JPH1054711A - Method of measuring surface shape - Google Patents

Method of measuring surface shape

Info

Publication number
JPH1054711A
JPH1054711A JP21241696A JP21241696A JPH1054711A JP H1054711 A JPH1054711 A JP H1054711A JP 21241696 A JP21241696 A JP 21241696A JP 21241696 A JP21241696 A JP 21241696A JP H1054711 A JPH1054711 A JP H1054711A
Authority
JP
Japan
Prior art keywords
measured
grid
plane
unevenness
shadow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21241696A
Other languages
Japanese (ja)
Inventor
Yoshihiko Takeda
良彦 武田
Kiyoshi Chiba
潔 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP21241696A priority Critical patent/JPH1054711A/en
Publication of JPH1054711A publication Critical patent/JPH1054711A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To judge the unevenness of the surface of an object to be measured, and measure the quantity of unevenness with precision not more than the interval of moire fringes. SOLUTION: The polarized beam emitted from a laser beam source 1 is extended by a beam expander 2 and made into parallel beams by a lens 3. The parallel beams are emitted to the surface of a object to be measured 5 through a flat grid 4 to project the shadow of the flat grid 4 to the object surface. The shadow is observed by a CCD camera 8 through the original flat grid 4, a condenser 6 and a polarizer 7. A holder 9 with a moving stage for mounting the object to be measured 5 is quantitatively movable in the vertical direction to the grid surface of the flat grid 4 by a stepping motor. When the object 5 is moved in the direction leaving the grid surface and observed, the moire fringes appearing on the object surface are moved so that the unevenness can be judged, and the quantity of the unevenness can be also measured by superposing the moire fringes on each other.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、等高線モアレ縞を
使った物体表面の形状測定方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the shape of an object surface using contour moire fringes.

【0002】[0002]

【従来の技術】モアレ縞は2つの直線群もしくは曲線群
を重ね合わしたときにその交点の軌跡として生じる別の
縞模様のことを言う。このモアレ縞を用いて物体の表面
形状を求める方法は等高線モアレ縞計測(モアレトポグ
ラフィ)と呼ばれ、格子照射型のモアレトポグラフィに
おいては、平面格子の影を、点状またはスリット状の光
源から出た光によって、被測定物表面上に投影し、この
影を元の格子を通して観察点で得て、平面格子の影によ
って生じるモアレ縞を利用し、表面形状の非接触測定を
可能とするものである。
2. Description of the Related Art A moire fringe is another fringe pattern generated as a trajectory of an intersection when two straight line groups or curve groups are superimposed. The method of obtaining the surface shape of an object using the moire fringes is called contour moire fringe measurement (moire topography). In a grid-illuminated moire topography, a shadow of a plane grid is emitted from a point-like or slit-like light source. The light is projected onto the surface of the object to be measured, and this shadow is obtained at the observation point through the original grid, making it possible to perform non-contact measurement of the surface shape using moire fringes generated by the shadow of the plane grid. is there.

【0003】[0003]

【発明が解決しようとする課題】等高線モアレ縞計測で
は、被測定物表面上に格子面から垂直距離の等間隔位置
に縞を生じさせ形状を迅速かつ正確に観察するものであ
る。しかし、この方法では等高線の相対的な高さ、いわ
ゆる凹凸が判断できない。また、その凹凸量のさらに細
かい精度で測定を行うためには、間隔の狭い等高線モア
レ縞を用いることになり、その際使用する格子のピッチ
を細かくする必要がある。そうした場合、コントラスト
が低下するという課題があった。
In the contour moiré fringe measurement, fringes are formed on the surface of the object to be measured at equal intervals perpendicular to the lattice plane, and the shape is observed quickly and accurately. However, this method cannot determine the relative height of the contour lines, that is, the so-called unevenness. Further, in order to measure the unevenness with a finer accuracy, contour moire fringes with a narrow interval are used, and it is necessary to make the pitch of a grating used finer. In such a case, there is a problem that the contrast is reduced.

【0004】本発明は、かかる従来技術の課題を解決し
て、被測定物表面の凹凸を判別し、さらにその凹凸量を
モアレ縞の間隔以下の精度で測定できる表面形状測定方
法を得ることを目的とする。
An object of the present invention is to solve the problems of the prior art and to obtain a surface shape measuring method capable of determining unevenness on the surface of an object to be measured and measuring the amount of unevenness with an accuracy equal to or less than the interval between moire fringes. Aim.

