JPH04309804A - Device and method for measuring three dimensional contour - Google Patents

Device and method for measuring three dimensional contour

Info

Publication number
JPH04309804A
JPH04309804A JP7277991A JP7277991A JPH04309804A JP H04309804 A JPH04309804 A JP H04309804A JP 7277991 A JP7277991 A JP 7277991A JP 7277991 A JP7277991 A JP 7277991A JP H04309804 A JPH04309804 A JP H04309804A
Authority
JP
Japan
Prior art keywords
measuring
objective lens
dimensional shape
stage
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7277991A
Other languages
Japanese (ja)
Inventor
Hiroyuki Ota
裕之 太田
Munetoshi Zen
宗利 善
Hiroshi Sakata
寛 坂田
Noriaki Okamoto
岡本 紀明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7277991A priority Critical patent/JPH04309804A/en
Publication of JPH04309804A publication Critical patent/JPH04309804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To carry out a measuring process in a short time even in the case of a wide measuring range in a three dimensional contour measuring method having a wide measuring range and highly accurate resolution by detecting the focusing position of a laser beam. CONSTITUTION:By detecting the moment when the focusing position of a laser beam 2, which is diaphragmed by an objective lens system 1 canned in its vertical direction, coincides with the surface of a test piece 3, and at that time by measuring the comparative height of the objective lens system 1 while scanning over the surface of the test piece 3 successively the three dimensional contour of the test piece 3 is obtained. The scanning range of the objective lens system 1 at a point to be measured is determined by presumably the position to be focused from a measuring point in its vicinity. As the result, the movement distance of the objective lens 1 can be made small, and therefore the measuring time can be shorten.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、特に板のそり量などの
測定に最適な試験片の測定方法及び測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and apparatus for measuring a test piece, particularly suitable for measuring the amount of warpage of a plate.

【0002】0002

【従来の技術】試験片の表面形状を測定する方法として
、光を試験片表面に集光して焦点位置をピンホールを用
いて検出し、その焦点位置の試験片面内での変化から求
める方法が知られている。
[Prior Art] As a method for measuring the surface shape of a test piece, light is focused on the surface of the test piece, the focal position is detected using a pinhole, and the focal position is determined from changes within the surface of the test piece. It has been known.

【0003】図3にその構成図を示す。レーザ光源13
から発生したレーザ光2を対物レンズ系1を通して試験
片3の表面に照射し、その反射光をダイクロイックミラ
ー4を通してピンホール5に導く。また、対物レンズ系
1は試験片3との距離を変えられるようになっている。 試験片3の表面に焦点があっている場合には試験片から
の反射光はピンホール5を通過できるので、受光器6に
光が当たり信号を取り出すことができる。
FIG. 3 shows its configuration. Laser light source 13
The surface of the test piece 3 is irradiated with a laser beam 2 generated by the laser beam 2 through an objective lens system 1, and the reflected light is guided to a pinhole 5 through a dichroic mirror 4. Furthermore, the distance between the objective lens system 1 and the test piece 3 can be changed. When the surface of the test piece 3 is in focus, the reflected light from the test piece can pass through the pinhole 5, so that the light hits the light receiver 6 and a signal can be extracted.

【0004】試験片3の表面に焦点があっていないとき
は試験片3からの反射光はそのほとんどがピンホール5
を通過できないので受光器6にはほとんど光は当たらな
い。また、対物レンズ系1は試験片3を乗せているステ
ージ7との距離はくさび形摺動面9、ボールネジ10、
サーボモータ11によってある範囲で変化させられるよ
うになっており、受光器6からの合焦点を示す信号を受
信したときの対物レンズ系1と試験片を乗せているステ
ージ7との距離をエンコーダ8によって測定しCPU1
2によって処理することにより試験片3の表面のステー
ジ7に対する相対的な高さが求められる。この測定を試
験片3の面内において行うことによりステージ7を基準
面とした試験片3の表面形状が求められる。
When the surface of the test piece 3 is not focused, most of the reflected light from the test piece 3 is reflected from the pinhole 5.
Since the light cannot pass through the light, almost no light hits the light receiver 6. The distance between the objective lens system 1 and the stage 7 on which the test piece 3 is placed is a wedge-shaped sliding surface 9, a ball screw 10,
It can be changed within a certain range by a servo motor 11, and an encoder 8 measures the distance between the objective lens system 1 and the stage 7 on which the test piece is placed when a signal indicating the focused point is received from the light receiver 6. Measured by CPU1
2, the relative height of the surface of the test piece 3 to the stage 7 is determined. By performing this measurement within the plane of the test piece 3, the surface shape of the test piece 3 with the stage 7 as a reference plane can be determined.

