浸
漬水を処理する場合、低いpHで棲息あるいは活性な硫
黄酸化細菌が存在する曝気槽のpHを、この硫黄酸化細
菌に適したpHに維持する必要があり、このため、この
高アルカリ性の排水のpHを硫黄酸化細菌に適したpH
に調整し、また、処理水のpHが1.9〜2.0のよう
に低いと、これを公共用水域に放流するためには、再度
pHを調整する必要があり、pH調整用の設備、薬品等
のコストがかなりかゝる問題点がある。
When treating an alkaline wastewater containing a reducing sulfur compound with a sulfur oxidizing bacterium which lives or is active at such a low pH, for example, a method described in JP-A-57-4296 is used. When treating blast furnace slag immersion water having a high pH, it is necessary to maintain the pH of the aeration tank where low-pH live or active sulfur-oxidizing bacteria are present, at a pH suitable for the sulfur-oxidizing bacteria. Adjust pH of alkaline wastewater to pH suitable for sulfur oxidizing bacteria
If the pH of the treated water is as low as 1.9 to 2.0, it is necessary to adjust the pH again in order to discharge this into public waters. There is a problem that the cost of chemicals and the like is considerably high.

【0017】更に、このような低いpHで棲息あるいは
活性な硫黄酸化細菌を排水処理に用いると、排水処理設
備を耐酸性仕様にする必要があり、このため排水処理設
備の建設費が非常に高くなる致命的な欠点がある。
Furthermore, when sulfur-oxidizing bacteria living or active at such a low pH are used for wastewater treatment, it is necessary to make the wastewater treatment equipment acid-resistant, and the construction cost of the wastewater treatment equipment is extremely high. There are fatal drawbacks.

【0018】仮にpHが中性近辺で硫黄酸化細菌による
排水処理を行っても生物学的処理過程の曝気量の指標が
明確でないので、処理時間が著しく長くなり、このため
処理設備が大型になる欠点がある。
Even if wastewater treatment with sulfur-oxidizing bacteria is carried out at a pH around neutrality, since the index of the amount of aeration in the biological treatment process is not clear, the treatment time becomes extremely long, and the treatment equipment becomes large. There are drawbacks.

【0019】例えば、特開平3―296497号に記載
の方法では実施例に記載されているように、硫黄細菌が
存在する生物反応槽に吹き込む空気量の指標を何ら決め
ずに、ただ5m3/分と一定にしている。
For example, in the method described in JP-A-3-296497, as described in the examples, an index of the amount of air to be blown into the biological reaction tank in which sulfur bacteria are present is determined without any measure, and is only 5 m 3 /. Minutes and constant.

【0020】このため処理時間が約40時間と著しく長
く、処理設備が著しく大きくなり処理設備の建設費に莫
大な費用がかゝる問題点がある。
For this reason, there is a problem that the processing time is extremely long, about 40 hours, the processing equipment becomes extremely large, and the construction cost of the processing equipment is enormous.

【0021】また、従来の硫黄酸化細菌を用いて還元性
硫黄化合物を含む排水を生物学的に処理する場合、生物
反応槽に吹き込む空気量の指標を何ら決めずに行ってお
り、このため多くの問題点がある。
In the case of biologically treating wastewater containing a reducing sulfur compound using conventional sulfur-oxidizing bacteria, an index of the amount of air to be blown into the biological reaction tank is not determined at all. There is a problem.

【0022】例えば、曝気量が不足の場合は、還元性硫
黄化合物の酸化が不十分で、処理水に未反応の還元性硫
黄化合物が流出して、処理水のCODを高める懸念があ
る。
For example, when the amount of aeration is insufficient, there is a concern that the oxidation of the reducing sulfur compound is insufficient, and the unreacted reducing sulfur compound flows into the treated water, thereby increasing the COD of the treated water.

【0023】また、曝気量が過剰の場合は、曝気槽の硫
黄酸化細菌のフロックが機械的に破壊され、このため硫
黄酸化細菌が処理水に流出し、曝気槽の硫黄酸化細菌濃
度の低下、処理水質の悪化等を招く問題点がある。
If the amount of aeration is excessive, the flocs of the sulfur-oxidizing bacteria in the aeration tank are mechanically destroyed, so that the sulfur-oxidizing bacteria flow into the treated water, and the concentration of the sulfur-oxidizing bacteria in the aeration tank decreases. There is a problem that the treatment water quality is deteriorated.

【0024】更に、硫黄酸化細菌は、増殖速度が遅いた
め、また、凝集性に乏しいので曝気槽の硫黄酸化細菌を
高濃度に維持できないので、高効率で、また、処理性能
の優れた処理ができないという問題点がある。
Further, since the sulfur-oxidizing bacteria have a low growth rate and are poor in cohesiveness, the sulfur-oxidizing bacteria in the aeration tank cannot be maintained at a high concentration, so that a treatment with high efficiency and excellent treatment performance can be performed. There is a problem that can not be.

【0025】即ち、硫黄酸化細菌の有している特有の問
題点として、硫黄酸化細菌は還元性硫黄化合物を酸化し
て、その酸化エネルギーを利用して曝気に用いた空気の
二酸化炭素を固定化して細胞合成行って増殖するので、
増殖速度が著しく遅く、更に、硫黄酸化細菌のような独
立栄養細菌は、有機物を栄養源にしていないため凝集作
用のある糖、タンパク質などの高分子化合物をあまり生
成しないので、この細菌自体が凝集性が少ない。
That is, as a specific problem of the sulfur oxidizing bacteria, the sulfur oxidizing bacteria oxidize the reducing sulfur compound and fix the carbon dioxide in the air used for the aeration using the oxidation energy. Cell synthesis and proliferation
The growth rate is extremely slow, and autotrophic bacteria such as sulfur-oxidizing bacteria do not produce high molecular compounds such as sugars and proteins that have aggregating action because they do not use organic matter as a nutrient source. There is little nature.

【0026】硫黄酸化細菌は、増殖速度が遅いのと、凝
集性が乏しいため曝気槽で曝気により細分化され易く、
このため汚泥沈降槽で硫黄酸化細菌が処理水に流失し易
く、曝気槽の硫黄酸化細菌を高濃度に維持できず、高効
率処理、或いは処理水質の優れた処理が困難である。
Sulfur-oxidizing bacteria have a low growth rate and poor cohesiveness, so they are easily fragmented by aeration in an aeration tank.
For this reason, the sulfur oxidizing bacteria easily flow into the treated water in the sludge sedimentation tank, the sulfur oxidizing bacteria in the aeration tank cannot be maintained at a high concentration, and it is difficult to perform high-efficiency treatment or excellent treatment of the treated water quality.

【0027】[0027]

【課題を解決するための手段】本発明の要旨とするとこ
ろは、(1)還元性硫黄化合物を含む排水を生物学的に
処理する装置の曝気槽に下水、産業排水などの活性汚泥
混合液を入れ、この曝気槽に還元性硫黄化合物を含む排
水と無機系凝集剤を供給し、排水に含まれている還元性
硫黄化合物を化学的に硫酸化合物に酸化した時の自由エ
ネルギー変化量(ΔG0)より計算で求めた酸化還元電
位(ORP)を指標にして曝気槽の曝気を管理・制御
し、また、曝気槽のpHを4.0〜7.5の範囲に管理
・制御することを特徴とする下水、産業排水の活性汚泥
に棲息する還元性硫黄化合物を酸化する硫黄酸化細菌の
馴養・増殖方法、
SUMMARY OF THE INVENTION The gist of the present invention is to provide (1) a mixed liquid of activated sludge such as sewage and industrial wastewater in an aeration tank of an apparatus for biologically treating wastewater containing a reducing sulfur compound. And a wastewater containing a reducing sulfur compound and an inorganic coagulant are supplied to the aeration tank, and the amount of change in free energy when the reducing sulfur compound contained in the wastewater is chemically oxidized to a sulfuric acid compound (ΔG 0 ) to control and control the aeration of the aeration tank using the oxidation-reduction potential (ORP) obtained by calculation as an index, and to control and control the pH of the aeration tank within a range of 4.0 to 7.5. Characterized by the sewage and industrial wastewater activated sludge oxidizing reducible sulfur compounds in the sludge oxidizing bacteria acclimation and propagation method,

