JPH10288512A - Shape measuring device - Google Patents

Shape measuring device

Info

Publication number
JPH10288512A
JPH10288512A JP9709997A JP9709997A JPH10288512A JP H10288512 A JPH10288512 A JP H10288512A JP 9709997 A JP9709997 A JP 9709997A JP 9709997 A JP9709997 A JP 9709997A JP H10288512 A JPH10288512 A JP H10288512A
Authority
JP
Japan
Prior art keywords
shape
measuring
sensor
artificial flaw
flaw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9709997A
Other languages
Japanese (ja)
Inventor
Koji Takao
浩二 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9709997A priority Critical patent/JPH10288512A/en
Publication of JPH10288512A publication Critical patent/JPH10288512A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a shape measuring device that is high in accuracy, excellent in efficiency and also capable of preserving those of data surely. SOLUTION: This measuring device is equipped with a noncontact type laser focus displacement gauge 11 measuring a distance of up to an artificial flaw 2 and an output value of reflected light from this artificial flaw 2, a measuring mechanismic part 15 consisting of a sensor 11a of this displacement gauge 11 and a mobile mechanism 12 scanning this sensor 11a in the three dimensional direction, a control part 16 controlling this measuring mechanismic part 15, and a signal processing part 17 operating a shape of the artificial flaw 2 on the basis of the moving direction and an amount of travel of the sensor 11a via the mobile mechanism 12 by a command out of this control part 16 and an output signal out of the laser focus displacement gauge 11, respectively. With this constitution, a shape of the artificial flaw is measurable quickly, and further, precisely and in an automatic manner. Besides, data are also preservable.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、例えば鋼管,鋼板
等の金属材料の超音波探傷に使用する試験片における人
工疵の形状を測定する装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for measuring the shape of an artificial flaw in a test piece used for ultrasonic testing of a metal material such as a steel pipe or a steel plate.

【0002】[0002]

【従来の技術】試験片に設けた人工疵は、超音波探傷装
置の感度校正や判定レベルを設定する基準となる。この
ため、人工疵の深さ,幅,長さ,断面形状を定量的かつ
精密に測定することは、製品の品質を管理する上で重要
である。
2. Description of the Related Art An artificial flaw provided on a test piece serves as a reference for setting a sensitivity calibration and a judgment level of an ultrasonic flaw detector. Therefore, it is important to quantitatively and precisely measure the depth, width, length, and cross-sectional shape of an artificial flaw in managing the quality of a product.

【0003】図10(a)及び図11(a)は先端形状
が異なる人工疵を超音波探傷した場合における、超音波
エコー1aと人工疵2からの反射エコー1bの経路を示
した図である。人工疵2の先端形状が角型では、図10
(a)に示すように、反射エコー1bが比較的同角度に
反射して、集束できているのに対して、人工疵2の先端
形状が丸みのあるU溝形状の場合には、図11(a)に
示すように、散乱エコー1cが多くなる。従って、人工
疵2の先端形状が丸みのあるU溝形状の場合には、反射
エコー1bの高さも、図10(b)と図11(b)を比
較すると明らかなように、角形状の人工疵の場合に比べ
て低くなる。すなわち、同じ深さの人工疵であっても形
状の違いで判定レベルに違いがでることが判る。なお、
図10(a)及び図11(a)中の3は超音波探触子を
示す。
FIGS. 10 (a) and 11 (a) are diagrams showing paths of an ultrasonic echo 1a and a reflected echo 1b from an artificial flaw 2 when an artificial flaw having a different tip shape is subjected to ultrasonic flaw detection. . When the tip shape of the artificial flaw 2 is square, FIG.
As shown in FIG. 11A, while the reflected echo 1b is reflected at a relatively equal angle and converged, when the tip shape of the artificial flaw 2 is a round U-shaped groove, FIG. As shown in (a), the number of scattered echoes 1c increases. Therefore, when the tip shape of the artificial flaw 2 is a round U-shaped groove, the height of the reflection echo 1b is also apparent as a comparison between FIG. 10 (b) and FIG. 11 (b). It is lower than in the case of flaws. In other words, it can be seen that even if the artificial flaws have the same depth, the determination level differs depending on the shape. In addition,
3 in FIG. 10A and FIG. 11A indicates an ultrasonic probe.

【0004】このように、人工疵の形状(深さ,幅,先
端形状)に不具合があると、超音波探傷装置の判定レベ
ルが変化するので、製品の検査が適正に行えないおそれ
が生じる。従って、超音波探傷装置の校正においては、
試験片に設けた人工疵の形状を精度良く測定すること
が、品質管理をする上で非常に重要となってくる。
[0004] As described above, if there is a defect in the shape (depth, width, tip shape) of the artificial flaw, the judgment level of the ultrasonic flaw detector changes, and there is a possibility that the product cannot be properly inspected. Therefore, in the calibration of the ultrasonic flaw detector,
It is very important to accurately measure the shape of the artificial flaw provided on the test piece for quality control.