【0005】[0005]

【課題を解決するための手段】本発明の表面形状計測方
法は、平面格子の影を、点状またはスリット状の光源か
ら出た光によって、被測定物表面上に投影し、この影を
元の格子を通して観察点で得て、平面格子の影によって
生じるモアレ縞を利用して物体表面形状を求める方法に
おいて、被測定物を平面格子の格子面に対し鉛直方向に
移動させることにより被測定物表面の凹凸を判別するこ
とを特徴とする。
According to the surface shape measuring method of the present invention, a shadow of a plane grating is projected on the surface of an object to be measured by light emitted from a point-like or slit-like light source, and this shadow is used as an original. In the method of obtaining the surface shape of the object using the moire fringes generated by the shadow of the plane grid obtained at the observation point through the grid, the object to be measured is moved in the vertical direction with respect to the grid plane of the plane grid. The method is characterized in that irregularities on the surface are determined.

【0006】本発明においては、被測定物を格子面に対
して垂直方向に移動させ、その移動方向に対する被測定
物表面上のモアレ縞の移動方向から凹凸を判別すること
ができる。さらには、被測定物の格子面垂直方向に対す
る移動量とその移動前後の被測定物表面上のモアレ縞の
位置から、凹凸の変位量を定量化することで、被測定物
表面の凹凸量を等高線モアレ縞の間隔以下の精度で測定
することができより好ましい。
In the present invention, the object to be measured is moved in a direction perpendicular to the lattice plane, and the unevenness can be determined from the moving direction of the moire fringes on the surface of the object to be measured with respect to the moving direction. Furthermore, by quantifying the amount of displacement of the irregularities from the amount of movement of the object to be measured in the direction perpendicular to the lattice plane and the positions of moiré fringes on the surface of the object before and after the movement, the amount of unevenness on the surface of the object is measured. It is more preferable that the measurement can be performed with an accuracy equal to or less than the interval of the contour moire fringes.

【0007】すなわち等高線モアレ縞は、原理的に格子
面に対して相対的な距離によって現れる。これより被測
定物が格子面から遠ざかる場合、モアレ縞は物体表面の
凸方向に移動し、格子面に近づける場合、モアレ縞は凹
方向に移動する。よって、被測定物を格子面から垂直方
向に移動させたときのモアレ縞の移動方向を観察するこ
とによって凹凸の判定が可能となる。さらに被測定物と
格子面の相対的距離の変位量(移動量)は、物体表面上
のモアレ縞の移動前後の位置間の高低差(凹凸量)に等
しいため、被測定物の定量的な移動量の測定とモアレ縞
の移動位置の観察から等高線モアレ縞の間隔以下の細か
い凹凸量が測定可能となる。
That is, contour moire fringes appear in principle by a relative distance to the lattice plane. Thus, when the object to be measured moves away from the lattice plane, the moiré fringes move in the convex direction of the object surface, and when it approaches the lattice plane, the moiré fringes move in the concave direction. Therefore, the unevenness can be determined by observing the moving direction of the moire fringes when the object to be measured is moved from the lattice plane in the vertical direction. Further, since the displacement amount (movement amount) of the relative distance between the object and the lattice plane is equal to the height difference (amount of unevenness) between the positions before and after the movement of the moire fringes on the object surface, the quantitative From the measurement of the moving amount and the observation of the moving position of the moiré fringes, it is possible to measure the fine unevenness less than the interval of the contour moiré fringes.

【0008】なおこれらの方法は、等高線モアレ縞を用
いる計測方法であれば、装置・被測定物等で限定される
ものではない。
[0008] These methods are not limited to the apparatus and the object to be measured, as long as they are measurement methods using contour moire fringes.