【0028】(2)前記(1)記載の方法により馴養・
増殖した還元性硫黄化合物を酸化する微生物が存在する
曝気槽に、還元性硫黄化合物を含む排水を供給し、前記
(1)の方法により求めたORP値に維持できるように
曝気槽の曝気を管理・制御し、また、曝気槽のpHを
4.0〜7.5の範囲に管理・制御することを特徴とす
る還元性硫黄化合物を含む排水の生物学的処理方法、
(2) Acclimation according to the method described in the above (1)
A wastewater containing a reducing sulfur compound is supplied to an aeration tank in which microorganisms that oxidize the grown reducing sulfur compound are present, and the aeration of the aeration tank is controlled so that the ORP value obtained by the method (1) can be maintained. A biological treatment method for wastewater containing a reducing sulfur compound, wherein the method comprises controlling and controlling and controlling the pH of the aeration tank within a range of 4.0 to 7.5;

【0029】(3)前記(1)又は前記(2)に記載の
方法において無機系凝集剤として塩化鉄を供給すること
を特徴とする硫黄酸化細菌の馴養・増殖方法又は還元性
硫黄化合物を含む排水の生物学的処理方法、
(3) The method according to (1) or (2), wherein iron chloride is supplied as an inorganic coagulant. Biological treatment of wastewater,

【0030】(4)前記(1)、前記(2)又は前記
(3)に記載の還元性硫黄化合物を含む排水が鉱石より
金属を精錬する際に発生するスラグに起因する排水であ
ることを特徴とする硫黄酸化細菌の馴養・増殖方法又は
還元性硫黄化合物を含む排水の生物学的処理方法、
(4) The wastewater containing a reducing sulfur compound as described in the above (1), (2) or (3) is a wastewater resulting from slag generated when refining metal from ore. Biological treatment method of wastewater containing the method of acclimation and propagation of sulfur oxidizing bacteria or reducing sulfur compounds,

【0031】(5)前記(1)、前記(2)又は前記
(3)に記載の還元性硫黄化合物を含む排水が製鐵所の
高炉から発生する高炉スラグに起因する排水であること
を特徴とする硫黄酸化細菌の馴養・増殖方法又は還元性
硫黄化合物を含む排水の生物学的処理方法、
(5) The wastewater containing a reducing sulfur compound according to (1), (2) or (3) is wastewater originating from blast furnace slag generated from a blast furnace at a steelworks. Biological treatment method of wastewater containing a method of acclimation and propagation of sulfur-oxidizing bacteria or reducing sulfur compounds,

【0032】(6)前記(5)に記載の方法において、
無機系凝集剤として塩化鉄を供給し、曝気槽のORPを
0〜+150mV(銀/塩化銀電極基準)になるように
曝気を行い、また、曝気槽のpHを5.0〜7.0の範
囲に管理・制御することを特徴とする硫黄酸化細菌の馴
養・増殖方法又は及び還元性硫黄化合物を含む排水の生
物学的処理方法、にある。
(6) In the method according to the above (5),
Iron chloride is supplied as an inorganic coagulant, aeration is performed so that the ORP of the aeration tank becomes 0 to +150 mV (based on silver / silver chloride electrode), and the pH of the aeration tank is adjusted to 5.0 to 7.0. A method of acclimating and growing sulfur-oxidizing bacteria or a method of biologically treating wastewater containing a reducing sulfur compound, characterized by being controlled and controlled within a range.

【0033】[0033]

【作用】本発明者らは、下水、産業廃水の処理を行って
いる活性汚泥に、pH4.0〜7.5で還元性硫黄化合
物を酸化する硫黄酸化細菌が棲息していることを見いだ
した。
The present inventors have found that activated sludge treating sewage and industrial wastewater inhabits sulfur-oxidizing bacteria that oxidize reducible sulfur compounds at pH 4.0 to 7.5. .

【0034】即ち、図1に本発明の処理フローを示すよ
うに、本発明は、後述する本発明の硫黄酸化細菌を馴
養、増殖方法により、これらの活性汚泥からpH4.0
〜7.5で硫黄酸化細菌を優先的に馴養・増殖し、この
硫黄酸化細菌を用いて還元性硫黄化合物を含む排水を連
続的に処理するものである。
That is, as shown in the treatment flow of the present invention in FIG. 1, according to the present invention, the activated sludge is pH 4.0 from these activated sludges by the method of acclimating and growing the sulfur-oxidizing bacteria of the present invention described below.
-7.5, sulfur oxidizing bacteria are preferentially adapted and proliferated, and waste water containing a reducing sulfur compound is continuously treated using the sulfur oxidizing bacteria.

【0035】最初にpH4.0〜7.5で還元性硫黄化
合物を酸化する硫黄酸化細菌の馴養・増殖を促進する方
法について説明する。
First, a method for promoting the adaptation and growth of sulfur-oxidizing bacteria which oxidize reducing sulfur compounds at pH 4.0 to 7.5 will be described.

【0036】まず、還元性硫黄化合物が化学的に硫酸化
合物まで酸化される反応を仮定し、この反応に於ける自
由エネルギー変化量を便覧、成書、文献などから求め、
次に、この自由エネルギー変化量から計算により、これ
らの反応が起こるための酸化還元電位(ORP)を求め
る。
First, assuming a reaction in which a reducing sulfur compound is chemically oxidized to a sulfuric acid compound, the amount of change in free energy in this reaction is determined from a handbook, a textbook, a literature, and the like.
Next, an oxidation-reduction potential (ORP) for causing these reactions is obtained by calculation from the amount of change in free energy.

【0037】次に、図2に示すORP制御活性汚泥処理
装置の曝気槽(3)に下水或は産業排水の処理を行って
いる活性汚泥処理装置の曝気槽より採取した活性汚泥混
合液を入れ、この曝気槽(3)のORP値を、0mVか
ら廃水に含まれている還元性硫黄化合物が酸化反応を起
こしたと仮定した時の自由エネルギー変化量より計算で
求めたORP値の範囲、例えば、還元性硫黄化合物がチ
オ硫酸化合物の場合は、0〜+150mV(Ag/Ag
Cl電極基準)に設定する。
Next, the activated sludge mixed solution collected from the aeration tank of the activated sludge treatment apparatus for treating sewage or industrial wastewater is put into the aeration tank (3) of the ORP control activated sludge treatment apparatus shown in FIG. The ORP value of the aeration tank (3) is changed from 0 mV to the range of the ORP value calculated from the amount of change in free energy when it is assumed that the reducing sulfur compound contained in the wastewater has caused an oxidation reaction, for example, When the reducing sulfur compound is a thiosulfate compound, 0 to +150 mV (Ag / Ag
(Based on Cl electrode).

【0038】これは、発明者らの研究によると、生物学
的反応の場合、例えば、還元性硫黄化合物が硫酸に酸化
される反応は、計算で求めたORP値でないと起こらな
いということでは無く、計算で求めたORP値よりも低
い所でも還元性硫黄化合物が完全に酸化されないが、か
なり高い酸化率で酸化反応が起こっており、計算で求め
たORP値に近くなる程、酸化率が高くなり、計算値に
なると酸化率が完全に100%に達するという観察結果
に基づくものである。
According to the research by the inventors, this is not to say that in the case of a biological reaction, for example, a reaction in which a reducible sulfur compound is oxidized to sulfuric acid does not occur unless a calculated ORP value is obtained. Although the reducing sulfur compound is not completely oxidized in a place lower than the calculated ORP value, the oxidation reaction occurs at a considerably high oxidation rate, and the closer to the calculated ORP value, the higher the oxidation rate becomes. It is based on the observation that the oxidation rate reaches 100% when calculated.

【0039】例えば、チオ硫酸化合物を含む排水を処理
する場合、計算で求めたORP値は、約+150mVで
あるが、排水処理として機能するORPの下限値は、実
験的に約0mVである。
For example, when treating wastewater containing a thiosulfate compound, the calculated ORP value is about +150 mV, but the lower limit of the ORP functioning as wastewater treatment is about 0 mV experimentally.

【0040】従って、チオ硫酸化合物を含む排水を生物
学的に処理をする場合、曝気槽のORP制御は、0〜+
150mVの範囲が好ましい。
Therefore, when biologically treating wastewater containing a thiosulfate compound, the ORP control of the aeration tank requires 0 to +
A range of 150 mV is preferred.

【0041】なお、複数の還元性硫黄化合物を含む排水
を生物学的に処理する場合、曝気槽のORP制御値は、
還元性硫黄化合物のなかで酸化反応が起こるORPが最
も高いものに設定すれば良い。
When biologically treating wastewater containing a plurality of reducing sulfur compounds, the ORP control value of the aeration tank is:
What is necessary is just to set to the ORP in which an oxidation reaction occurs highest among the reducing sulfur compounds.