【0005】ところで、試験片に設けた人工疵の深さ,
幅,長さを測定する方法としては、従来より、デプスゲ
ージやスキミゲージを用いた直接測定法や、型取り採取
による間接測定法を採用している。
By the way, the depth of the artificial flaw provided on the test piece,
As a method for measuring the width and the length, a direct measurement method using a depth gauge or a skimming gauge and an indirect measurement method using a mold sampling have been conventionally used.

【0006】このうち、デプスゲージやスキミゲージを
用いた直接測定法は、人工疵の深さのみ、若しくは幅の
みを測定するものであり、人工疵の先端形状や人工疵の
加工具合(斜めに加工されている等)の情報が得られな
いので、疵が適正に判定できないおそれがある。従っ
て、超音波探傷試験装置の感度校正を行う上で、適正な
感度設定が行えず、過検出、未検出等の弊害がある。
[0006] Of these methods, the direct measurement method using a depth gauge or a skimi gauge measures only the depth or width of an artificial flaw. Is not obtained, there is a possibility that the flaw cannot be determined properly. Therefore, when performing the sensitivity calibration of the ultrasonic flaw detection test apparatus, it is not possible to set an appropriate sensitivity, and there are adverse effects such as overdetection and undetection.

【0007】例えば、深さ測定を例にとると、デプスゲ
ージの測定ポイントが幅方向にずれると、測定値が実測
値の深さより小さくなる場合がある。この時、前記測定
値を基準とした試験片で、超音波探傷試験装置の感度校
正を行った場合、感度が正規の状態より高くなるので、
実際の超音波探傷時に過検出状態となる。その結果、疵
のない部分でも誤検出し、製造に支障をきたすことにな
る。
For example, taking depth measurement as an example, if the measurement point of the depth gauge is shifted in the width direction, the measured value may be smaller than the actually measured depth. At this time, when the sensitivity calibration of the ultrasonic flaw detection test device is performed on the test piece based on the measured value, since the sensitivity is higher than a normal state,
An over-detection state occurs during actual ultrasonic flaw detection. As a result, even a portion having no flaw is erroneously detected, which hinders manufacturing.

【0008】一方、人工疵より型取りを採取し、型取り
の断面を切断した後、拡大顕微鏡で断面形状を測定する
間接測定法は、直接測定法と比較すると、断面形状が確
認できデータの保存も可能であるが、型取りの切断が容
易でないこと、採取から測定までに長時間を要し効率が
悪いこと、型が実際の疵形状と合致しないおそれがある
こと、専門の技術を要することが挙げられ、信頼性に欠
ける。
On the other hand, in an indirect measurement method in which a mold is sampled from an artificial flaw, the cross section of the mold is cut, and the cross-sectional shape is measured with a magnifying microscope, the cross-sectional shape can be confirmed as compared with the direct measurement method. Preservation is also possible, but it is not easy to cut the mold, it takes a long time from sampling to measurement and the efficiency is poor, the mold may not match the actual flaw shape, special skills are required And lack of reliability.

【0009】また、試験片は、経年変化や、現場使用時
におけるロールとの接触等の摩耗が激しく、再製作する
タイミングが重要となってくるが、前記したような直接
測定法や間接測定法では即座に判断ができないので、直
接測定法で述べたように、感度校正に異常をきたす要因
となっている。このことは、試験片を製作した段階で、
製作した試験片の良否を判断する場合の対応においても
同様である。
Further, the test piece is subject to severe wear such as aging and contact with a roll at the time of on-site use, and the timing of remanufacturing becomes important. In this case, it is not possible to make an immediate judgment, and as described in the direct measurement method, this is a factor that causes an error in sensitivity calibration. This is when the test piece is made
The same applies to the case where the quality of the manufactured test piece is determined.

【0010】[0010]

【発明が解決しようとする課題】上記したように、試験
片に設けた人工疵の形状を従来の直接測定法や間接測定
法で測定した場合には、精度,効率面で問題がある。ま
た、精度面から超音波探傷試験装置の感度校正を行う上
でも支障をきたしている。加えて、直接測定法ではデー
タ保存面でも問題がある。
As described above, when the shape of an artificial flaw provided on a test piece is measured by a conventional direct measuring method or indirect measuring method, there is a problem in accuracy and efficiency. Further, there is a problem in performing the sensitivity calibration of the ultrasonic flaw detection test apparatus from the aspect of accuracy. In addition, the direct measurement method has a problem in data storage.