【0005】[0005]

【発明が解決しようとする課題】上記の従来の方法によ
れば、試験片3と対物レンズ系1の距離を一定距離だけ
変化させて合焦点位置を検知して試験片表面のある点の
相対的な高さを求め、これを試験片表面内を走査しなが
ら行うことによって試験片3の3次元的な形状を求める
ことができる。すなわち、試験片3の表面の高さの最大
値と最小値の点が測定できるように見計らって対物レン
ズ系1の鉛直方向の走査範囲の上限と下限を初期設定し
た後、この初期設定通りに対物レンズ系を鉛直方向に走
査させて合焦点位置を検知し、相対的な高さを求めるこ
とができる。これを試験片表面内にわたり行うことによ
り試験片3の表面形状が求められる。
[Problems to be Solved by the Invention] According to the above-mentioned conventional method, the distance between the test piece 3 and the objective lens system 1 is changed by a certain distance to detect the focal point position and to determine the relative position of a certain point on the test piece surface. The three-dimensional shape of the test piece 3 can be determined by determining the height of the test piece 3 and scanning the surface of the test piece. That is, after initially setting the upper and lower limits of the vertical scanning range of the objective lens system 1 so that the maximum and minimum height points on the surface of the test piece 3 can be measured, By scanning the objective lens system in the vertical direction, the position of the focal point can be detected and the relative height can be determined. By performing this over the entire surface of the test piece, the surface shape of the test piece 3 can be determined.

【0006】しかしながら、図4に示すように試験片面
内を走査して各点での高さを測定している間は、対物レ
ンズ系1の鉛直方向の走査範囲の上限と下限は常に一定
としていた。このため試験片3の面内において高さの大
きく変化する試験片3の表面形状を測定する場合は、対
物レンズ系1の鉛直方向の走査範囲を大きくせざるをえ
ず、その結果、測定時間が長くなるという欠点があった
。このため、試験片3の面内において高さの大きく変化
する試験片3の表面形状の時間変化の測定が不可能であ
った。
However, as shown in FIG. 4, while scanning the specimen surface and measuring the height at each point, the upper and lower limits of the vertical scanning range of the objective lens system 1 are always kept constant. there was. Therefore, when measuring the surface shape of the test piece 3 whose height changes greatly within the plane of the test piece 3, the vertical scanning range of the objective lens system 1 must be increased, resulting in a measurement time The disadvantage was that it was long. For this reason, it was impossible to measure changes over time in the surface shape of the test piece 3 whose height changes greatly within the plane of the test piece 3.

【0007】本発明は、試験片の面内において高さの大
きく変化する試験片の表面形状測定を高速に行えるよう
にするものである。
[0007] The present invention enables high-speed measurement of the surface shape of a test piece whose height varies greatly within the plane of the test piece.

【0008】[0008]

【課題を解決するための手段】被測定点の高さを推定し
、これに合わせて対物レンズ系の鉛直方向の走査範囲の
上限と下限をそれぞれ変化させながら試験片面内の高さ
の分布を測定することにより上記課題は解決することが
できる。
[Means for solving the problem] Estimate the height of the point to be measured, and change the upper and lower limits of the vertical scanning range of the objective lens system accordingly to calculate the height distribution within the surface of the test piece. The above problem can be solved by measurement.

【0009】[0009]

【作用】本発明によれば、対物レンズ系の鉛直方向の走
査範囲が従来のものに比べて小さくできるので対物レン
ズ系の走査時間を短くでき、よって各点での測定時間を
短くすることができる。このため、試験片の面内におい
て高さの大きく変化する試験片でも試験片形状の時間依
存性等の測定ができるようになる。この測定法は大きな
段差の無い板のそりやうねりなどの測定に特に有効であ
る。
[Operation] According to the present invention, since the vertical scanning range of the objective lens system can be made smaller than that of conventional systems, the scanning time of the objective lens system can be shortened, and therefore the measurement time at each point can be shortened. can. Therefore, it becomes possible to measure the time dependence of the shape of a test piece even for a test piece whose height changes greatly within the plane of the test piece. This measurement method is particularly effective for measuring warpage and waviness of plates without large differences in level.

【0010】0010

【実施例】図1に示すように試験片3の表面形状測定開
始時には対物レンズ系1の鉛直方向の走査範囲の上限と
下限を初期設定し試験片面内の連なる数点について相対
的な高さを求める。この数点の高さの変化量あるいは試
験片の変形形態のどちらか、若しくは両方から次の測定
点における試験片表面の相対的な高さを予想する。
[Example] As shown in Fig. 1, when starting the surface shape measurement of the test specimen 3, the upper and lower limits of the vertical scanning range of the objective lens system 1 are initially set, and the relative heights of several consecutive points on the surface of the test specimen are set. seek. The relative height of the test piece surface at the next measurement point is predicted from either the amount of change in height at these several points or the deformation form of the test piece, or both.

【0011】そして測定開始時より小さい範囲の対物レ
ンズ系1の鉛直方向の走査範囲の上限と下限を自動的に
再設定し、この設定値を用いて次の点の測定を行う。こ
の点の測定結果と数点前までの測定結果を併せて用いて
再び次の測定点の高さを予想して対物レンズ系1の鉛直
方向の走査範囲を自動的に設定し測定を行う。
Then, the upper and lower limits of the vertical scanning range of the objective lens system 1 are automatically reset to be smaller than those at the start of the measurement, and the next point is measured using these set values. The height of the next measurement point is predicted again using the measurement result of this point and the measurement results of several points before, and the vertical scanning range of the objective lens system 1 is automatically set and measurement is performed.

【0012】なお、対物レンズ系1を移動させる場合の
他にステージ7を移動させた場合にも本発明は適用でき
る。
Note that the present invention can be applied not only to the case where the objective lens system 1 is moved but also to the case where the stage 7 is moved.

【0013】本発明の一実施例の制御方法を図2のフロ
ーチャートに従って説明する。本実施例は3mm×34
mmの短冊状の試験片の長手方向のそりを測定したもの
である。
A control method according to an embodiment of the present invention will be explained with reference to the flowchart shown in FIG. This example is 3mm x 34
The warpage in the longitudinal direction of a strip-shaped test piece of mm was measured.

【0014】測定点は0.3mmおきに設定し、試験片
の長手方向の一端から他端に向けて順に測定を行うもの
とした。本実施例では測定開始初期に任意に対物レンズ
系の鉛直方向の走査範囲を設定し、この対物レンズ系の
鉛直方向の走査範囲を用いて試験片端から0.9mmま
での点についてそれぞれ高さの測定を行った。
Measurement points were set at intervals of 0.3 mm, and measurements were made sequentially from one end of the test piece in the longitudinal direction to the other end. In this example, the vertical scanning range of the objective lens system is arbitrarily set at the beginning of the measurement, and the vertical scanning range of the objective lens system is used to calculate the height of each point up to 0.9 mm from the end of the test piece. Measurements were taken.

【0015】この3点の実測データを基に自動的に最小
自乗法を用いて次点(0.3mm先)の高さを予想し、
この高さに相当する対物レンズ系の位置を中心として±
5μmの範囲を対物レンズ系の鉛直方向の走査範囲とし
て測定を行った。
[0015] Based on the actual measurement data of these three points, the height of the next point (0.3 mm ahead) is automatically predicted using the method of least squares,
± around the position of the objective lens system corresponding to this height.
The measurement was performed with a range of 5 μm as the vertical scanning range of the objective lens system.

【0016】さらに、次点の測定はその前の3点の測定
データから最小自乗法により予測した位置を中心にして
±5μmの範囲を対物レンズ系の鉛直方向の走査範囲と
して自動設定し測定を行った。これを繰り返し行い、試
験片表面のステージに対する相対的な高さの分布を得た
Furthermore, to measure the next point, a range of ±5 μm centered on the position predicted by the least squares method from the measurement data of the previous three points is automatically set as the vertical scanning range of the objective lens system. went. This was repeated to obtain a relative height distribution of the surface of the test piece with respect to the stage.