【0042】例えば、チオ硫酸化合物、硫化物、亜硫酸
化合物などを含む排水の場合、酸化反応が起こるORP
は、チオ硫酸化合物が最も高いので、チオ硫酸化合物の
ORP、具体的には0〜+150mVに設定すれば良
い。
For example, in the case of wastewater containing a thiosulfate compound, a sulfide, a sulfite compound, etc., ORP in which an oxidation reaction occurs
Is the highest for the thiosulfate compound, so the ORP of the thiosulfate compound, specifically 0 to +150 mV, may be set.

【0043】なお、ORPの上限値は、この時の還元性
硫黄化合物の酸化率が最高なので、これ以上に高い所に
設定しても意味がない。
Since the oxidation rate of the reducing sulfur compound at this time is the highest, there is no point in setting the upper limit of the ORP to a higher value.

【0044】このようにORPを設定した曝気槽に還元
性硫黄化合物としてチオ硫酸化合物、硫化物等の還元性
硫黄化合物を含有する排水を処理時間が8時間になるよ
うに供給する。
Wastewater containing a reducing sulfur compound such as a thiosulfate compound or a sulfide as a reducing sulfur compound is supplied to the aeration tank in which the ORP is set such that the treatment time is 8 hours.

【0045】排水供給当初は、ORPが設定値まで上昇
しないが、徐々に上昇し約3〜5日間で設定値に上昇
し、ORP制御が行われる。
At the beginning of the wastewater supply, the ORP does not rise to the set value, but gradually rises and rises to the set value in about 3 to 5 days, and the ORP control is performed.

【0046】なお、処理水の還元性硫黄化合物は、OR
Pが約0mV以上になると、ほとんど検出されなくな
り、また、処理水のCODも著しく低下する。
The reducing sulfur compound of the treated water is OR
When P becomes about 0 mV or more, it is hardly detected, and the COD of the treated water is significantly reduced.

【0047】ORPが0〜+150mVに達したら、7
〜10日間毎に処理時間が6時間→4時間→3時間→2
時間になるように排水の供給量を徐々に増加する。
When ORP reaches 0 to +150 mV, 7
Processing time every 6 to 10 days → 6 hours → 3 hours → 3 hours → 2
Gradually increase the supply of wastewater so that it is time.

【0048】この際、硫黄酸化細菌の馴養・増殖が進む
につれて還元性硫黄化合物の酸化が進み硫酸を生成する
ため曝気槽のpHは低下し、なんら対策をうたないと特
開昭56―67589号、特開昭57―4296号に記
載されているようにpH1.9〜2.0まで低下する。
At this time, as the acclimation and growth of the sulfur-oxidizing bacteria progress, the oxidation of the reducing sulfur compound progresses to generate sulfuric acid, so that the pH of the aeration tank decreases, and if no measures are taken, Japanese Patent Application Laid-Open No. 56-59589. , As described in JP-A-57-4296.

【0049】このようにpHが低下した状態で馴養・増
殖した硫黄酸化細菌は、強酸性で活性なThiobac
illus属が優先種となり、先に説明したような問題
点が発生する。
The sulfur-oxidizing bacteria acclimated and grown in the state where the pH is lowered as described above are strongly acidic and active Thiobacs.
The genus illus becomes the priority species, causing the problems described above.

【0050】また、pHが7.5以上であると、馴養・
増殖した硫黄酸化細菌のチオ硫酸化合物、硫化物などの
還元性硫黄化合物を酸化する機能が低下し、処理水にこ
れらの還元性硫黄化合物が検出される。
If the pH is 7.5 or more,
The ability of the grown sulfur oxidizing bacteria to oxidize reducing sulfur compounds such as thiosulfate compounds and sulfides is reduced, and these reducing sulfur compounds are detected in the treated water.

【0051】このため、曝気槽のpHは、4.0〜7.
5、好ましくは、5.5〜6.5の範囲になるようにア
ルカリ剤により管理・制御する必要がある。
For this reason, the pH of the aeration tank is 4.0 to 7.0.
5, preferably controlled and controlled by an alkali agent so as to be in the range of 5.5 to 6.5.

【0052】このように曝気槽のpHを管理・制御する
とpH4.0〜7.5の範囲で活性で、還元性硫黄化合
物を酸化する硫黄酸化細菌を馴養・増殖することができ
る。
When the pH of the aeration tank is controlled and controlled in this manner, sulfur-oxidizing bacteria that are active in the pH range of 4.0 to 7.5 and oxidize reducible sulfur compounds can be adapted and propagated.

【0053】それと同時に曝気槽に無機系凝集剤、例え
ば、塩化鉄、ポリ塩化アルミニウムなど、好ましくは塩
化鉄を添加する。
At the same time, an inorganic coagulant, for example, iron chloride, polyaluminum chloride or the like, preferably iron chloride, is added to the aeration tank.

【0054】硫黄酸化細菌は、先に説明したように還元
性硫黄化合物を酸化して、その酸化エネルギーを利用し
て曝気に用いた空気の二酸化炭素を固定化して細胞合成
を行って増殖するので、増殖速度が著しく遅く、また、
栄養源に有機物を用いていないので凝集効果がある高分
子量の糖類、タンパク質の生成が少ない。
As described above, the sulfur-oxidizing bacteria oxidize the reducing sulfur compounds and use the oxidizing energy to immobilize the carbon dioxide in the air used for aeration and to synthesize and grow. , The growth rate is extremely slow,
Since no organic matter is used as a nutrient source, the production of high molecular weight saccharides and proteins having an aggregation effect is small.

【0055】従って、通常の方法で曝気槽の硫黄酸化細
菌を高濃度に維持することは困難であり、このため硫黄
酸化細菌の馴養・増殖の促進及び凝集性を向上させる必
要がある。
Therefore, it is difficult to maintain the sulfur-oxidizing bacteria in the aeration tank at a high concentration by a usual method, and it is necessary to promote the adaptation and growth of the sulfur-oxidizing bacteria and to improve the cohesiveness.

【0056】この硫黄酸化細菌の凝集性向上には無機系
凝集剤の添加が効果がある。即ち、硫黄酸化細菌の馴養
・増殖中に無機系凝集剤、例えば塩化鉄、ポリ塩化アル
ミニウム(PAC)、ポリ鉄などを添加すると、硫黄酸
化細菌の凝集性が向上して大きな硫黄酸化細菌のフロッ
クを形成する。
The addition of an inorganic coagulant is effective for improving the cohesion of the sulfur-oxidizing bacteria. That is, when an inorganic coagulant, such as iron chloride, polyaluminum chloride (PAC), or polyiron, is added during the acclimation and growth of the sulfur-oxidizing bacteria, the flocculation of the sulfur-oxidizing bacteria is improved, and the flocculence of the large sulfur-oxidizing bacteria is improved. To form

【0057】この結果、曝気槽において硫黄酸化細菌の
フロックが曝気により壊れにくゝなり、また、沈降性が
良好になり、汚泥沈降槽で硫黄酸化細菌が処理水への浮
上流出が抑制され、このため硫黄酸化細菌を短期間で高
濃度に維持することができ、また、硫黄酸化細菌が処理
水に流出しないので処理水質も向上する。
As a result, the flocs of sulfur oxidizing bacteria in the aeration tank become less susceptible to breakage due to the aeration, and the sedimentation is improved, and the floating of the sulfur oxidizing bacteria into the treated water in the sludge settling tank is suppressed. For this reason, the sulfur-oxidizing bacteria can be maintained at a high concentration in a short period of time, and the quality of the treated water is improved because the sulfur-oxidizing bacteria do not flow into the treated water.

【0058】この添加する無機系凝集剤は、凝集効果、
コストなどを考慮すると塩化鉄が最適である。特に、塩
化鉄は、硫黄酸化細菌の無機系栄養剤としての作用があ
り、塩化鉄を添加すると硫黄酸化細菌の馴養・増殖が促
進される。
The inorganic coagulant to be added has a coagulation effect,
Considering costs and the like, iron chloride is optimal. In particular, iron chloride acts as an inorganic nutrient for sulfur-oxidizing bacteria, and the addition of iron chloride promotes the adaptation and growth of sulfur-oxidizing bacteria.

【0059】塩化鉄の添加量は、暖気槽に1日当たり鉄
として5〜200mg/l程度が最適で、これ以下だと
効果がほとんど無く、また、これ以上添加してもこれ以
上の効果が期待できない。
The amount of iron chloride to be added is optimally about 5 to 200 mg / l as iron per day in a warm air tank, and if it is less than this, there is almost no effect. Can not.