【0011】本発明は、上記した従来の問題点に鑑みて
なされたものであり、非接触式レーザーフォーカス変位
計を被測定物に対して、3次元的に走査させることによ
り、被測定物の形状を、迅速に、しかも、精密かつ自動
的に測定することができる装置を提供することを目的と
している。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned conventional problems, and a non-contact type laser focus displacement meter is three-dimensionally scanned with respect to an object to be measured. It is an object of the present invention to provide a device capable of measuring a shape quickly, precisely, and automatically.

【0012】[0012]

【課題を解決するための手段】上記した目的を達成する
ために、本発明の形状測定装置は、被測定物までの距離
及び被測定物からの反射光の出力値を測定する非接触式
レーザーフォーカス変位計のセンサーを3次元方向に走
査させ、このセンサーの移動方向及び移動量と、レーザ
ーフォーカス変位計からの出力信号に基づいて信号処理
部で被測定物の形状を演算するようにしている。そし
て、このようにすることで、被測定物の深さ,幅,先端
形状を含めた断面形状を、迅速に、しかも、精密かつ自
動的に測定できることになる。
In order to achieve the above-mentioned object, a shape measuring apparatus according to the present invention comprises a non-contact laser for measuring a distance to an object to be measured and an output value of reflected light from the object to be measured. The sensor of the focus displacement meter is scanned in a three-dimensional direction, and the shape of the object to be measured is calculated by the signal processing unit based on the moving direction and the movement amount of the sensor and the output signal from the laser focus displacement meter. . By doing so, the cross-sectional shape including the depth, width, and tip shape of the measured object can be measured quickly, precisely, and automatically.

【0013】[0013]

【発明の実施の形態】本発明の形状測定装置は、被測定
物までの距離及び被測定物からの反射光の出力値を測定
する非接触式レーザーフォーカス変位計と、このレーザ
ーフォーカス変位計のセンサー及びこのセンサーを3次
元方向に走査させる移動機構とからなる測定機構部と、
この測定機構部を制御する制御部と、この制御部からの
指令による移動機構を介した前記センサーの移動方向及
び移動量と、レーザーフォーカス変位計からの出力信号
に基づいて被測定物の形状を演算する信号処理部を備え
たものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A shape measuring apparatus according to the present invention comprises a non-contact type laser focus displacement meter for measuring a distance to an object to be measured and an output value of reflected light from the object to be measured, and a laser focus displacement meter. A measuring mechanism unit comprising a sensor and a moving mechanism for scanning the sensor in a three-dimensional direction;
A control unit that controls the measuring mechanism unit, a moving direction and a moving amount of the sensor via a moving mechanism according to a command from the control unit, and a shape of the object to be measured based on an output signal from a laser focus displacement meter. It is provided with a signal processing unit for calculating.

【0014】本発明の形状測定装置では、測定機構部の
センサーを例えばU溝形状の人工疵に対向して配置した
後、センサーのピント合わせを行う。次に、移動機構に
より人工疵の近傍を走査させ、反射光の出力レベルを記
録した後、センサーを再度走査させて反射光の出力値を
入力し、人工疵の幅を測定する。人工疵の幅を測定した
後は、測定した人工疵の幅中央にセンサーを移動し、セ
ンサーを高さ方向に走査させて人工疵の幅中央における
深さを測定する。幅中央における深さを測定した後は、
センサーを再度幅方向に走査させて、幅方向における深
さを測定する。これによって、人工疵の断面形状が測定
できる。
In the shape measuring apparatus of the present invention, after the sensor of the measuring mechanism is disposed so as to face, for example, a U-shaped artificial flaw, the sensor is focused. Next, the vicinity of the artificial flaw is scanned by the moving mechanism, and the output level of the reflected light is recorded. Then, the sensor is scanned again to input the output value of the reflected light, and the width of the artificial flaw is measured. After measuring the width of the artificial flaw, the sensor is moved to the center of the width of the measured artificial flaw, and the sensor is scanned in the height direction to measure the depth at the center of the width of the artificial flaw. After measuring the depth at the center of the width,
The sensor is again scanned in the width direction to measure the depth in the width direction. Thereby, the cross-sectional shape of the artificial flaw can be measured.