【0017】得られた試験片の二次元的な表面形状を図
5に示すが、これは対物レンズ系の走査範囲を固定する
従来の方法で得たデータと一致するものである。また、
本測定を行うのに従来の方法では11分を要したのに対
し、本発明の制御方法を用いることにより5分に短縮で
きた。よって、試験片の表面形状の時間変化のデータも
得ることができるようになった。
The two-dimensional surface shape of the obtained test piece is shown in FIG. 5, which agrees with the data obtained by the conventional method in which the scanning range of the objective lens system is fixed. Also,
While it took 11 minutes to perform this measurement using the conventional method, the time could be shortened to 5 minutes by using the control method of the present invention. Therefore, it is now possible to obtain data on changes in the surface shape of the test piece over time.

【0018】図6に本発明の第2の実施例を説明するた
めのフロ−チャ−トを示す。本実施例においては円弧状
の変形をもっていることを確認してある、上記の実施例
における試験片と同寸法の試験片を用いた。
FIG. 6 shows a flowchart for explaining a second embodiment of the present invention. In this example, a test piece with the same dimensions as the test piece in the above example, which was confirmed to have arc-shaped deformation, was used.

【0019】まず、上記の実施例と同様に試験片表面の
つらなる3点の相対的な高さを測定して円弧の曲率半径
を求め、これによって予測した位置を中心にして±5μ
mの範囲を対物レンズ系の鉛直方向の走査範囲として自
動設定し、次の被測定点の測定を行った。
First, in the same manner as in the above example, the relative heights of three consecutive points on the surface of the test piece are measured to determine the radius of curvature of the arc, and from this the radius of curvature of the circular arc is determined by ±5μ around the predicted position.
The range of m was automatically set as the vertical scanning range of the objective lens system, and the next measurement point was measured.

【0020】さらに次点の測定はその前の3点の測定デ
ータから求めた曲率半径により予測した位置を中心にし
て±5μmの範囲を対物レンズ系の鉛直方向の走査範囲
として自動設定し測定を行った。これを繰り返し行い、
試験片表面のステージに対する相対的な高さの分布を得
た。
Furthermore, to measure the next point, the vertical scanning range of the objective lens system is automatically set within a range of ±5 μm around the predicted position based on the radius of curvature obtained from the measurement data of the previous three points. went. Repeat this and
The relative height distribution of the specimen surface to the stage was obtained.

【0021】また、本測定を行うのに従来の方法では1
1分を要したのに対し、本発明の制御方法を用いること
により5分以下に短縮できた。よって、試験片の表面形
状の時間変化のデータも得ることができるようになった
[0021] In addition, in the conventional method, 1
Although it required 1 minute, by using the control method of the present invention, it was possible to shorten the time to 5 minutes or less. Therefore, it is now possible to obtain data on changes in the surface shape of the test piece over time.

【0022】図7に本発明の第3の実施例を説明するた
めのフロ−チャ−トを示す。試験片は本発明の第2の実
施例と同寸法、同条件で,作成したものである。
FIG. 7 shows a flowchart for explaining a third embodiment of the present invention. The test piece was prepared with the same dimensions and under the same conditions as the second embodiment of the present invention.

【0023】この場合は、第2の実施例を参照して各測
定点における対物レンズ系の合焦点位置を予測できるの
で、これを中心にして±2μmの範囲を対物レンズ系の
鉛直方向の走査範囲として自動設定し、試験片表面にお
ける相対的高さの測定を行った。本測定を行うのに従来
の方法では11分を要したのに対し、本発明の制御方法
を用いることにより3分以下に短縮できた。
In this case, since the focal point position of the objective lens system at each measurement point can be predicted with reference to the second embodiment, the objective lens system can be scanned in the vertical direction within a range of ±2 μm around this point. The range was automatically set, and the relative height on the surface of the test piece was measured. While it took 11 minutes to perform this measurement using the conventional method, the time could be shortened to 3 minutes or less by using the control method of the present invention.

【0024】[0024]

【発明の効果】試験片の表面形状の測定に必要な時間が
短縮されるので、スループットが良くなる。また、試験
片形状の時間変化についての測定が可能となる。
[Effects of the Invention] The time required to measure the surface shape of a test piece is shortened, so throughput is improved. Furthermore, it becomes possible to measure changes in the shape of the test piece over time.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明における表面形状測定時の対物レンズ系
の動作を模式的に示した説明図である。
FIG. 1 is an explanatory diagram schematically showing the operation of an objective lens system during surface shape measurement in the present invention.

【図2】本発明の実施例を説明するために本発明におけ
る表面形状測定方法をフロー図である。
FIG. 2 is a flow diagram of a surface shape measuring method according to the present invention to explain an embodiment of the present invention.

【図3】従来の技術を説明するために測定器のハードウ
ェアの模式図である。
FIG. 3 is a schematic diagram of the hardware of a measuring instrument to explain the prior art.

【図4】従来の技術を説明するために表面形状測定時に
おける対物レンズ系の動作を説明する模式図である。
FIG. 4 is a schematic diagram illustrating the operation of an objective lens system during surface shape measurement to explain a conventional technique.

【図5】本発明の一実施例である試験片の表面形状の測
定結果を示した図である。
FIG. 5 is a diagram showing the measurement results of the surface shape of a test piece that is an example of the present invention.

【図6】本発明の実施例を説明するために本発明の第2
の実施例における表面形状測定方法をフロー図である。
FIG. 6 is a second diagram of the present invention for explaining an embodiment of the present invention.
It is a flowchart of the surface shape measurement method in the Example.

【図7】本発明の実施例を説明するために本発明の第3
の実施例における表面形状測定方法をフロー図である。
FIG. 7 is a third embodiment of the present invention for explaining an embodiment of the present invention.
It is a flowchart of the surface shape measurement method in the Example.

【符号の説明】[Explanation of symbols]

1…対物レンズ系、2…レーザ光、3…試験片、4…ダ
イクロイックミラー、5…ピンホール、6…受光器、7
…ステージ、8…エンコーダ、9…くさび形摺動面、1
0…ボールネジ、11…サーボモータ、12…CPU、
13…レーザ光源。
1... Objective lens system, 2... Laser light, 3... Test piece, 4... Dichroic mirror, 5... Pinhole, 6... Light receiver, 7
...Stage, 8...Encoder, 9...Wedge-shaped sliding surface, 1
0...Ball screw, 11...Servo motor, 12...CPU,
13...Laser light source.