【0060】なお、無機系凝集剤の代わりに有機系の高
分子凝集剤を用いても良いが、この高分子系凝集剤のな
かには、硫黄酸化細菌の機能を阻害する毒性のあるもの
あり、このため毒性の無い高分子系凝集剤を選択する必
要がある。
An organic polymer flocculant may be used in place of the inorganic flocculant. However, some of the polymer flocculants have toxicity that inhibits the function of sulfur-oxidizing bacteria. Therefore, it is necessary to select a non-toxic polymer-based flocculant.

【0061】次に、本発明の重要な要素である曝気方法
について説明する。この排水処理において、曝気槽
(3)への曝気は、暖気槽(3)のORPが設定値より
低下するとORPセンサー(金―銀/塩化銀複合電極)
(10)がキャッチし、ORP制御装置(11)により
ルーツブロアー(12)の回転数をアップして曝気量を
増やし、設定値に回復したらルーツブロアー(12)の
回転数を下げて、曝気量を低減する比例制御方式による
ORP制御である。
Next, an aeration method which is an important element of the present invention will be described. In this wastewater treatment, the aeration to the aeration tank (3) is performed by an ORP sensor (gold-silver / silver chloride composite electrode) when the ORP of the warming tank (3) falls below a set value.
(10) is caught, the rotation speed of the roots blower (12) is increased by the ORP control device (11) to increase the amount of aeration, and when the set value is restored, the rotation speed of the roots blower (12) is reduced and the aeration amount is reduced. Is an ORP control by a proportional control method for reducing the power consumption.

【0062】また、曝気槽(3)のpHは、pHセンサ
ー(8)、pH制御装置(9)によりpHが4.0〜
7.5、好ましくは、5.5〜6.5の範囲になるよう
にアルカリ剤、酸により管理・制御する。
The pH of the aeration tank (3) is adjusted to 4.0 to 4.0 by a pH sensor (8) and a pH controller (9).
It is controlled and controlled with an alkali agent and an acid so that the pH is in the range of 7.5, preferably 5.5 to 6.5.

【0063】汚泥沈降槽(5)から曝気槽(3)への汚
泥返送率は、本発明の場合、20%未満では汚泥沈降槽
の汚泥を十分に返送できず、また、30%超では返送汚
泥濃度が薄いので、効率的な汚泥返送を行うためには汚
泥返送率は20〜30%程度が最適で、また、廃水の連
続処理の進行に伴い還元性硫黄化合物が増殖するが、こ
れは適時余剰汚泥(14)として抜き取り処分する。
In the present invention, if the sludge return rate from the sludge settling tank (5) to the aeration tank (3) is less than 20%, the sludge in the sludge settling tank cannot be sufficiently returned. Since the sludge concentration is low, the sludge return rate is optimally about 20 to 30% for efficient sludge return, and reducing sulfur compounds grow with the progress of continuous treatment of wastewater. Extract and dispose of the excess sludge as appropriate (14).

【0064】次に、このような方法で馴養・増殖した硫
黄酸化細菌の性状について説明する。
Next, the properties of the sulfur-oxidizing bacteria acclimated and grown by such a method will be described.

【0065】上記の方法で、下水、産業排水として製鐵
所のコークス炉から発生するガス廃液、魚加工工場、写
真フイルム工場、石油精製工場等の各工場の排水の活性
汚泥、或は、製鐵所の高炉徐冷スラグ置き場の溜まり水
のヘドロ、旧硫黄鉱山の廃水のヘドロ等から上記方法に
基づいて硫黄酸化細菌の馴養・培養を行った。
By the above method, sewage, industrial wastewater, gas wastewater generated from a coke oven of a steelworks, activated sludge of wastewater from each factory such as a fish processing factory, a photographic film factory, and an oil refinery factory, or Sulfur-oxidizing bacteria were acclimated and cultivated based on the above-mentioned method from sludge accumulated in a blast furnace slag storage site of a steelworks and sludge of wastewater of an old sulfur mine.

【0066】この硫黄酸化細菌の活性汚泥を、pHの異
なる液体Starkey培地に植種して、振盪培養器を
用いて20℃で、Starkey培地のチオ硫酸イオン
濃度が2200mg/lから50mg/l以下になる日
数を測定した。その結果が、図3である。なお、液体S
tarkey培地の組成は、次の通りである。
The activated sludge of this sulfur-oxidizing bacterium is inoculated in a liquid Starkey medium having a different pH, and the thiosulfate ion concentration of the Starkey medium is 2200 mg / l to 50 mg / l or less at 20 ° C. using a shaking incubator. Days were measured. FIG. 3 shows the result. The liquid S
The composition of the starkey medium is as follows.

【0067】〇チオ硫酸ナトリウム:5000mg/l 〇塩化マグネシウム:100mg/l ○第1リン酸カリウム:3000mg/l ○塩化アンモニウム:100mg/l 〇塩化カルシウム:250mg/l 〇pH:2.0〜10.0Sodium thiosulfate: 5000 mg / l magnesium chloride: 100 mg / l potassium monophosphate: 3000 mg / l ammonium chloride: 100 mg / l calcium chloride: 250 mg / l pH: 2.0 to 10 .0

【0068】各pHの緩衝液1lに上記試薬を溶解し
て、pHの異なるStarkeyの液体培地を作成し
た。
The above reagent was dissolved in 1 liter of a buffer solution of each pH to prepare a Starkey liquid medium having a different pH.

【0069】図3の結果から、Starkey培地のp
Hが2〜3.5及び8.0〜10の範囲では、20日以
上振盪してもチオ硫酸イオンが殆ど減少しないが、pH
が4.0〜7.5の範囲では振盪日数12日以下で、特
に、pH5.0〜6.5では10日以下でチオ硫酸イオ
ンが50mg/l以下になることが明らかになった。
From the results shown in FIG. 3, p of the Starkey medium was
When H is in the range of 2 to 3.5 and 8.0 to 10, thiosulfate ions hardly decrease even after shaking for 20 days or more.
In the range of 4.0 to 7.5, the number of thiosulfate ions became 50 mg / l or less in 10 days or less at pH 5.0 to 6.5, especially at pH 5.0 to 6.5.

【0070】従って、本発明の方法により各種排水の活
性汚泥から馴養・培養した硫黄酸化細菌は、pH4.0
〜7.5の範囲で還元性硫黄化合物を酸化する能力を有
していることが明らかになった。
Therefore, the sulfur-oxidizing bacteria acclimated and cultured from the activated sludge of various wastewaters by the method of the present invention have a pH of 4.0.
It was found that the compound has the ability to oxidize reducible sulfur compounds in the range of -7.5.

【0071】この事は、図4に示したD.P.Kell
y and A.P.Harrisonの分類によって
も明白で、即ち、彼らの分類によると、本発明の方法で
馴養・増殖したpH4.0〜7.5の範囲で活性な硫黄
酸化細菌は、Group―2に、また、特開昭53―5
9254号、特開昭56―67589号記載の硫黄酸化
細菌は、pH1.9〜2.0で活性なのでGroup―
5に属することが明らかである(書名:Bergey’
s Manual of Systematic Ba
cteriology Vol.3,著者:James
T.Staley,発行元:Williams &
Wilkins,記載箇所:1843頁のFig.2
0.47)。
This is the same as the D.C. shown in FIG. P. Kell
y and A. P. It is also evident by the Harrison classification, that is, according to their classification, the sulfur oxidizing bacteria active in the pH range of 4.0 to 7.5 that have been adapted and grown by the method of the present invention are classified into Group-2 and especially Kaisho 53-5
9254 and JP-A-56-67589 are active at pH 1.9 to 2.0.
(Title: Bergey '
s Manual of Systematic Ba
teriology Vol. 3, Author: James
T. Staley, Publisher: Williams &
Wilkins, description: page 1843, FIG. 2
0.47).

【0072】一方、従来の硫黄酸化細菌を用いて還元性
硫黄化合物を含む排水を生物学的方法により処理を行う
方法、例えば、特開昭53―59254号、特開昭56
―67589号記載の方法で用いている硫黄酸化細菌
は、pH1.9〜2.0で、還元性硫黄化合物を酸化し
ている。
On the other hand, a conventional method of treating wastewater containing a reducing sulfur compound using a sulfur-oxidizing bacterium by a biological method, for example, JP-A-53-59254 and JP-A-56-59254
The sulfur-oxidizing bacteria used in the method described in -67589 oxidize reducing sulfur compounds at pH 1.9 to 2.0.