【0015】[0015]

【実施例】以下、本発明の形状測定装置を図1〜図4に
示す一実施例に基づいて説明する。図1は本発明の形状
測定装置の全体の装置構成を示す図面、図2は鋼管上に
本発明の形状測定装置の測定機構部を設置した状態を示
す説明図、図3は本発明の形状測定装置の測定機構部の
概略構成図、図4は本発明の形状測定装置のセンサーの
概略構成図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A shape measuring apparatus according to the present invention will be described below with reference to an embodiment shown in FIGS. FIG. 1 is a drawing showing the overall configuration of the shape measuring device of the present invention, FIG. 2 is an explanatory view showing a state where the measuring mechanism of the shape measuring device of the present invention is installed on a steel pipe, and FIG. FIG. 4 is a schematic configuration diagram of a measurement mechanism unit of the measurement device, and FIG. 4 is a schematic configuration diagram of a sensor of the shape measurement device of the present invention.

【0016】図1〜図4において、11は例えば試験片
4に設けた人工疵2の深さを1μm単位で測定する非接
触式レーザーフォーカス変位計であり、そのセンサー1
1aはX軸(例えば管円周方向)移動部12a,Y軸
(例えば管軸方向)移動部12b,Z軸(例えば上下方
向)移動部12cからなる移動機構12によって3次元
方向に走査できるように構成されている。
In FIG. 1 to FIG. 4, reference numeral 11 denotes a non-contact laser focus displacement meter for measuring the depth of an artificial flaw 2 provided on a test piece 4 in units of 1 μm.
1a can be scanned in a three-dimensional direction by a moving mechanism 12 including an X-axis (for example, tube circumferential direction) moving unit 12a, a Y-axis (for example, tube axis direction) moving unit 12b, and a Z-axis (for example, vertical direction) moving unit 12c. Is configured.

【0017】前記センサー11aは、例えば図4に示す
ように、図示省略した電磁石により±0.3mmの範囲
を0.1μmのピッチで振動させられる音叉11aaに
よる自動ピント位置検出方式を採用している。すなわ
ち、半導体レーザー11abから照射されたレーザー
は、2個のハーフミラー11ac,コリメートレンズ1
1ad,対物レンズ11aeを通して試験片4に照射さ
れ、音叉11aaの前記振動による対物レンズ11ae
の移動により0.1μmのピッチでピントの一致、不一
致を検出し、試験片4にピントを合わせた際の対物レン
ズ11aeの移動距離を位置検出器11aiで検出し、
これを位置信号としてレーザーフォーカス変位計11に
取り込むものである。そして、この移動距離が人工疵2
の深さとなる。
For example, as shown in FIG. 4, the sensor 11a employs an automatic focus position detection method using a tuning fork 11aa that can be vibrated in a range of ± 0.3 mm at a pitch of 0.1 μm by an electromagnet (not shown). . That is, the laser beam emitted from the semiconductor laser 11ab includes two half mirrors 11ac and a collimating lens 1ac.
1ad, the test piece 4 is irradiated through the objective lens 11ae, and the objective lens 11ae by the vibration of the tuning fork 11aa.
, Movement of the objective lens 11ae at the time of focusing on the test piece 4 is detected by the position detector 11ai.
This is taken into the laser focus displacement meter 11 as a position signal. And this movement distance is artificial flaw 2
Of depth.

【0018】また、前記センサー11aには、超小型の
CCDカメラ11afが内蔵されており、前記した一方
のハーフミラー11acを介して試験片4からの反射光
を受光し、モニターを見ながら人工疵2の位置までの移
動、調整が行えるようになっている。なお、図4中の1
1agは試験片4からの反射光を受光する受光素子、1
1ahは前記受光素子11agで受光した反射光を増幅
するアンプであり、このアンプ11ahによって増幅さ
れた反射光はレーザーフォーカス変位計11に取り込ま
れる。
The sensor 11a has a built-in ultra-compact CCD camera 11af, which receives the reflected light from the test piece 4 through the one half mirror 11ac and looks at the monitor for artificial flaws. Movement and adjustment to the position 2 can be performed. Note that 1 in FIG.
1ag is a light receiving element for receiving the reflected light from the test piece 4;
An amplifier 1ah amplifies the reflected light received by the light receiving element 11ag. The reflected light amplified by the amplifier 11ah is taken into the laser focus displacement meter 11.

【0019】前記移動機構12を構成するX軸移動部1
2a,Y軸移動部12b,Z軸移動部12cは、例えば
図3に示すように、X軸パルスモータ12aa,Y軸パ
ルスモータ12ba,Z軸パルスモータ12caの出力
軸の回転を、共に適宜の動力伝達手段を介して水平移動
に変換し、センサー11aをX軸,Y軸,Z軸方向に例
えば1μm単位で移動させるものである。
X-axis moving section 1 constituting the moving mechanism 12
2a, the Y-axis moving unit 12b, and the Z-axis moving unit 12c, as shown in FIG. 3, for example, appropriately rotate the rotations of the output shafts of the X-axis pulse motor 12aa, the Y-axis pulse motor 12ba, and the Z-axis pulse motor 12ca. This is converted into horizontal movement via power transmission means, and the sensor 11a is moved in the X-axis, Y-axis, and Z-axis directions, for example, in units of 1 μm.

