JPH0430978B2 - - Google Patents

Info

Publication number
JPH0430978B2
JPH0430978B2 JP20298484A JP20298484A JPH0430978B2 JP H0430978 B2 JPH0430978 B2 JP H0430978B2 JP 20298484 A JP20298484 A JP 20298484A JP 20298484 A JP20298484 A JP 20298484A JP H0430978 B2 JPH0430978 B2 JP H0430978B2
Authority
JP
Japan
Prior art keywords
epoxy resin
bisphenol
type epoxy
laminate
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20298484A
Other languages
Japanese (ja)
Other versions
JPS6183233A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP20298484A priority Critical patent/JPS6183233A/en
Publication of JPS6183233A publication Critical patent/JPS6183233A/en
Publication of JPH0430978B2 publication Critical patent/JPH0430978B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は成形性、ドリル加工性、耐熱衝撃性に
優れたエポキシ樹脂積層板の製造方法に関するも
のである。 〔従来技術〕 従来、エポキス樹脂積層板の製造には、エポキ
シ当量500以下の比較的低分子量のビスフエノー
ルA型エポキシ樹脂が用いられている。このため
成形時において、加熱初期では低粘度で流れが大
きく、板厚精度を保つことが困難である。さらに
加熱硬化の進行につれ急激に増粘しゲル化に至る
ため加圧のタイミングが狭められ、成形が非常に
困難である。また、これによつて製造されたエポ
キシ樹脂積層板は、印刷回路板の作成において必
須であるドリルによる孔明け加工における高速の
ドリル回転の衝撃を吸収できず、亀裂を生じたり
ドリル孔内面が粗くなつたりした。さらにソルダ
ーコート工程のような急激な温度変化を与えた場
合、エポキシ樹脂が急激な温度変化に伴なう膨
張・収縮に追随できず、表面の金属箔や内部のガ
ラス繊維などの界面で破壊を生じたりした。 このように、低分子量のエポキシ樹脂により製
造された積層板においては、架橋点間の分子量が
小さいため分子鎖の運動に自由度が小さく、ドリ
ル加工時の機械的衝撃やソルダーコート時の熱的
衝撃を分子鎖の運動エネルギーとして吸収するこ
とができず樹脂の破壊に至るなど、信頼性の面で
問題があつた。 〔発明の目的〕 本発明は、上述のプレス成形時の困難さや積層
板ドリル加工性、熱衝撃時の破壊の問題を解決
し、生産性、信頼の高い印刷回路板用積層板を供
給することを目的とする。 〔発明の構成〕 本発明は、エポキシ樹脂成分としてエポキシ当
量700ないし1200を有する臭素化ビスフエノール
A型エポキシ樹脂及びビスフエノールAノボラツ
ク型エポキシ樹脂を主成分とするワニスより調製
したるプリプレグを積層し、加熱加圧成形するこ
とを特徴とするエポキシ樹脂積層板の製造方法で
ある。 本発明に用いられるビスフエノールA型エポキ
シ樹脂は臭素化型でエポキシ当量700ないし120の
ものが使用される。臭素率は15〜30%が好まし
い。 前述のように、低分子量のエポキシ樹脂を用い
た積層板では、加工工程において機械的、熱的衝
撃を吸収できず破壊へとつながることが多かつ
た。そこで、用いるエポキシ樹脂を臭素化タイプ
とし、その分子量を上げて700以上のエポキシ当
量のものを用いると、従来より加橋点間の分子量
が大きくなり、上述の加工時の機械的・熱的衝撃
を分子運動として吸収し、積層板にクラツク等の
破壊が生じにくくなることが分かつた。 一方ビスフエノールA型エポキシ樹脂の分子量
を上げてゆくと、加圧成形時に加熱しても粘度が
低下ぜず、ガラス繊維や金属箔との界面に樹脂が
浸透せず気泡を残し接着強度を低下させる。さら
に、架橋点間の分子量が大きくなりすぎるため、
溶剤による膨潤が起こり耐溶剤性が低下する。そ
こで高分子量化に伴なう架橋密度の低下をノボラ
ツク型エポキシ樹脂を併用することにより補うこ
とができる。このノボラツク型エポキシ樹脂を併
用した場合、エポキシ当量1200以下の臭素化ビス
フエノールA型エポキシ樹脂を用いうること分か
つた。これ以上の高分量樹脂を用いると、たとえ
ノボラツク型エポキシ樹脂を併用しても耐溶剤性
などの面で実用に耐えるものが得られない。 本発明においては、ノボラツク型エポキシ樹脂
としてビスフエノールAノボラツク型のものを使
用する。ビスフエノールAノボラツク型エポキシ
樹脂は下記の構造を有する。 ビスフエノールAノボラツク型エポキシ樹脂を
使用すると、通常のフエノール又はクレゾールノ
ボラツク型エポキシ樹脂を使用する場合に比較し
て、可撓性が増し、硬化時の歪みをより少なくす
ることができるので、成形性がよく、得られた積
層板は寸法安定性、熱衝撃性、ドリル加工性等の
特性が非常にすぐれたものとなる。 ビスフエノールAノボラツク型エポキシ樹脂は
分子量450〜1400のものが上記特性の点で好まし
い。またビスフエノールA型エポキシ樹脂との配
合割合は特に限定されないが、ビスフエノールA
型エポキシ樹脂60〜90部(重量部、以下同じ)に
対しビスフエノールAノボラツク型エポキシ樹脂
40〜10部が好ましい。 本発明においてエポキシ当量700ないし1200の
臭素化ビスフエノールA型エポキシ樹脂の一部
を、これよりもエポキシ当量の低いエポキシ化合
物に置換しても本発明の目的とする成形性、ドリ
ル加工性、熱衝撃性において有効な改善が認めら
れるので、この場合も本発明に含まれる。 〔発明の効果〕 本発明の方法に従うと、加圧条件の選択の幅が
広く、従来に比べ成形性が非常に改善される。さ
らに得られたエポキシ樹脂積層板では、熱処理に
よる反りや寸法変化が極めて小さく、ドリル加工
においてドリル孔内面がきれいに加工され、同時
にドリル刃の摩耗も少なく、ソルダーコート時の
熱衝撃によつても樹脂と金属箔・ガラス繊維と界
面の剥離や樹脂の亀裂が改善され、非常に信頼性
の高い、かつ生産の良い印刷回路板用エポキシ樹
脂積層板を供給することが可能となる。 〔実施例〕 以下に実施例を掲げてさらに詳細に説明する。 第1表に示した実施例1〜4の樹脂処方のエポ
キシ樹脂ワニスをガラス繊布に含浸させ乾燥させ
たのち、このプリプレグ(樹脂分46重量%)8枚
及び銅箔を重ねプレスにて加熱加圧成形して厚さ
1.6mmのエポキシ樹脂積層板を得た。得られた積
層板の特性評価結果を第2表に示す。 〔比較例〕 第3表に示した比較例1(従来性)、及び2〜4
の樹脂処方のエポキシ樹脂ワニスより実施例と同
様の方法によりエポキシ樹脂積層板を得た。この
特性評価結果を第4表に示す。 本発明の方法によつて得られたエポキシ樹脂積
層板は熱衝撃性、ドリル加工性に優れているのみ
ならず、一般特性も良好で優れた実用特性を有し
ていることがわかる。