【0073】なお、本発明の方法で馴養・培養した硫黄
酸化細菌はこのような低pHでは、還元性硫黄化合物を
酸化する能力を有していない。
The sulfur-oxidizing bacteria acclimated and cultured by the method of the present invention do not have the ability to oxidize reducing sulfur compounds at such a low pH.

【0074】このことから、本発明の方法で馴養・培養
した硫黄酸化細菌は、従来の排水処理に用いられている
硫黄酸化細菌とは異なることが明らかになった。
From this, it became clear that the sulfur oxidizing bacteria acclimated and cultured by the method of the present invention are different from the sulfur oxidizing bacteria used in the conventional wastewater treatment.

【0075】次に、本発明の無機系凝集剤、例えば、塩
化鉄の添加による硫黄酸化細菌の馴養・増殖の促進、ま
た、曝気槽の硫黄酸化細菌の高濃度化について説明す
る。
Next, promotion of adaptation and growth of sulfur oxidizing bacteria by addition of the inorganic coagulant of the present invention, for example, iron chloride, and increase in the concentration of sulfur oxidizing bacteria in the aeration tank will be described.

【0076】塩化鉄、PAC、ポリ鉄などの無機系凝集
剤、或いは、硫黄酸化細菌の固定化担体を添加しない
で、また、曝気槽のORP制御・管理を行わないでpH
制御・管理のみを行って下水、産業排水の活性汚泥から
硫黄酸化細菌の馴養・増殖を行った。
Without adding an inorganic coagulant such as iron chloride, PAC, or polyiron, or a carrier for immobilizing sulfur-oxidizing bacteria, and without controlling and controlling the ORP in the aeration tank,
Only control and management were performed to acclimate and multiply sulfur-oxidizing bacteria from activated sludge from sewage and industrial wastewater.

【0077】その結果、本発明の方法で得られたpH4
〜7.5で活性な硫黄酸化細菌が得られるが、この硫黄
酸化細菌を馴養・増殖するのに10〜30日以上の長期
間を要し、また、還元性硫黄化合物を含む排水を処理し
た場合、曝気槽の硫黄酸化細菌の活性汚泥濃度が徐々に
減少し、3〜6ケ月後には500mg/l以下になり、
還元性硫黄化合物の酸化が進まなくなり、ついには活性
汚泥処理が不可能になる。
As a result, the pH 4 obtained by the method of the present invention was
Although active sulfur-oxidizing bacteria can be obtained at 7.5 to 7.5, it takes a long time of 10 to 30 days or more to acclimate and grow the sulfur-oxidizing bacteria, and wastewater containing a reducing sulfur compound is treated. In this case, the activated sludge concentration of sulfur oxidizing bacteria in the aeration tank gradually decreases, and after 3 to 6 months, it becomes 500 mg / l or less,
Oxidation of the reducing sulfur compound does not proceed, and eventually activated sludge treatment becomes impossible.

【0078】このように硫黄酸化細菌の馴養・増殖に長
期間要したのは、塩化鉄などの無機系凝集剤を添加して
いないので、先に説明したように硫黄酸化細菌のフロッ
クが壊されて細分化し、処理水に流出したのが原因であ
る。
As described above, it took a long time to acclimate and multiply the sulfur-oxidizing bacteria because the inorganic flocculant such as iron chloride was not added, so that the flocs of the sulfur-oxidizing bacteria were broken as described above. This is because the water was divided into small pieces and discharged into treated water.

【0079】一方、本発明の方法、即ち、無機系凝集剤
を添加して、曝気槽のORP、及びpH制御・管理を行
いながら下水、産業排水の活性汚泥から硫黄酸化細菌の
馴養・増殖を行うと、実施例に説明しているように硫黄
酸化細菌の馴養・増殖期間が著しく短縮され、また、硫
黄酸化細菌の活性汚泥のフロックが曝気により壊れにく
ゝなり、沈降性が良好になるので、汚泥沈降槽から処理
水に流出することが無い。
On the other hand, the method of the present invention, that is, the addition and addition of an inorganic coagulant, controls the ORP of the aeration tank and the pH control / management while acclimating and growing sulfur-oxidizing bacteria from activated sludge from sewage and industrial wastewater. By doing so, the period of acclimation and growth of sulfur oxidizing bacteria is significantly shortened as described in the examples, and the floc of activated sludge of sulfur oxidizing bacteria is less likely to be broken by aeration and sedimentation is improved. Therefore, there is no outflow to the treated water from the sludge settling tank.

【0080】このため曝気槽の硫黄酸化細菌の活性汚泥
を高濃度に維持でき、高効率で処理性能が優れた還元性
硫黄化合物を含む排水の処理が可能になった。
As a result, the activated sludge of sulfur-oxidizing bacteria in the aeration tank can be maintained at a high concentration, and it is possible to treat wastewater containing a reducing sulfur compound with high efficiency and excellent treatment performance.

【0081】特に、塩化鉄は、凝集作用の他に硫黄酸化
細菌の栄養塩としての作用があり、これらの相乗作用に
より馴養・増殖期間が著しく短縮され、また、曝気槽の
硫黄酸化細菌の濃度が低下しないものと思われる。
In particular, iron chloride acts as a nutrient salt for sulfur oxidizing bacteria in addition to the aggregating action, and the synergistic action thereof significantly shortens the period of acclimation and growth, and the concentration of sulfur oxidizing bacteria in the aeration tank. Is not expected to decrease.

【0082】[0082]

【実施例1】次に、本発明の方法を製鐵所のスラグエー
ジングヤードなどから発生するチオ硫酸化合物、硫化物
等の還元性硫黄化合物を高濃度に含有し、また、pHが
12〜14と高アルカリ性で、CODが300〜600
mg/lと高い排水(以下、高炉スラグ排水と述べる)
の処理に適用した実施例を説明する。
EXAMPLE 1 Next, the method of the present invention was carried out at a high concentration of a reducing sulfur compound such as a thiosulfate compound or a sulfide generated from a slag aging yard of a steelworks and a pH of 12-14. With high alkalinity and COD of 300-600
Drainage as high as mg / l (hereinafter referred to as blast furnace slag drainage)
An embodiment applied to the processing of (1) will be described.

【0083】図2のORP制御活性汚泥処理装置の曝気
槽(3)及び汚泥沈降槽(5)に下水の処理を行ってい
る活性汚泥混合液(活性汚泥濃度:1524mg/l)
を入れる。
Activated sludge mixture (activated sludge concentration: 1524 mg / l) in which the aeration tank (3) and the sludge settling tank (5) of the ORP control activated sludge treatment apparatus of FIG.
Insert

【0084】曝気槽(3)のORPを約+150mV
(Ag/AgCl電極基準)に設定し、また、pHを
6.0〜6.5に制御しながら、第1表に性状の1例を
示すpHが13〜14と高い高炉スラグ排水を、曝気槽
(3)における滞留時間が8時間になるように供給す
る。
The ORP of the aeration tank (3) is increased by about +150 mV.
(Ag / AgCl electrode standard), and while controlling the pH to 6.0 to 6.5, aerated blast furnace slag drainage having a high pH of 13 to 14 showing one example of properties in Table 1. It supplies so that the residence time in tank (3) may be 8 hours.

【0085】このとき同時に38%塩化鉄水溶液を曝気
槽に第二鉄イオンとして曝気槽に対して1日に50mg
/lになるように添加した。なお、汚泥沈降槽(5)か
ら曝気槽(3)への汚泥の返送率は、約25%である。
At this time, a 38% aqueous solution of iron chloride was simultaneously added to the aeration tank as ferric ion in an amount of 50 mg / day to the aeration tank.
/ L. The sludge return rate from the sludge settling tank (5) to the aeration tank (3) is about 25%.

【0086】高炉スラグ排水を供給してから約3〜5日
後に、処理水にチオ硫酸化合物、硫化物が検出されなく
なり、CODが約50mg/l程度に低下する。
About 3 to 5 days after supplying the blast furnace slag wastewater, no thiosulfate compound or sulfide is detected in the treated water, and the COD decreases to about 50 mg / l.

【0087】次に、処理時間を7〜10日毎に8時間→
6時間→4時間→3時間→2時間と短縮すると、処理水
のCODは、10mg/l以下に除去され、硫黄酸化細
菌の馴養が短期間で完了する。
Next, the processing time is set to 8 hours every 7 to 10 days →
When the time is reduced from 6 hours to 4 hours to 3 hours to 2 hours, the COD of the treated water is reduced to 10 mg / l or less, and the adaptation of the sulfur-oxidizing bacteria is completed in a short time.