【0020】13は前記したセンサー11aと移動機構
12を試験片4の所定位置に固定する例えば2個で対を
なす電磁石であり、例えばリニアガイド14を介してY
軸移動部12bに設置されている。そして、これら電磁
石13の位置を適宜変更することで、図2に示すよう
に、例えば試験片4が鋼管の場合には、鋼管の内面に固
定して鋼管の内面形状を測定したり、また、鋼管の外面
に固定して鋼管の外面形状を測定したりする。
Reference numeral 13 denotes, for example, two pairs of electromagnets for fixing the sensor 11a and the moving mechanism 12 at predetermined positions on the test piece 4.
It is installed on the axis moving unit 12b. Then, by appropriately changing the positions of the electromagnets 13, as shown in FIG. 2, for example, when the test piece 4 is a steel pipe, the test piece 4 is fixed to the inner surface of the steel pipe to measure the inner surface shape of the steel pipe. It is fixed to the outer surface of a steel pipe to measure the outer shape of the steel pipe.

【0021】15は前記したセンサー11a,移動機構
12,リニアガイド14及び電磁石13とからなる測定
機構部であり、この測定機構部15のX軸移動部12
a,Y軸移動部12b,Z軸移動部12cの移動と、電
磁石13による固定は制御部16によって制御される。
Reference numeral 15 denotes a measuring mechanism comprising the sensor 11a, the moving mechanism 12, the linear guide 14, and the electromagnet 13. The X-axis moving section 12 of the measuring mechanism 15 is provided.
The movement of the a-axis moving unit 12b and the Z-axis moving unit 12c and the fixing by the electromagnet 13 are controlled by the control unit 16.

【0022】17は信号処理部であり、前記制御部16
からの指令による移動機構12を介した前記センサー1
1aの移動方向及び移動量と、レーザーフォーカス変位
計11からの出力信号に基づいて人工疵2の形状を演算
する。なお、図1中の18は信号処理部17での演算結
果等を表示する表示部、図3中の19はリニアガイド1
4の固定ねじを示す。
Reference numeral 17 denotes a signal processing unit.
The sensor 1 via the moving mechanism 12 according to a command from the
The shape of the artificial flaw 2 is calculated based on the moving direction and the moving amount of 1 a and the output signal from the laser focus displacement meter 11. Note that reference numeral 18 in FIG. 1 denotes a display unit for displaying the result of the calculation performed by the signal processing unit 17 and 19 in FIG.
4 shows a fixing screw.

【0023】本発明の形状測定装置は上記したような構
成であり、次にこの形状測定装置を用いて試験片4に設
けたU溝形状の人工疵2を測定する手順を図5〜図7を
用いて説明する。先ず、試験片4の人工疵2と測定機構
部15のセンサー11aが相対する位置に、測定機構部
15を電磁石13で固定する。そして、この時のX,
Y,Z軸の座標を「位置決めデータ」として信号処理部
17に取り込んでおく。センサー11aの位置決めを行
った後はセンサー11aのピント合わせを行う。
The shape measuring apparatus of the present invention is configured as described above. Next, the procedure for measuring the U-groove-shaped artificial flaw 2 provided on the test piece 4 using this shape measuring apparatus will be described with reference to FIGS. This will be described with reference to FIG. First, the measuring mechanism 15 is fixed by the electromagnet 13 at a position where the artificial flaw 2 of the test piece 4 and the sensor 11a of the measuring mechanism 15 face each other. And X,
The coordinates of the Y and Z axes are taken into the signal processing unit 17 as “positioning data”. After the positioning of the sensor 11a, the sensor 11a is focused.

【0024】次に、「位置決めデータ」を基に、制御部
16からの信号に基づいて、例えばX軸移動部12aを
作動し、図5に示すように、センサー11aに人工疵2
付近の走査を行わせる。そして、センサー11aが人工
疵2付近を走査した際の反射光の出力レベルを記録す
る。
Next, based on a signal from the control unit 16 based on the "positioning data", for example, the X-axis moving unit 12a is operated, and as shown in FIG.
The scanning of the vicinity is performed. Then, the output level of the reflected light when the sensor 11a scans the vicinity of the artificial flaw 2 is recorded.