[Industrial Field of Application] The present invention relates to a method for producing an epoxy resin laminate having excellent moldability, drillability, and thermal shock resistance. [Prior Art] Conventionally, bisphenol A type epoxy resins having a relatively low molecular weight and having an epoxy equivalent of 500 or less have been used in the production of epoxy resin laminates. Therefore, during molding, the viscosity is low and the flow is large in the initial stage of heating, making it difficult to maintain plate thickness accuracy. Furthermore, as heating and curing progress, the viscosity rapidly increases and gelation occurs, which narrows the timing of pressurization and makes molding extremely difficult. In addition, the epoxy resin laminates manufactured using this method cannot absorb the impact of high-speed drill rotation during the drilling process, which is essential in the production of printed circuit boards, resulting in cracks and roughness on the inner surface of the drill holes. I felt relaxed. Furthermore, when sudden temperature changes are applied such as in the solder coating process, the epoxy resin cannot follow the expansion and contraction caused by the sudden temperature change, and breaks down at the interface between the metal foil on the surface and the glass fiber inside. It happened. In this way, in laminates manufactured using low-molecular-weight epoxy resins, the molecular weight between crosslinking points is small, so the degree of freedom in the movement of molecular chains is small, and it is susceptible to mechanical shock during drilling and thermal impact during solder coating. There were problems in terms of reliability, as the impact could not be absorbed as kinetic energy of the molecular chains, leading to destruction of the resin. [Objective of the Invention] The present invention solves the above-mentioned difficulties in press molding, laminate drilling workability, and destruction during thermal shock, and provides a highly productive and reliable laminate for printed circuit boards. With the goal. [Structure of the Invention] The present invention comprises laminating prepregs prepared from a varnish whose main components are a brominated bisphenol A epoxy resin having an epoxy equivalent of 700 to 1200 and a bisphenol A novolak epoxy resin as the epoxy resin component. , a method for producing an epoxy resin laminate, characterized by heat-pressing molding. The bisphenol A type epoxy resin used in the present invention is a brominated type having an epoxy equivalent of 700 to 120. The bromine content is preferably 15 to 30%. As mentioned above, laminates made of low-molecular-weight epoxy resins are unable to absorb mechanical and thermal shocks during the processing process, often leading to breakage. Therefore, if the epoxy resin used is a brominated type and its molecular weight is increased to have an epoxy equivalent of 700 or more, the molecular weight between the cross-linking points will be larger than before, which will cause the mechanical and thermal shock during processing mentioned above. It was found that the laminate is absorbed as molecular motion, making it difficult for cracks and other damage to occur in the laminate. On the other hand, when the molecular weight of bisphenol A type epoxy resin is increased, the viscosity does not decrease even when heated during pressure molding, and the resin does not penetrate into the interface with glass fibers or metal foil, leaving bubbles and reducing adhesive strength. let Furthermore, since the molecular weight between the crosslinking points becomes too large,
Swelling due to solvent occurs and solvent resistance decreases. Therefore, the decrease in crosslinking density due to increase in molecular weight can be compensated for by using a novolak type epoxy resin in combination. It has been found that when this novolac type epoxy resin is used in combination, a brominated bisphenol A type epoxy resin having an epoxy equivalent of 1200 or less can be used. If a resin with a higher weight than this is used, even if a novolak type epoxy resin is used in combination, it will not be possible to obtain a product that can withstand practical use in terms of solvent resistance and the like. In the present invention, a bisphenol A novolak type epoxy resin is used as the novolak