【0088】なお、処理水にチオ硫酸化合物、硫化物な
どの還元性硫黄化合物が検出されない。
Incidentally, reducing sulfur compounds such as thiosulfate compounds and sulfides are not detected in the treated water.

【0089】硫黄酸化細菌の馴養が完了したら、処理時
間が2〜3時間になるように高炉スラグ排水を供給して
連続処理を行うことができる。
After the acclimatization of the sulfur-oxidizing bacteria is completed, the blast furnace slag wastewater can be supplied so that the treatment time is 2-3 hours, and the continuous treatment can be performed.

【0090】曝気槽のpH制御に用いる硫酸(10%硫
酸)は、硫黄酸化細菌の馴養が段々進むに連れて、消費
量が減少し、硫黄酸化細菌の馴養が完了して、高炉スラ
グ排水の連続処理の段階では殆ど消費しなくなる。
Sulfuric acid (10% sulfuric acid) used for controlling the pH of the aeration tank decreases in consumption as the acclimation of the sulfur-oxidizing bacteria progresses, and the acclimation of the sulfur-oxidizing bacteria is completed. At the stage of continuous processing, it is hardly consumed.

【0091】これは、チオ硫酸化合物、硫化物などの還
元性硫黄化合物が硫酸に酸化され、この硫酸により曝気
槽のpHが、外部から酸を添加する事なく適性値に維持
することができるためである。
This is because reducing sulfur compounds such as thiosulfuric acid compounds and sulfides are oxidized to sulfuric acid, and the sulfuric acid can maintain the pH of the aeration tank at an appropriate value without adding an acid from outside. It is.

【0092】なお、処理を行った高炉スラグ排水の水質
例と硫黄酸化細菌の馴養期間の処理時間とその後の処理
時間が2〜3時間の連続処理を行ったときの処理水質を
第1表に、曝気槽の活性汚泥濃度の例を第2表にまとめ
て示す。
Table 1 shows examples of the water quality of the treated blast furnace slag wastewater, the treatment time during the acclimatization period of the sulfur-oxidizing bacteria, and the treated water quality when the continuous treatment was performed for 2 to 3 hours. Table 2 shows an example of the activated sludge concentration in the aeration tank.

【0093】この結果、連続処理の処理水は、チオ硫酸
化合物、硫化物などの還元性硫黄化合物が検出されず、
CODが10mg/l以下で、pHも6.0〜6.5な
ので、このまゝ公共用水域に放流することができる。
As a result, in the treated water of the continuous treatment, reducing sulfur compounds such as thiosulfate compounds and sulfides were not detected,
Since the COD is 10 mg / l or less and the pH is 6.0 to 6.5, it can be discharged into public water bodies.

【0094】曝気槽の硫黄酸化細菌の活性汚泥濃度は、
当初の下水の活性汚泥が1524mg/lで、硫黄酸化
細菌の馴養期間、即ち、8時間処理の時に1280mg
/lに低下したが、その後、硫黄酸化細菌の増殖期間、
即ち、処理時間を7〜10日毎に8時間→6時間→4時
間→3時間→2時間と短縮した期間は、活性汚泥濃度が
徐々に増加し、3時間処理に時には2680mg/lに
増加し、2〜3時間処理で高炉スラグ排水の連続処理を
行っても硫黄酸化細菌の活性汚泥濃度は低下せず、曝気
槽の活性汚泥濃度を2800〜3200mg/lに維持
できるように余剰汚泥の引き抜きをおこなって管理し
た。
The activated sludge concentration of the sulfur oxidizing bacteria in the aeration tank was:
The initial activated sludge of the sewage is 1524 mg / l, and the acclimation period of the sulfur oxidizing bacteria, that is, 1280 mg when treated for 8 hours.
/ L, but then the growth period of sulfur oxidizing bacteria,
That is, during the period in which the treatment time is reduced from 8 hours to 6 hours to 4 hours to 3 hours to 2 hours every 7 to 10 days, the activated sludge concentration gradually increases, and sometimes increases to 2680 mg / l for 3 hours. Even if the blast furnace slag wastewater is continuously treated for 2 to 3 hours, the activated sludge concentration of the sulfur oxidizing bacteria does not decrease, and the excess sludge is extracted so that the activated sludge concentration in the aeration tank can be maintained at 2800 to 3200 mg / l. And managed.

【0095】[0095]

【表1】 [Table 1]

【0096】[0096]

【表2】 [Table 2]

【0097】本発明の方法は、下水の処理を行っている
活性汚泥から高炉スラグ排水を用いて硫黄酸化細菌の馴
養を3〜5日で完了した。
In the method of the present invention, the acclimation of sulfur-oxidizing bacteria was completed in 3 to 5 days using blast-furnace slag wastewater from activated sludge which is treating sewage.

【0098】即ち、硫黄酸化細菌は、処理水にチオ硫酸
化合物、硫化物などの還元性硫黄化合物が検出されなく
なった段階で、馴養が完了した考え、その後は、還元性
硫黄化合物の処理負荷量を増加し、即ち、処理時間を6
〜7日毎に8時間→6時間→4時間→3時間と逐次短縮
して硫黄酸化細菌の増殖を計った。
That is, it is considered that the acclimation of the sulfur oxidizing bacterium is completed when no reducing sulfur compounds such as thiosulfate compounds and sulfides are detected in the treated water. , Ie, the processing time is increased by 6
Every 7 days, the proliferation of sulfur-oxidizing bacteria was measured by sequentially shortening from 8 hours to 6 hours to 4 hours to 3 hours.

【0099】この硫黄酸化細菌の増殖期間でも処理水に
還元性硫黄化合物が検出されず、CODが10mg/l
以下と良好であり、曝気槽の硫黄酸化細菌の活性汚泥も
順調に増殖した。
No reducing sulfur compound was detected in the treated water even during the growth period of the sulfur-oxidizing bacteria, and the COD was 10 mg / l.
The following conditions were favorable, and the activated sludge of sulfur-oxidizing bacteria in the aeration tank also grew smoothly.

【0100】硫黄酸化細菌の増殖完了後、高炉スラグ廃
水を、処理時間が2〜3時間の高効率処理を行っても、
処理水に還元性硫黄化合物が検出されず、また、処理水
のCODが10mg/l以下と良好であり、硫黄酸化細
菌の活性汚泥の処理水の流出もほとんど無く、処理水の
SS濃度も全期間通じて、10〜20mg/l以下であ
った。
After the completion of the growth of the sulfur-oxidizing bacteria, the blast furnace slag wastewater can be treated with a high efficiency treatment for a treatment time of 2 to 3 hours.
No reducing sulfur compounds were detected in the treated water, the COD of the treated water was as good as 10 mg / l or less, there was almost no outflow of the activated sludge of the sulfur-oxidizing bacteria, and the SS concentration of the treated water was all. It was 10-20 mg / l or less throughout the period.

【0101】なお、塩化鉄などの無機系凝集剤、或い
は、硫黄酸化細菌の固定化担体を添加しないで、また、
曝気槽のORP制御・管理を行わないでpH制御・管理
のみを行って、上記方法で下水の活性汚泥から硫黄酸化
細菌の馴養・増殖を行った所、本願発明の方法で得られ
れたpH4〜7.5で活性な硫黄酸化細菌が得られた。
Incidentally, without adding an inorganic coagulant such as iron chloride or an immobilizing carrier for sulfur-oxidizing bacteria,
When ORP control / management of the aeration tank was not performed and only pH control / management was performed, and the acclimation and propagation of the sulfur oxidizing bacteria from the activated sludge of the sewage were performed in the above-described manner, the pH 4 to 4 obtained by the method of the present invention was obtained. At 7.5 active sulfur-oxidizing bacteria were obtained.

【0102】しかし、この硫黄酸化細菌を馴養・増殖す
るのに10〜30日以上の長期間を要し、また、還元性
硫黄化合物を含む排水を処理した場合、曝気槽の硫黄酸
化細菌の活性汚泥濃度が徐々に減少し、3〜6ケ月後に
は500mg/l以下になり、還元性硫黄化合物の酸化
が進まなくなり、ついには活性汚泥処理が不可能にな
る。
However, it takes 10 to 30 days or more to acclimatize and multiply the sulfur-oxidizing bacteria, and when the wastewater containing the reducing sulfur compound is treated, the activity of the sulfur-oxidizing bacteria in the aeration tank is reduced. The sludge concentration gradually decreases and becomes 500 mg / l or less after 3 to 6 months, the oxidation of the reducing sulfur compound does not proceed, and finally the activated sludge treatment becomes impossible.