【0025】その後、センサー11aを、再度、前記反
射光の出力レベル測定を行った際の測定開始点から測定
終点まで、例えば1μmのピッチでX軸方向に走査さ
せ、その際の反射光の出力値を信号処理部17に入力す
る。そして、この入力した反射光の出力値が、先の幅測
定を行った際の出力値よりも小さい区間を疵の幅として
判定する。これによって、人工疵2の幅測定が完了す
る。
Thereafter, the sensor 11a is again scanned in the X-axis direction at a pitch of, for example, 1 μm from the measurement start point to the measurement end point when the output level measurement of the reflected light is performed. The value is input to the signal processing unit 17. Then, a section in which the output value of the input reflected light is smaller than the output value obtained when the width measurement is performed is determined as the width of the flaw. Thereby, the width measurement of the artificial flaw 2 is completed.

【0026】人工疵2の幅を測定した後は、図6に示す
ように、X軸移動部12aを作動し、前記測定した人工
疵2の幅中央にセンサー11aを移動する。その後、Z
軸移動部12cを作動し、センサー11aを昇降走査さ
せてセンサー11aのピントを合わせ、人工疵2の幅中
央における深さを測定する。
After measuring the width of the artificial flaw 2, as shown in FIG. 6, the X-axis moving part 12a is operated, and the sensor 11a is moved to the center of the measured width of the artificial flaw 2. Then Z
The axis moving unit 12c is operated, and the sensor 11a is moved up and down to scan and focus the sensor 11a, and the depth at the center of the width of the artificial flaw 2 is measured.

【0027】人工疵2の幅中央の深さを測定した後は、
図7に示すように、先の幅測定時と同様に、再度、測定
開始点から測定終点まで、例えば1μmのピッチでセン
サー11aをX軸方向に走査させ、1μmのピッチ毎に
人工疵2の幅方向における深さを測定する。
After measuring the depth at the center of the width of the artificial flaw 2,
As shown in FIG. 7, similarly to the previous width measurement, the sensor 11a is again scanned in the X-axis direction at a pitch of 1 μm from the measurement start point to the measurement end point, and the artificial flaw 2 is scanned at every 1 μm pitch. Measure the depth in the width direction.

【0028】以上の幅,深さの出力レベルの測定値及び
各移動方向と移動距離を信号処理部17に取り込んで演
算処理し、人工疵2の深さ及び幅を座標値に変換する。
この座標値より人工疵2の断面形状が測定できる。本発
明の形状測定装置を用いてU溝形状の人工疵2を測定し
た結果(幅:1.000mm、深さ:1.682mm)
を図8に示す。また、図8に示す測定結果を得た人工疵
2の測定部位を切断して、ミクロ写真を撮った結果
(幅:1.000mm、深さ:1.681mm)を図9
に示す。これら図8と図9を対比すると、±1μmの精
度で、深さ、幅が測定できていることが判る。
The measured values of the output levels of the width and the depth, the respective moving directions and the moving distances are taken into the signal processing unit 17 and subjected to arithmetic processing to convert the depth and the width of the artificial flaw 2 into coordinate values.
From these coordinate values, the cross-sectional shape of the artificial flaw 2 can be measured. The result of measuring the artificial flaw 2 of the U-groove shape using the shape measuring device of the present invention (width: 1.000 mm, depth: 1.682 mm)
Is shown in FIG. FIG. 9 shows a result (width: 1.000 mm, depth: 1.681 mm) obtained by cutting the measurement site of the artificial flaw 2 having obtained the measurement result shown in FIG.
Shown in 8 and 9, it can be seen that the depth and width can be measured with an accuracy of ± 1 μm.

【0029】また、前記した図8に示す結果を得るまで
に要した測定時間は、測定機構部15を試験片4に固定
してから約5分程度であり、図9に示した従来の間接測
定法による型取り方法の2日程度と比較して大幅に短縮
できた。
The measurement time required for obtaining the results shown in FIG. 8 is about 5 minutes after the measurement mechanism 15 is fixed to the test piece 4, and the conventional indirect time shown in FIG. The time was greatly reduced as compared with about two days of the molding method using the measuring method.

【0030】上記した実施例では、長さ(本実施例にお
けるY軸方向)が保証されている人工疵2の形状を測定
する場合について説明したので、長さ方向に移動させて
いないが、3次元の微小形状を測定する場合には、前記
した操作を長さ方向にも一定ピッチで移動させて行うこ
とは言うまでもない。
In the above-described embodiment, the case of measuring the shape of the artificial flaw 2 whose length (Y-axis direction in this embodiment) is guaranteed has been described. When measuring a minute dimensional shape, it goes without saying that the above-described operation is performed at a constant pitch in the length direction.