type epoxy resin. The bisphenol A novolac type epoxy resin has the following structure. The use of bisphenol A novolac type epoxy resins provides increased flexibility and less distortion during curing compared to the use of regular phenol or cresol novolac type epoxy resins, making molding easier. The resulting laminate has excellent properties such as dimensional stability, thermal shock resistance, and drillability. The bisphenol A novolac type epoxy resin preferably has a molecular weight of 450 to 1,400 from the viewpoint of the above characteristics. In addition, the blending ratio with bisphenol A type epoxy resin is not particularly limited, but
Bisphenol A novolak type epoxy resin for 60 to 90 parts (parts by weight, same below) of type epoxy resin
40 to 10 parts is preferred. In the present invention, even if a part of the brominated bisphenol A type epoxy resin having an epoxy equivalent of 700 to 1200 is replaced with an epoxy compound having a lower epoxy equivalent, the moldability, drilling workability, and thermal Since an effective improvement in impact properties is observed, this case is also included in the present invention. [Effects of the Invention] According to the method of the present invention, there is a wide range of selection of pressurizing conditions, and moldability is greatly improved compared to the conventional method. Furthermore, the resulting epoxy resin laminate has extremely little warpage or dimensional change due to heat treatment, the inner surface of the drill hole is neatly processed during drilling, there is also little wear on the drill blade, and the resin is resistant to thermal shock during solder coating. This improves peeling at the interface between metal foil and glass fiber and cracks in the resin, making it possible to supply epoxy resin laminates for printed circuit boards that are highly reliable and easily produced. [Example] Examples will be described below in more detail. After impregnating glass cloth with epoxy resin varnish having the resin formulations of Examples 1 to 4 shown in Table 1 and drying it, 8 sheets of this prepreg (resin content 46% by weight) and copper foil were heated and heated in a press. Thickness by pressing
A 1.6 mm epoxy resin laminate was obtained. Table 2 shows the characteristics evaluation results of the obtained laminate. [Comparative Examples] Comparative Examples 1 (conventional) and 2 to 4 shown in Table 3
An epoxy resin laminate was obtained from an epoxy resin varnish having the resin formulation in the same manner as in the examples. The results of this characteristic evaluation are shown in Table 4. It can be seen that the epoxy resin laminate obtained by the method of the present invention not only has excellent thermal shock resistance and drill workability, but also has good general properties and excellent practical properties.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 エポキシ樹脂成分として、エボキシ当量700
ないし1200を有する臭素化ビスフエノールA型エ
ポキシ樹脂、及びビスフエノールAノボラツク型
エポキシ樹脂を主成分とするワニスより調製した
るプリプレグを積層し、加熱加圧成形することを
特徴とするエポキシ樹脂積層板の製造方法。
1 As an epoxy resin component, epoxy equivalent is 700
An epoxy resin laminate characterized by laminating prepregs prepared from a varnish containing a brominated bisphenol A type epoxy resin having a molecular weight of 0 to 1200 and a varnish containing a bisphenol A novolac type epoxy resin as the main components, and then molding under heat and pressure. manufacturing method.
JP20298484A 1984-09-29 1984-09-29 Production of epoxy reisn laminated sheet Granted JPS6183233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20298484A JPS6183233A (en) 1984-09-29 1984-09-29 Production of epoxy reisn laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20298484A JPS6183233A (en) 1984-09-29 1984-09-29 Production of epoxy reisn laminated sheet