【0103】[0103]

【実施例2】本発明の方法を亜硫酸ソーダを高濃度に含
有し、また、pHが10〜11のアルカリ性で、COD
が500〜800mg/lと高い化学工場排水の処理に
適用した実施例を説明する。
EXAMPLE 2 The method of the present invention was carried out using sodium sulfite at a high concentration, an alkaline pH of 10 to 11, and COD.
An example in which the present invention is applied to the treatment of chemical plant wastewater as high as 500 to 800 mg / l will be described.

【0104】この化学工場の排水を処理している活性汚
泥処理設備の曝気槽より採取した活性汚泥混合液(汚泥
濃度:2000〜3200mg/l)を、図2に示す曝
気槽に入れる。
The activated sludge mixture (sludge concentration: 2000 to 3200 mg / l) collected from the aeration tank of the activated sludge treatment facility for treating the wastewater of this chemical factory is put into the aeration tank shown in FIG.

【0105】曝気槽(3)のORPを約0〜+50mV
(Ag/AgCl電極基準)に設定し、また、予めこの
排水のpHを8〜8.5に硫酸により調整した後、曝気
槽のpHを6.0〜6.5に制御しながら、この排水を
曝気槽における滞留時間が8時間になるように供給す
る。
The ORP of the aeration tank (3) is set to about 0 to +50 mV.
(Ag / AgCl electrode standard), and after adjusting the pH of this wastewater to 8 to 8.5 in advance with sulfuric acid, while controlling the pH of the aeration tank to 6.0 to 6.5, Is supplied such that the residence time in the aeration tank is 8 hours.

【0106】このとき同時にポリ塩化アルミニウム(P
AC)の水溶液をアルミニウムイオンとして200mg
/lになるように曝気槽に添加した。
At this time, polyaluminum chloride (P
200 mg of aqueous solution of AC) as aluminum ion
/ L to the aeration tank.

【0107】なお、汚泥沈降槽(5)から曝気槽(3)
への汚泥の返送率は、約25%である。
The sludge settling tank (5) to the aeration tank (3)
The return rate of sludge to the wastewater is about 25%.

【0108】この排水を供給してから約3〜5日後に、
処理水に亜硫酸ソーダが検出されなくなり、CODが約
25mg/l程度に低下する。
About three to five days after supplying this wastewater,
Sodium sulfite is no longer detected in the treated water, and the COD drops to about 25 mg / l.

【0109】なお、この段階で曝気槽のORPは、0〜
50mVに達し、ORP制御が可能になった。
At this stage, the ORP of the aeration tank should be 0 to
It reached 50 mV, and ORP control became possible.

【0110】次に、処理時間を7〜10日毎に8時間→
6時間→4時間→3時間→2時間と短縮すると、処理水
のCODは、10mg/l以下に除去され、硫黄酸化細
菌の馴養が短期間で完了する。
Next, the processing time is set to 8 hours every 7 to 10 days →
When the time is reduced from 6 hours to 4 hours to 3 hours to 2 hours, the COD of the treated water is reduced to 10 mg / l or less, and the adaptation of the sulfur-oxidizing bacteria is completed in a short time.

【0111】なお、処理水に亜硫酸ソーダが検出されな
い。硫黄酸化細菌の馴養が完了したら、処理時間が2〜
3時間になるようにこの排水を供給して連続処理を行
う。
It should be noted that sodium sulfite is not detected in the treated water. When the acclimation of the sulfur-oxidizing bacteria is completed, the treatment time
The wastewater is supplied so that the treatment time is 3 hours, and the continuous treatment is performed.

【0112】本願発明の方法により亜硫酸ソーダを含む
工場排水を用いて産業排水の処理を行っている活性汚泥
からも亜硫酸ソーダを酸化する硫黄酸化細菌を馴養・増
殖することができ、また、この硫黄酸化細菌を用いてこ
の工場排水を容易に処理することができた。
According to the method of the present invention, sulfur-oxidizing bacteria which oxidize sodium sulfite can be adapted and propagated from activated sludge which is treating industrial wastewater using industrial wastewater containing sodium sulfite. The factory wastewater could be easily treated using oxidizing bacteria.

【0113】[0113]

【発明の効果】本発明により下水、産業排水の処理を行
っている活性汚泥より還元性硫黄化合物をpH4.0〜
7.5近辺で酸化する硫黄酸化細菌の馴養・増殖が著し
く促進され、この硫黄酸化細菌の馴養・増殖が短期間で
行うことが可能になった。
According to the present invention, a reducing sulfur compound having a pH of 4.0 to 4.0 is obtained from activated sludge which is treating sewage and industrial wastewater.
The adaptation and growth of sulfur-oxidizing bacteria that oxidize around 7.5 were remarkably promoted, and the adaptation and growth of the sulfur-oxidizing bacteria could be performed in a short period of time.

【0114】また、この硫黄酸化細菌を用いることによ
り還元性硫黄化合物を含む排水の処理が容易になり、ま
た、処理設備、処理コストの低減が可能になった。
Further, by using this sulfur-oxidizing bacterium, wastewater containing a reducing sulfur compound can be easily treated, and treatment equipment and treatment costs can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の処理フローを示す図である。FIG. 1 is a diagram showing a processing flow of the present invention.

【図2】硫黄酸化細菌を用いて還元性硫黄化合物を含む
排水の処理に用いるORP制御活性汚泥処理装置の一例
の説明図。
FIG. 2 is an explanatory diagram of an example of an ORP-controlled activated sludge treatment apparatus used for treating wastewater containing a reducing sulfur compound using sulfur-oxidizing bacteria.

【図3】本発明の方法で馴養した硫黄酸化細菌のチオ硫
酸イオンの酸化速度(活性度)とpHとの関係を示した
図である。
FIG. 3 is a graph showing the relationship between the thiosulfate ion oxidation rate (activity) and pH of sulfur-oxidizing bacteria acclimated by the method of the present invention.

【図4】硫黄酸化細菌の分類を示す図である。FIG. 4 is a diagram showing classification of sulfur-oxidizing bacteria.

【符号の説明】[Explanation of symbols]

1 廃水タンク 2 廃水供給ポンプ 3 曝気槽 4 散気管 5 汚泥沈降槽 6 レーキ 7 処理水 8 pHセンサー 9 pH制御装置 10 ORPセンサー 11 ORP制御装置 12 ルーツブロアー 13 汚泥返送ポンプ 14 余剰汚泥 15 無機系凝集剤貯蔵タンク 16 無機系凝集剤供給ポンプ DESCRIPTION OF SYMBOLS 1 Wastewater tank 2 Wastewater supply pump 3 Aeration tank 4 Aerator tube 5 Sludge settling tank 6 Rake 7 Treated water 8 pH sensor 9 pH controller 10 ORP sensor 11 ORP controller 12 Roots blower 13 Sludge return pump 14 Excess sludge 15 Inorganic system coagulation Storage tank 16 Inorganic coagulant supply pump

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福永 和久 富津市新富20―1 新日本製鐵株式会社 技術開発本部内 (56)参考文献 特開 平2−268896(JP,A) 特開 平4−310296(JP,A) ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kazuhisa Fukunaga 20-1 Shintomi, Futtsu City Nippon Steel Corporation Technology Development Division (56) References JP-A-2-268896 (JP, A) JP-A-4 −310296 (JP, A)