【0009】[0009]

【実施例】図1に示す本発明の実施例に係わる等高線モ
アレ縞計測装置について説明する。レーザー光源1より
出射された偏光はビームエキスパンダー2によって拡大
され、レンズ3により平行光線とされる。この平行光線
を平面格子4を通して被測定物5の表面に照射し平面格
子4の影を、被測定物表面上に投影する。この影を元の
平面格子4、集光レンズ6及び偏光子7を通してCCD
カメラ8で観察する。被測定物5は、移動ステージ付の
ホルダー9に取り付けられる。このステージはステッピ
ングモーターにより平面格子4の格子面に対し垂直方向
に定量的に移動可能である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A contour moire fringe measuring apparatus according to an embodiment of the present invention shown in FIG. 1 will be described. Polarized light emitted from the laser light source 1 is expanded by the beam expander 2 and converted into a parallel light by the lens 3. The parallel rays are radiated to the surface of the DUT 5 through the plane grating 4 and the shadow of the plane grating 4 is projected on the surface of the DUT. This shadow is passed through the original plane grating 4, condensing lens 6 and polarizer 7 to the CCD.
Observe with the camera 8. The DUT 5 is attached to a holder 9 having a moving stage. This stage can be quantitatively moved in a direction perpendicular to the lattice plane of the plane lattice 4 by a stepping motor.

【0010】実施例では、直径130mmの円盤状の物
体表面の観測を行った。平面格子にはピッチ50μmの
ロンキ格子を用いた。平面格子への光の照射角度は45
゜である。現れる等高線モアレ縞は25μm間隔であ
る。さらに本実施例においては、ホルダーの移動ステー
ジを格子面から最初の観測位置から相対的に5μmずつ
25μmまで遠ざける方向に移動させて観測を行った。
In the embodiment, the surface of a disk-shaped object having a diameter of 130 mm was observed. A Ronchi grating having a pitch of 50 μm was used as the plane grating. The irradiation angle of light on the plane grating is 45
゜. The contour moiré fringes appear at intervals of 25 μm. Further, in the present example, observation was performed by moving the holder moving stage relatively away from the first observation position by 5 μm from the lattice plane to 25 μm.

【0011】図2には観測した物体表面の等高線モアレ
縞像を示す。図2中で像下の各数値は、ディスク移動距
離(μm)を示す。図2に示すように被測定物を格子面
より遠ざる方向に移動させて観察を行うと、物体表面に
現れるモアレ縞は移動し、実施例の物体表面が主に凹の
形状をしていることが判別できる。さらに図3に示すよ
うに、図2の実施例の観察で得たモアレ縞を重ね合わせ
ると、25μm間隔の等高線モアレ縞の観察から、5μ
m間隔の凹凸量が測定できる。
FIG. 2 shows an observed contour moire fringe image of the object surface. Each numerical value below the image in FIG. 2 indicates the disk moving distance (μm). When the object to be measured is moved in a direction away from the lattice plane as shown in FIG. 2, the moire fringes appearing on the object surface move, and the object surface of the embodiment has a mainly concave shape. Can be determined. Further, as shown in FIG. 3, when the moiré fringes obtained in the observation of the embodiment of FIG.
The amount of unevenness at m intervals can be measured.

【0012】[0012]

【発明の効果】以上、本発明の計測方法によれば、被測
定物表面の凹凸を判別し、さらにその凹凸量をモアレ縞
の間隔以下の精度で測定を行うことができる。
As described above, according to the measuring method of the present invention, irregularities on the surface of the object to be measured can be determined, and the amount of the irregularities can be measured with an accuracy equal to or less than the interval between moire fringes.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の計測方法を用いた計測装置の構成FIG. 1 shows the configuration of a measuring device using the measuring method of the present invention.

【図2】本発明の方法で観測した物体表面の等高線モア
レ縞像
FIG. 2 is a contour moire fringe image of an object surface observed by the method of the present invention.

【図3】本発明により計測した物体表面の相対的な等高
FIG. 3 shows relative contours of the object surface measured according to the present invention.

【符号の説明】[Explanation of symbols]

1 レーザー光源 2 ビームエキスパンダー 3 レンズ 4 平面格子 5 被測定物 6 集光レンズ 7 偏光子 8 CCDカメラ 9 移動ステージ付のホルダー DESCRIPTION OF SYMBOLS 1 Laser light source 2 Beam expander 3 Lens 4 Planar grating 5 Object to be measured 6 Condensing lens 7 Polarizer 8 CCD camera 9 Holder with moving stage