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】鉛直方向に走査される対物レンズによって
絞られたレーザ光の焦点位置が物体の表面と一致したと
きを検知しこのときの対物レンズの相対的な高さを物体
表面を順次走査しながら測定することにより物体の3次
元形状を得る方法において、ある被測定点における対物
レンズの走査範囲を近傍の測定点から推定した合焦点位
置から決定することを特徴とする物体表面の三次元形状
の測定方法。
Claim 1: Detecting when the focal position of a laser beam narrowed down by an objective lens scanned in the vertical direction coincides with the surface of an object, and sequentially scanning the object surface to measure the relative height of the objective lens at this time. A method for obtaining a three-dimensional shape of an object by measuring the three-dimensional shape of an object surface, the scanning range of an objective lens at a certain measured point being determined from a focal point position estimated from nearby measurement points. How to measure shape.
【請求項2】前記対物レンズの走査範囲の推定に最小自
乗法を用いることを特徴とする請求項1に記載の物体表
面の三次元形状の測定方法。
2. The method for measuring a three-dimensional shape of an object surface according to claim 1, wherein a least squares method is used to estimate the scanning range of the objective lens.
【請求項3】ステージを鉛直方向に走査し、対物レンズ
によって絞られたレーザ光の焦点位置が物体の表面と一
致したときのステージの相対的な高さを求め、この動作
を物体面内を順次走査しながら測定することにより物体
の3次元形状を得る方法において、ある被測定点におけ
るステージの走査範囲を近傍の測定点から推定した合焦
点位置から決定することを特徴とする物体表面の三次元
形状の測定方法。
3. Scan the stage in the vertical direction, find the relative height of the stage when the focal position of the laser beam focused by the objective lens coincides with the surface of the object, and repeat this operation within the object plane. A method for obtaining a three-dimensional shape of an object by sequentially scanning and measuring the object surface, characterized in that the scanning range of the stage at a certain point to be measured is determined from the focal point position estimated from nearby measurement points. How to measure the original shape.
【請求項4】前記ステ−ジの走査範囲の推定に最小自乗
法を用いることを特徴とする請求項1または4に記載の
物体表面の三次元形状の測定方法。
4. A method for measuring a three-dimensional shape of an object surface according to claim 1, wherein a least squares method is used to estimate the scanning range of the stage.
【請求項5】鉛直方向に走査される対物レンズによって
絞られたレーザ光の焦点位置が物体の表面と一致したと
きを検知しこのときの対物レンズの相対的な高さを物体
表面を順次走査しながら測定することにより物体の3次
元形状を得る方法において、ある被測定点における対物
レンズの走査範囲をあらかじめ測定しておいた試験片の
変形形態と近傍の測定点のどちらか一つ若しくは両方か
ら推定した合焦点位置から決定することを特徴とする物
体表面の三次元形状の測定方法。
5. Detecting when the focal position of the laser beam focused by the objective lens scanned in the vertical direction coincides with the surface of the object, and sequentially scanning the object surface to measure the relative height of the objective lens at this time. In a method of obtaining a three-dimensional shape of an object by measuring the shape of the object, the scanning range of the objective lens at a certain point to be measured is determined in advance by measuring the deformation of the specimen and/or the nearby measurement points. A method for measuring a three-dimensional shape of an object surface, characterized in that the three-dimensional shape of an object surface is determined from a focal point position estimated from.
【請求項6】ステージを鉛直方向に走査し、対物レンズ
によって絞られたレーザ光の焦点位置が物体の表面と一
致したときのステージの相対的な高さを求め、この動作
を物体面内を順次走査しながら測定することにより物体
の3次元形状を得る方法において、ある被測定点におけ
るステージの走査範囲をあらかじめ測定しておいた試験
片の変形形態と近傍の測定点のどちらか一つ若しくは両
方から決定することを特徴とする物体表面の三次元形状
の測定方法。
6. Scan the stage in the vertical direction, find the relative height of the stage when the focal position of the laser beam focused by the objective lens coincides with the surface of the object, and repeat this operation within the object plane. In a method of obtaining a three-dimensional shape of an object by sequentially scanning and measuring, the scanning range of the stage at a certain point to be measured is determined in advance by measuring the deformation form of the test piece and the nearby measurement points. A method for measuring the three-dimensional shape of an object surface, characterized by determining from both.
【請求項7】鉛直方向に走査される対物レンズによって
絞られたレーザ光の焦点位置が物体の表面と一致したと
きを検知しこのときの対物レンズの相対的な高さを物体
表面を順次走査しながら測定することにより物体の3次
元形状を得る装置において、ある被測定点における対物
レンズの走査範囲を近傍の測定点から推定した合焦点位
置から決定することを特徴とする物体表面の三次元形状
の測定装置。
7. Detecting when the focal position of the laser beam narrowed down by an objective lens scanned in the vertical direction coincides with the surface of the object, and sequentially scanning the object surface to determine the relative height of the objective lens at this time. A device for obtaining a three-dimensional shape of an object by measuring the three-dimensional shape of an object surface, characterized in that the scanning range of an objective lens at a certain point to be measured is determined from a focal point position estimated from nearby measurement points. Shape measuring device.
【請求項8】前記対物レンズの走査範囲の推定に最小自
乗法を用いることを特徴とする請求項1に記載の物体表
面の三次元形状の測定装置。
8. The apparatus for measuring a three-dimensional shape of an object surface according to claim 1, wherein a least squares method is used to estimate the scanning range of the objective lens.
【請求項9】ステージを鉛直方向に走査し、対物レンズ
によって絞られたレーザ光の焦点位置が物体の表面と一
致したときのステージの相対的な高さを求め、この動作
を物体面内を順次走査しながら測定することにより物体
の3次元形状を得る装置において、ある被測定点におけ
るステージの走査範囲を近傍の測定点から推定した合焦
点位置から決定することを特徴とする物体表面の三次元
形状の測定装置。
9. Scan the stage in the vertical direction, find the relative height of the stage when the focal position of the laser beam focused by the objective lens coincides with the surface of the object, and repeat this operation within the object plane. A device for obtaining a three-dimensional shape of an object by sequentially scanning and measuring the object surface, characterized in that the scanning range of the stage at a certain point to be measured is determined from the focal point position estimated from nearby measurement points. Original shape measuring device.
【請求項10】前記ステ−ジの走査範囲の推定に最小自
乗法を用いることを特徴とする請求項1または4に記載
の物体表面の三次元形状の測定装置。
10. The apparatus for measuring the three-dimensional shape of an object surface according to claim 1, wherein the least squares method is used to estimate the scanning range of the stage.
【請求項11】鉛直方向に走査される対物レンズによっ
て絞られたレーザ光の焦点位置が物体の表面と一致した
ときを検知しこのときの対物レンズの相対的な高さを物
体表面を順次走査しながら測定することにより物体の3
次元形状を得る装置において、ある被測定点における対
物レンズの走査範囲をあらかじめ測定しておいた試験片
の変形形態と近傍の測定点のどちらか一つ若しくは両方
から推定した合焦点位置から決定することを特徴とする
物体表面の三次元形状の測定装置。
11. Detecting when the focal position of the laser beam narrowed down by an objective lens scanned in the vertical direction coincides with the surface of the object, and sequentially scanning the object surface to determine the relative height of the objective lens at this time. 3 of the object by measuring while
In a device that obtains a dimensional shape, the scanning range of an objective lens at a certain point to be measured is determined from the pre-measured deformation form of the specimen and the focal point position estimated from one or both of nearby measurement points. A device for measuring the three-dimensional shape of an object surface, characterized by:
【請求項12】ステージを鉛直方向に走査し、対物レン
ズによって絞られたレーザ光の焦点位置が物体の表面と
一致したときのステージの相対的な高さを求め、この動
作を物体面内を順次走査しながら測定することにより物
体の3次元形状を得る装置において、ある被測定点にお
けるステージの走査範囲をあらかじめ測定しておいた試
験片の変形形態と近傍の測定点のどちらか一つ若しくは
両方から決定することを特徴とする物体表面の三次元形
状の測定装置。
12. Scan the stage in the vertical direction, find the relative height of the stage when the focal position of the laser beam focused by the objective lens coincides with the surface of the object, and repeat this operation within the object plane. In a device that obtains the three-dimensional shape of an object by sequentially scanning and measuring, the scanning range of the stage at a certain point to be measured is determined in advance by measuring the deformation of the specimen and one of the nearby measurement points. A device for measuring the three-dimensional shape of the surface of an object, characterized by determining the three-dimensional shape of the surface of an object.
JP7277991A 1991-04-05 1991-04-05 Device and method for measuring three dimensional contour Pending JPH04309804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7277991A JPH04309804A (en) 1991-04-05 1991-04-05 Device and method for measuring three dimensional contour