【0031】また、本発明の形状測定装置を構成するレ
ーザーフォーカス変位計11の測定レンジは±0.3m
m(=0.6mm)であるので、測定深さが0.6mm
以内であれば、Z軸移動部12cを作動させる必要はな
い。
The measuring range of the laser focus displacement meter 11 constituting the shape measuring apparatus of the present invention is ± 0.3 m.
m (= 0.6 mm), the measurement depth is 0.6 mm
If it is within the range, it is not necessary to operate the Z-axis moving unit 12c.

【0032】[0032]

【発明の効果】以上説明したように、本発明の形状測定
装置によれば、被測定物の深さ,幅,先端形状を含めた
断面形状を、迅速に、しかも、精密かつ自動的に測定す
ることができる。加えて、本発明の形状測定装置によれ
ば、データを保存することもできる。
As described above, according to the shape measuring apparatus of the present invention, the cross-sectional shape including the depth, width, and tip shape of the object to be measured is measured quickly, precisely, and automatically. can do. In addition, according to the shape measuring device of the present invention, data can be stored.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の形状測定装置の全体の装置構成を示す
図面である。
FIG. 1 is a drawing showing the overall apparatus configuration of a shape measuring apparatus according to the present invention.

【図2】鋼管上に本発明の形状測定装置の測定機構部を
設置した状態を示す説明図である。
FIG. 2 is an explanatory view showing a state where a measuring mechanism of the shape measuring apparatus of the present invention is installed on a steel pipe.

【図3】本発明の形状測定装置の測定機構部の概略構成
図である。
FIG. 3 is a schematic configuration diagram of a measuring mechanism of the shape measuring apparatus of the present invention.

【図4】本発明の形状測定装置のセンサーの概略構成図
である。
FIG. 4 is a schematic configuration diagram of a sensor of the shape measuring device of the present invention.

【図5】本発明の形状測定装置を用いて人工疵の幅を測
定する場合の説明図で、(a)はセンサーと人工疵との
位置関係の説明図、(b)は反射光の出力レベル図であ
る。
5A and 5B are explanatory diagrams for measuring the width of an artificial flaw using the shape measuring apparatus of the present invention, wherein FIG. 5A is an explanatory diagram of a positional relationship between a sensor and an artificial flaw, and FIG. It is a level diagram.

【図6】本発明の形状測定装置を用いて人工疵の深さ位
置を調整する場合の説明図で、(a)はセンサーと人工
疵との位置関係の説明図、(b)は反射光の出力レベル
図である。
FIGS. 6A and 6B are explanatory diagrams when adjusting the depth position of an artificial flaw using the shape measuring apparatus of the present invention, wherein FIG. 6A is an explanatory diagram of a positional relationship between a sensor and an artificial flaw, and FIG. FIG.

【図7】本発明の形状測定装置を用いて人工疵の深さを
測定する場合の説明図で、(a)はセンサーと人工疵と
の位置関係の説明図、(b)は反射光の出力レベル図で
ある。
FIGS. 7A and 7B are explanatory diagrams for measuring the depth of an artificial flaw using the shape measuring apparatus of the present invention, wherein FIG. 7A is an explanatory diagram of a positional relationship between a sensor and an artificial flaw, and FIG. It is an output level diagram.

【図8】本発明の形状測定装置を用いて人工疵の形状を
測定した場合の測定結果を示す図である。
FIG. 8 is a view showing a measurement result when the shape of an artificial flaw is measured using the shape measuring apparatus of the present invention.

【図9】人工疵を実際に切断した場合の切断結果を示す
図である。
FIG. 9 is a diagram showing a cutting result when an artificial flaw is actually cut.

【図10】(a)は人工疵の先端形状が角型の場合にお
ける超音波エコーと人工疵からの反射エコーの経路を示
した図、(b)は反射エコーの高さを示す図である。
10A is a diagram showing a path of an ultrasonic echo and a reflected echo from an artificial flaw when the tip shape of the artificial flaw is square, and FIG. 10B is a diagram showing a height of the reflected echo. .

【図11】(a)は人工疵の先端形状が丸みのあるU溝
形状の場合における超音波エコーと人工疵からの反射エ
コーの経路を示した図、(b)は反射エコーの高さを示
す図である。
11A is a diagram showing a path of an ultrasonic echo and a reflected echo from an artificial flaw when the tip shape of the artificial flaw is a round U-shaped groove, and FIG. 11B is a view showing the height of the reflected echo. FIG.