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平面格子の影を、点状またはスリット状
の光源から出た光によって、被測定物表面上に投影し、
この影を元の格子を通して観察点で得て、平面格子の影
によって生じるモアレ縞を利用して物体表面形状を求め
る方法において、被測定物を平面格子の格子面に対し鉛
直方向に移動させることにより被測定物表面の凹凸を判
別することを特徴とする表面形状計測方法。
1. A shadow of a plane grating is projected on a surface of an object to be measured by light emitted from a point-like or slit-like light source,
In the method of obtaining this shadow at the observation point through the original grid and obtaining the object surface shape using the moire fringes generated by the shadow of the plane grid, moving the object to be measured in the vertical direction with respect to the grid plane of the plane grid A surface shape measuring method characterized in that irregularities on the surface of an object to be measured are determined by the method.
【請求項2】 被測定物を平面格子の格子面に対し鉛直
方向に移動させ、被測定物の移動量と観察される等高線
モアレ縞の移動量から被測定物表面の凹凸量を等高線モ
アレ縞の間隔以下の精度で測定することを特徴とする請
求項1記載の表面形状計測方法。
2. An object to be measured is moved in a direction perpendicular to a lattice plane of a plane grating, and an amount of irregularities on the surface of the object to be measured is determined by a contour moire fringe based on a movement amount of the object to be measured and a movement amount of the observed contour moire fringes. 2. The surface shape measuring method according to claim 1, wherein the measurement is performed with an accuracy equal to or less than the interval of.
JP21241696A 1996-08-12 1996-08-12 Method of measuring surface shape Pending JPH1054711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21241696A JPH1054711A (en) 1996-08-12 1996-08-12 Method of measuring surface shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21241696A JPH1054711A (en) 1996-08-12 1996-08-12 Method of measuring surface shape

Publications (1)

Publication Number Publication Date
JPH1054711A true JPH1054711A (en) 1998-02-24

Family

ID=16622231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21241696A Pending JPH1054711A (en) 1996-08-12 1996-08-12 Method of measuring surface shape

Country Status (1)

Country Link
JP (1) JPH1054711A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6940608B2 (en) 2001-03-08 2005-09-06 Ricoh Company, Ltd. Method and apparatus for surface configuration measurement
JP2015065178A (en) * 2014-12-02 2015-04-09 日本電気株式会社 Method for manufacturing film exterior battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6940608B2 (en) 2001-03-08 2005-09-06 Ricoh Company, Ltd. Method and apparatus for surface configuration measurement
JP2015065178A (en) * 2014-12-02 2015-04-09 日本電気株式会社 Method for manufacturing film exterior battery

Similar Documents

Publication Publication Date Title
Yamauchi et al. Microstitching interferometry for x-ray reflective optics
US5311286A (en) Apparatus and method for optically measuring a surface
KR20130095211A (en) Device for noncontact determination of edge profile at a thin disk-shaped object
JP2005514606A (en) Three-dimensional three-dimensional measurement system and method
JPH0419545B2 (en)
TW201732263A (en) Method and system for optical three-dimensional topography measurement
CN110702026A (en) Flatness three-dimensional shape detection device based on complex beam angle adaptive optics and processing method thereof
Höfling et al. Phase reflection: a new solution for the detection of shape defects on car body sheets
CN114440789B (en) Synchronous interferometry method and system for speed, distance and three-dimensional morphology of rotating body
US4764014A (en) Interferometric measuring methods for surfaces
KR19990033518A (en) Non-contact 3D micro-shape measurement method using optical window
CN110487219A (en) A kind of detection system and its detection method of movement mechanism straightness
JP3271348B2 (en) Leveling mating surface measuring method and exposure apparatus
US7417747B2 (en) Method and a device for measuring the three dimension surface shape by projecting moire interference fringe
JP3602965B2 (en) Non-contact three-dimensional measurement method
JP2002512384A (en) Method for measuring position of pattern structure on mask surface
JPH1054711A (en) Method of measuring surface shape
US6172757B1 (en) Lever sensor for stepper field-by-field focus and leveling system
Xie et al. Four-map absolute distance contouring
US7471398B2 (en) Method for measuring contour variations
JP2983318B2 (en) Shape measuring device and measuring method
JP2753545B2 (en) Shape measurement system
JPH1054710A (en) Surface shape measuring device
JPH04309804A (en) Device and method for measuring three dimensional contour
JPH03276044A (en) Method and instrument for measuring radius of curvature of curved surface