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7277991A JPH04309804A (en) 1991-04-05 1991-04-05 Device and method for measuring three dimensional contour

Publications (1)

Publication Number Publication Date
JPH04309804A true JPH04309804A (en) 1992-11-02

Family

ID=13499216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7277991A Pending JPH04309804A (en) 1991-04-05 1991-04-05 Device and method for measuring three dimensional contour

Country Status (1)

Country Link
JP (1) JPH04309804A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347521A (en) * 2003-05-23 2004-12-09 Mitsubishi Heavy Ind Ltd Shape measuring system and method
JP2010066156A (en) * 2008-09-11 2010-03-25 Nikon Corp Profile measuring apparatus
JP2010066155A (en) * 2008-09-11 2010-03-25 Nikon Corp Profile measuring apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347521A (en) * 2003-05-23 2004-12-09 Mitsubishi Heavy Ind Ltd Shape measuring system and method
JP2010066156A (en) * 2008-09-11 2010-03-25 Nikon Corp Profile measuring apparatus
JP2010066155A (en) * 2008-09-11 2010-03-25 Nikon Corp Profile measuring apparatus

Similar Documents

Publication Publication Date Title
US10502563B2 (en) Measurement device
JPH04309804A (en) Device and method for measuring three dimensional contour
US3908079A (en) Surface roughness measurement instrument
JP3259462B2 (en) Method and apparatus for detecting focal position of laser beam machine
JP2017053793A (en) Measurement device, and manufacturing method of article
JP2526546B2 (en) Alignment device
JPH10185514A (en) Coil position detector
JPH07190735A (en) Optical measuring device and its measuring method
JP2626611B2 (en) Object shape measurement method
JP3381420B2 (en) Projection detection device
JP3152507B2 (en) Local corrosion depth automatic measurement method
JP3112537B2 (en) Optical three-dimensional shape measuring method and measuring device
JP2725200B2 (en) Surface detector
JP3018887B2 (en) 3D shape measuring device
JPH05215528A (en) Three-dimensional shape measuring apparatus
JPH10185515A (en) Coil position detector
JPS6248163B2 (en)
JPH10281732A (en) Dimension measuring equipment
JPH10288512A (en) Shape measuring device
JPH1068608A (en) Height measuring apparatus
JPH0540821A (en) 3-dimensional measuring device
JPH1054711A (en) Method of measuring surface shape
JPH1068602A (en) Shape measuring apparatus
JPH0227606B2 (en) ICHISOKUTEISOCHI
JPH08320222A (en) Displacement measuring device