【符号の説明】[Explanation of symbols]

2 人工疵 4 試験片 11 レーザーフォーカス変位計 11a センサー 12 移動機構 15 測定機構部 16 制御部 17 信号処理部 2 Artificial flaw 4 Test piece 11 Laser focus displacement meter 11a Sensor 12 Moving mechanism 15 Measurement mechanism section 16 Control section 17 Signal processing section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 被測定物までの距離及び被測定物からの
反射光の出力値を測定する非接触式レーザーフォーカス
変位計と、このレーザーフォーカス変位計のセンサー及
びこのセンサーを3次元方向に走査させる移動機構とか
らなる測定機構部と、この測定機構部を制御する制御部
と、この制御部からの指令による移動機構を介した前記
センサーの移動方向及び移動量と、レーザーフォーカス
変位計からの出力信号に基づいて被測定物の形状を演算
する信号処理部を備えたことを特徴とする形状測定装
置。
1. A non-contact laser focus displacement meter for measuring a distance to an object to be measured and an output value of reflected light from the object to be measured, a sensor of the laser focus displacement meter, and scanning the sensor in a three-dimensional direction. A measuring mechanism comprising a moving mechanism to be moved, a control unit for controlling the measuring mechanism, a moving direction and a moving amount of the sensor via a moving mechanism instructed by the control unit, and a signal from the laser focus displacement meter. A shape measuring apparatus comprising: a signal processing unit that calculates a shape of an object to be measured based on an output signal.
JP9709997A 1997-04-15 1997-04-15 Shape measuring device Pending JPH10288512A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9709997A JPH10288512A (en) 1997-04-15 1997-04-15 Shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9709997A JPH10288512A (en) 1997-04-15 1997-04-15 Shape measuring device

Publications (1)

Publication Number Publication Date
JPH10288512A true JPH10288512A (en) 1998-10-27

Family

ID=14183182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9709997A Pending JPH10288512A (en) 1997-04-15 1997-04-15 Shape measuring device

Country Status (1)

Country Link
JP (1) JPH10288512A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231723A (en) * 2012-04-30 2013-11-14 Sms Meer Gmbh Device and method for 3d detection of tube
JP2020169914A (en) * 2019-04-04 2020-10-15 学校法人法政大学 Precision measurement apparatus and movable precision measurement robot
CN117073550A (en) * 2023-10-12 2023-11-17 太原理工大学 Non-contact metal pipe wall thickness measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231723A (en) * 2012-04-30 2013-11-14 Sms Meer Gmbh Device and method for 3d detection of tube
JP2020169914A (en) * 2019-04-04 2020-10-15 学校法人法政大学 Precision measurement apparatus and movable precision measurement robot
CN117073550A (en) * 2023-10-12 2023-11-17 太原理工大学 Non-contact metal pipe wall thickness measuring device
CN117073550B (en) * 2023-10-12 2023-12-15 太原理工大学 Non-contact metal pipe wall thickness measuring device

Similar Documents

Publication Publication Date Title
CN108414616A (en) TMCP steel plate butt weld phased array ultrasonic detecting methods
CN104730145B (en) Method for accurately positioning defects of material during ultrasonic detection
JPH03267745A (en) Surface property detecting method
JPH0599617A (en) Method and device for detecting edge section and hole by optical scanning head
JPH0330085B2 (en)
JP2007187593A (en) Inspection device for piping and inspection method for piping
CN108444949A (en) Surface defect detection apparatus based on laser diffusing scattering
JPH10288512A (en) Shape measuring device
KR101867704B1 (en) Ultrasonic testing apparatus
TW200938803A (en) Device and method for testing thickness and gaps of transparent objects by means of dual optical probes
CN208125612U (en) Surface defect detection apparatus based on laser diffusing scattering
JPH09229639A (en) Automatic hole diameter measuring device
JP2002195988A (en) Ultrasonic testing device and ultrasonic testing method
JP3745628B2 (en) Welded part inspection method and ultrasonic flaw detector
CN114397373B (en) AUT track calibration device and method based on pipeline welding ultrasonic detection
JPH04151502A (en) Photosensor device
JPH01299456A (en) Ultrasonic wave flaw detector
JP3920713B2 (en) Optical displacement measuring device
JPS6248163B2 (en)
KR101007506B1 (en) Remote inspection apparatus for hot materials by using the multiple measurement of laser ultrasound
JP2725200B2 (en) Surface detector
JPS5826550B2 (en) Ultrasonic flaw detection method and device using two probes
JPH06273398A (en) Digital ultrasonic flaw detector, automatic calibrating condition setting method therefor, and test piece
JP3583764B2 (en) Inspection method and inspection device for seismic isolation damper
JPH0634552A (en) Method and apparatus for automatic measurement of depth of local corrosion