Publications (2)

Publication Number Publication Date
JPS6183233A JPS6183233A (en) 1986-04-26
JPH0430978B2 true JPH0430978B2 (en) 1992-05-25

Family

ID=16466403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20298484A Granted JPS6183233A (en) 1984-09-29 1984-09-29 Production of epoxy reisn laminated sheet

Country Status (1)

Country Link
JP (1) JPS6183233A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168439A (en) * 1986-12-27 1988-07-12 Sumitomo Bakelite Co Ltd Epoxy resin composition for laminated sheet
JPS641753A (en) * 1987-06-24 1989-01-06 Matsushita Electric Works Ltd Epoxy resin composition for glass-epoxy laminate
EP2451872A1 (en) * 2009-07-10 2012-05-16 Dow Global Technologies LLC Core/shell rubbers for use in electrical laminate compositions

Also Published As

Publication number Publication date
JPS6183233A (en) 1986-04-26

Similar Documents

Publication Publication Date Title
JP3184485B2 (en) Resin composition for copper clad laminate, copper foil with resin, multilayer copper clad laminate and multilayer printed wiring board
JPS59210945A (en) Flame resistant laminate board
CN109749360B (en) Thermosetting resin composition, copper-clad plate capable of being bent statically and printed circuit board prepared from thermosetting resin composition
KR20100068281A (en) Substrate with semiconductor element mounted thereon
JPH0430978B2 (en)
JPH0475926B2 (en)
JP2692508B2 (en) Manufacturing method of laminated board
JPH0374256B2 (en)
JP3033335B2 (en) Manufacturing method of laminated board
JPS6338053B2 (en)
JP3750147B2 (en) Laminate manufacturing method
JPH05309789A (en) Production of composite copper clad laminated sheet
JP2950969B2 (en) Manufacturing method of laminated board
JPS6259021A (en) Manufacture of laminated sheet for printed circuit
JPS62169828A (en) Production of substrate for printed circuit
JPH0360862B2 (en)
JP3823649B2 (en) Prepreg, laminated board and printed wiring board using amide group-containing organic fiber substrate
JP2610707B2 (en) Manufacturing method of thermosetting resin laminate
JP3227874B2 (en) Manufacturing method of laminated board
JPS6365091B2 (en)
JPH01115627A (en) Copper plated laminated sheet
KR20140002354A (en) Composition, insulating film made therefrom, and multilayer printed circuit boards having the same
JP2734912B2 (en) Copper-clad laminate for surface mount printed wiring boards
JPH0153636B2 (en)
JP2002265634A (en) Glass fiber nonwoven fabric for electric insulation, composite laminate and printed circuit board