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 還元性硫黄化合物を含む排水を生物学的
に処理する装置の曝気槽に下水、産業排水などの活性汚
泥混合液を入れ、この曝気槽に還元性硫黄化合物を含む
排水と無機系凝集剤を供給し、排水に含まれている還元
性硫黄化合物を化学的に硫酸化合物に酸化した時の自由
エネルギー変化量(ΔG0)より計算で求めた酸化還元
電位(ORP)を指標にして曝気槽の曝気を管理・制御
し、また、曝気槽のpHを4.0〜7.5の範囲に管理
・制御することを特徴とする下水、産業排水の活性汚泥
に棲息する還元性硫黄化合物を酸化する硫黄酸化細菌の
馴養・増殖方法。
1. An activated sludge mixture such as sewage and industrial wastewater is put into an aeration tank of an apparatus for biologically treating wastewater containing a reducing sulfur compound, and the wastewater containing a reducing sulfur compound and inorganic waste are put into the aeration tank. An oxidation-reduction potential (ORP) calculated from the free energy change (ΔG 0 ) when a reducing sulfur compound contained in wastewater is chemically oxidized to a sulfuric acid compound by supplying a system flocculant is used as an index. Reducing sulfur in the activated sludge of sewage and industrial effluent, characterized in that the aeration of the aeration tank is controlled and controlled, and the pH of the aeration tank is controlled and controlled within the range of 4.0 to 7.5. A method of acclimating and growing sulfur-oxidizing bacteria that oxidize compounds.
【請求項2】 請求項1記載の方法により馴養・増殖し
た還元性硫黄化合物を酸化する微生物が存在する曝気槽
に、還元性硫黄化合物を含む排水を供給し、請求項1の
方法により求めたORP値に維持できるように曝気槽の
曝気を管理・制御し、また、曝気槽のpHを4.0〜
7.5の範囲に管理・制御することを特徴とする還元性
硫黄化合物を含む排水の生物学的処理方法。
2. A wastewater containing a reducing sulfur compound is supplied to an aeration tank in which microorganisms that oxidize a reducing sulfur compound acclimated and grown by the method according to claim 1 are present, and obtained by the method according to claim 1. The aeration of the aeration tank is controlled and controlled so that the ORP value can be maintained, and the pH of the aeration tank is set to 4.0 to 4.0.
A biological treatment method for wastewater containing a reducing sulfur compound, which is controlled and controlled within a range of 7.5.
【請求項3】 請求項1又は請求項2に記載の方法にお
いて無機系凝集剤として塩化鉄を供給することを特徴と
する硫黄酸化細菌の馴養・増殖方法又は還元性硫黄化合
物を含む排水の生物学的処理方法。
3. The method according to claim 1 or 2, wherein iron chloride is supplied as an inorganic coagulant, and a method of acclimating and growing sulfur-oxidizing bacteria or a wastewater organism containing a reducing sulfur compound. Treatment method.
【請求項4】 請求項1、請求項2又は請求項3に記載
の還元性硫黄化合物を含む排水が鉱石より金属を精錬す
る際に発生するスラグに起因する排水であることを特徴
とする硫黄酸化細菌の馴養・増殖方法又は還元性硫黄化
合物を含む排水の生物学的処理方法。
4. The wastewater containing a reducing sulfur compound according to claim 1, 2 or 3, wherein the wastewater is wastewater caused by slag generated when refining metal from ore. A method for acclimatizing and growing oxidizing bacteria or a method for biologically treating wastewater containing a reducing sulfur compound.
【請求項5】 請求項1、請求項2又は請求項3に記載
の還元性硫黄化合物を含む排水が製鐵所の高炉から発生
する高炉スラグに起因する排水であることを特徴とする
硫黄酸化細菌の馴養・増殖方法又は還元性硫黄化合物を
含む排水の生物学的処理方法。
5. Sulfur oxidation characterized in that the wastewater containing a reducing sulfur compound according to claim 1, 2, or 3 is wastewater originating from blast furnace slag generated from a blast furnace of a steelworks. A method for acclimating and growing bacteria or a biological treatment method for wastewater containing a reducing sulfur compound.
【請求項6】 請求項5に記載の方法において、無機系
凝集剤として塩化鉄を供給し、曝気槽のORPを0〜+
150mV(銀/塩化銀電極基準)になるように曝気を
行い、また、曝気槽のpHを5.0〜7.0の範囲に管
理・制御することを特徴とする硫黄酸化細菌の馴養・増
殖方法又は及び還元性硫黄化合物を含む排水の生物学的
処理方法。
6. The method according to claim 5, wherein iron chloride is supplied as an inorganic coagulant, and the ORP of the aeration tank is 0 to +
Aeration and breeding of sulfur oxidizing bacteria, characterized by aeration to 150 mV (based on silver / silver chloride electrode) and controlling and controlling the pH of the aeration tank in the range of 5.0 to 7.0. Or biological treatment of wastewater containing reducing sulfur compounds.
JP27914392A 1992-09-25 1992-09-25 Conditioning and propagation of sulfur oxidizing bacteria by addition of inorganic coagulant and biological treatment of wastewater containing reducing sulfur compounds Expired - Fee Related JP2618164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27914392A JP2618164B2 (en) 1992-09-25 1992-09-25 Conditioning and propagation of sulfur oxidizing bacteria by addition of inorganic coagulant and biological treatment of wastewater containing reducing sulfur compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27914392A JP2618164B2 (en) 1992-09-25 1992-09-25 Conditioning and propagation of sulfur oxidizing bacteria by addition of inorganic coagulant and biological treatment of wastewater containing reducing sulfur compounds

Publications (2)

Publication Number Publication Date
JPH06106188A JPH06106188A (en) 1994-04-19
JP2618164B2 true JP2618164B2 (en) 1997-06-11

Family

ID=17607043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27914392A Expired - Fee Related JP2618164B2 (en) 1992-09-25 1992-09-25 Conditioning and propagation of sulfur oxidizing bacteria by addition of inorganic coagulant and biological treatment of wastewater containing reducing sulfur compounds

Country Status (1)

Country Link
JP (1) JP2618164B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002176970A (en) * 2000-12-13 2002-06-25 Bicom:Kk High-concentration sulfur-oxidizing bacterium, and method for high-concentration culture of sulfur- oxidizing bacterium
AT409858B (en) * 2001-06-27 2002-12-27 Kubinger Ulrich Ing Increasing the effect of microorganism addition in biological purification of communal waste water is achieved by co-addition of a flocculant based on a polymerized metal hydroxide compound
JP4735561B2 (en) * 2007-02-13 2011-07-27 Jfeスチール株式会社 Method for treating wastewater containing sulfur-based COD components
JP6258277B2 (en) * 2014-10-15 2018-01-10 アクアサービス株式会社 Water purification method and water purification system

Also Published As

Publication number Publication date
JPH06106188A (en) 1994-04-19

Similar Documents

Publication Publication Date Title
Campos et al. Nitrification in saline wastewater with high ammonia concentration in an activated sludge unit
US8454830B2 (en) Apparatus and methods for control of waste treatment processes
AU2008244181B2 (en) Method and equipment for processing waste water containing sulphides and ammonium
US7429328B2 (en) Apparatus and methods for control of waste treatment processes
JP4703370B2 (en) Nitrogen-containing wastewater treatment method
JP4106203B2 (en) How to remove nitrogen from water
JP4570069B2 (en) Method for removing ammonia nitrogen from wastewater
JP2002011495A (en) Method for removing nitrogen and phosphor from wastewater
JP2618164B2 (en) Conditioning and propagation of sulfur oxidizing bacteria by addition of inorganic coagulant and biological treatment of wastewater containing reducing sulfur compounds
JP3749617B2 (en) Method of acclimatizing sulfur-oxidizing bacteria and method of removing nitrogen from wastewater using sulfur-oxidizing bacteria
JP2799247B2 (en) How to remove sulfur compounds from water
CN114873851B (en) Autotrophic denitrification and full quantification treatment device and method for high-salt high-ammonia nitrogen wastewater
JP2622649B2 (en) Immobilized carrier suitable for sulfur oxidizing bacteria, method of immobilizing sulfur oxidizing bacteria on immobilized carrier, method of acclimating and growing sulfur oxidizing bacteria in fixed bed bioreactor, and biology of wastewater containing reducing sulfur compounds Processing method
JPH06106187A (en) Domestication and multiplication of sulfur oxidizing bacteria by addition of organic compound and biological treatment of waste water containing reducing sulfur compound
JP4735561B2 (en) Method for treating wastewater containing sulfur-based COD components
JPH06106189A (en) Domestication and multiplication of sulfur oxidizing bacteria by addition of carbonate and biological treatment of waste water containing reducing sulfur compound
JP2003071490A (en) Method for removing nitrogen from wastewater
JP2582695B2 (en) Biological treatment method for wastewater containing hydrogen sulfide
JP2663227B2 (en) Biological treatment of wastewater containing reducing sulfur compounds
KR100311587B1 (en) Batch type apparatus for treating organic wastewater/sewage
JP2509099B2 (en) Method for acclimatizing and growing microorganisms that oxidatively decompose reducing sulfur compounds, and method for biological treatment of wastewater containing reducing sulfur compounds
JP2622643B2 (en) Biological treatment of wastewater containing reducing sulfur compounds
JPH06493A (en) Method of biologically treating waste water
JP2693099B2 (en) Biological treatment method and acclimation method of microorganisms
JP2509098B2 (en) Microorganisms for oxidizing or degrading reducing sulfur compounds and aromatic organic compounds having sulfone groups, method of breeding, and biological of wastewater containing reducing sulfur compounds and aromatic organic compounds having sulfone groups Processing method

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970107

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313122

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090311

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100311

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110311

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120311

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees