JPS6365091B2 - - Google Patents

Info

Publication number
JPS6365091B2
JPS6365091B2 JP56142245A JP14224581A JPS6365091B2 JP S6365091 B2 JPS6365091 B2 JP S6365091B2 JP 56142245 A JP56142245 A JP 56142245A JP 14224581 A JP14224581 A JP 14224581A JP S6365091 B2 JPS6365091 B2 JP S6365091B2
Authority
JP
Japan
Prior art keywords
resin
impregnated
parts
epoxy resin
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56142245A
Other languages
Japanese (ja)
Other versions
JPS5845234A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14224581A priority Critical patent/JPS5845234A/en
Publication of JPS5845234A publication Critical patent/JPS5845234A/en
Publication of JPS6365091B2 publication Critical patent/JPS6365091B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】 本発明は、特に耐燃性及び加工性に優れたエポ
キシ樹脂積層板の製造方法に関する。 近年各種工業の発展に伴ない、電気部品材料、
構造材料、機械部品材料として優れた性能が要求
され、なかでも電気電子機器に用いる合成樹脂積
層板には、極めて優れた性能がしかも多様な性能
項目について要求されるようになつた。すなわ
ち、電気絶縁性、高周波特性がよく、耐湿性、耐
水性に富み、機械的性能、耐熱性も良好、さらに
耐燃性、加工性に優れて、商品としての価値が高
いものであり、しかも価格が低廉であるものが望
まれている。そのような合成樹脂積層板の一つと
して、紙、ガラス等の基材にエポキシ樹脂を含浸
成形したエポキシ樹脂積層板があるが、ある種の
基材の場合にはエポキシ樹脂をそのまま含浸して
も予想される高性能のものが得られないことがあ
る。従来、この対策として予め基材をフエノール
樹脂、メラミン樹脂、アミノ樹脂又はフエノール
樹脂−ゴムで予備含浸乾燥処理することが提案さ
れている。今まで知られているこれらの樹脂によ
る予備処理方法では、予備処理をしない場合に比
べて、電気絶縁性、吸水率等において格段の向上
がみられるが、耐燃性及び加工性においては未だ
十分とは云えず、用途にかなりの制約を受けてい
るのが現状である。 本発明は、耐燃性及び加工性が他の性能ととも
に良好なエポキシ樹脂積層板の提供を目的とす
る。本発明者らはこの問題につき種々研究の結
果、メラミン又は/及びグアナミン類とフエノー
ル類との混合物にホルムアルデヒドを反応させた
生成物(以下メラミン変性又はグアナミン変性フ
エノール樹脂という)で、予め基材を処理するこ
とにより、電気絶縁性、高周波特性、耐熱性、吸
水率等の一般特性に優れ、かつ耐燃性、加工性の
極めて良好なエポキシ樹脂積層板を得ることに成
功した。 即ち、本発明の製造方法は、基材をメラミン変
性又はグアナミン変性フエノール樹脂で予備含浸
乾燥して樹脂分5〜30重量%を含む予備含浸基材
となし、上記予備含浸基材をエポキシ樹脂で含浸
乾燥して合計樹脂分29〜75重量%を含むプリプレ
グとなし、得られたプリプレグを積層成形するこ
とを特徴とするエポキシ樹脂積層板の製造方法で
ある。 本発明の製造方法に使用する基材は、リンター
紙、クラフト紙、綿布、合成繊維布若しくはその
不織布、ガラス不織布、石綿布、リンターとガラ
スの混抄紙、リンターと石綿の混抄紙等エポキシ
樹脂との結合性が十分でない基材であり、また酸
化アンチモン抄込紙など副資材抄込基材が含まれ
る。 本発明に使用するメラミン変性又はグアナミン
変性フエノール樹脂は、メラミン又は/及びグア
ナミン類(アセトグアナミン、ベンゾグアナミン
等)とフエノール、クレゾール、キシレノール、
イソプロピルフエノール、ビスフエノールA等の
フエノール類との混合物を金属水酸化物、アルキ
ルアミン等のアルカリ性触媒下にホルムアルデヒ
ドと反応させたものである。メラミン又はグアナ
ミンの変性量は制限されない。 本発明に使用するエポキシ樹脂は、多価フエ
ノール、多価の多核フエノール又は脂肪族多価ア
ルコールをエピハロヒドリン又はジハロヒドリン
と公知の方法によりアルカリ触媒中で反応させて
得られる化合物、ジエンを保有する脂環式化合
物若しくは脂肪族化合物を過酸酸化によりエポキ
シ化して得られる化合物、上記及びの化合
物がハロゲン化された化合物等が挙げられる。硬
化剤は単独で又は硬化促進剤とともに使用するこ
とができる。硬化剤としては、脂肪族若しくは芳
香族のポリアミン、酸無水物、ポリアミド、ジシ
アンジアミド、ベンジルジメチルアミン等が挙げ
られる。また必要に応じて公知の難燃剤(例えば
トリクレジルホスフエート、ジブロモフエニルグ
リシジルエーテル)、その他添加剤を混合するこ
とができる。 予備含浸処理において基材に含浸するメラミン
変性又はグアナミン変性フエノール樹脂の樹脂分
は、含浸乾燥した予備含浸基材に対し5〜30重量
%の範囲とするのが適している。そして次に、予
備含浸基材に含浸するエポキシ樹脂の含浸量は、
含浸乾燥したプリプレグに対しメラミン変性又は
グアナミン変性フエノール樹脂とエポキシ樹脂と
の合計樹脂分が29〜75重量%の範囲とするのが適
している。樹脂分は、一定面積の基材、予備含浸
基材及びプリプレグを150℃30分間空気乾燥器中
に放置した乾燥重量から算出される。そのときの
乾燥減量を揮発分とする。 このように、予備含浸するメラミン変性又はグ
アナミン予備フエノール樹脂のメラミン又はグア
ナミン成分が耐熱性の向上に寄与し、フエノール
分が耐衝撃性ひいては加工性を改善し、そしてリ
ンター紙等の基材に予備含浸をすることが電気絶
縁性、高周波特性、耐熱性、吸水率等の一般特性
の優れたものとする。上記のメラミン変性又はグ
アナミン変性フエノール樹脂及びエポキシ樹脂の
樹脂分範囲は、この耐燃性、加工性及び一般特性
が保持できる範囲である。 予備含浸基材にエポキシ樹脂を含浸乾燥したプ
リプレグの積層成形は、通常2枚の当て板間に所
定枚数のプリプレグをはさみ、熱板付油圧プレス
などを用い、100〜200℃の温度、30〜150Kg/cm2
の圧力で、加熱加圧して一体化させる。本発明の
プリプレグのみを用うればエポキシ樹脂積層板が
えられ、プリプレグの外側少くともいずれか一方
の面に銅箔を重ねて積層成形すれば銅張エポキシ
積層板がえられる。また積層板の形状のほか積層
管、積層棒の形状のものもえられる。そしてま
た、本発明のプリプレグの一部に本発明以外の樹
脂含浸基材を併用することもできる。 本発明の製造方法によるエポキシ樹脂積層板
は、予備含浸樹脂として適正量のメラミン変性又
はグアナミン変性フエノール樹脂を用いたから、
従来十分でなかつた耐燃性及び衝撃によるクラツ
ク性すなわち打抜き加工性や剪断加工性を同時に
改善することができた。そして電気絶縁性、高周
波特性、耐熱性、吸水率等の一般特性が平均して
良好で、耐燃性と加工性とともにバランスのとれ
た性能を有している。殊にセルロース系、合成繊
維系、石綿系の基材を用いたエポキシ樹脂積層板
において従来法による積層板に対し性能の改良が
顕著である。 以下に本発明の実施例を説明する。以下部、%
とあるのは、夫々重量部、重量%を意味する。 実施例 1 フエノール100部、メラミン1050部、37%ホル
ムマリン1200部、トリエチルアミン10部を混合
し、80℃で90分間反応させ、減圧脱水した後メタ
ノールを加えて、固形分50%の樹脂溶液(A)を得
た。 エポキシ樹脂(ビスフエノールA型エポキシ樹
脂:エポキシ当量500)100部と、硬化剤としてヘ
ツト酸無水物35部とを、アセトンに溶解して固形
分50%の樹脂溶液(B)を得た。この樹脂溶液(B)にジ
ブロモフエニルグリシジルエーテル7部及びトリ
クレジルホスフエート4部を混合したものを樹脂
溶液(C)とする。 坪量150g/m2のリンター紙に、樹脂溶液(A)を
予備含浸し、150℃で乾燥して、Bステージの樹
脂分30%、揮発分1.9%の予備含浸紙を得た。得
られた予備含浸紙に、樹脂溶液(C)を含浸し、150
℃で乾燥して、Bステージの全樹脂分60%、揮発
分1.9%のプリプレグを得た。 このプリプレグを7枚重ね、その片面に厚さ
35μの銅箔を重ね合せ、170℃・70Kg/cm2で70分
間加圧加熱して冷却し、厚さ1.6mmの銅張積層板
を得た。その特性を試験した結果及び準拠試験法
を第1表に示す。 実施例 2 フエノール100部、メラミン11部、37%ホルマ
リン280部、トリエチルアミン1部を混合し、80
℃で110分間反応させ、減圧脱水した後メタノー
ルを加えて、固形分50%の樹脂溶液(D)を得た。 エポキシ樹脂(ビスフエノールA型エポキシ樹
脂:エポキシ当量500、Br量18%)100部とフタ
ル酸無水物(硬化剤)15部とを、アセトンに溶解
して固形分50%の樹脂溶液(E)を得た。 坪量150g/m2のリンター紙に、樹脂溶液(D)を
予備含浸し、150℃で乾燥して、Bステージの樹
脂分30%、揮発分1.9%の予備含浸紙を得た。得
られた予備含浸紙に樹脂溶液(E)を含浸し、150℃
で乾燥して、Bステージの全樹脂分60%、揮発分
1.9%のプリプレグを得た。 このプリプレグを用い、実施例1と同様な方法
により銅張積層板を得、その試験結果を第1表に
示す。 実施例 3 フエノール100部、ベンゾグアナミン1100部、
37%ホルマリン850部を混合し、80℃で4時間反
応させ、減圧脱水した後アセトンを加えて、固形
分80%の樹脂溶液(F)を得た。 樹脂溶液(F)及び樹脂溶液(E)(実施例2の項参
照)を用い、実施例1と同様な方法により銅張積
層板を得、その試験結果を第1表に示す。 実施例 4 フエノール100部、アセトグアナミン1050部、
37%ホルマリン1160部、トリエチルアミン10部を
混合し、80℃で3時間反応させ、減圧脱水した後
アセトンを加えて、固形分50%の樹脂溶液(G)を得
た。 エポキシ樹脂(ビスフエノールA型エポキシ樹
脂:エポキシ当量500)100部とヘツト酸無水物
(硬化剤)40部とを、アセトンに溶解して固形分
50%の樹脂溶液(H)を得た。この樹脂溶液(H)にテト
ラブロモジフエニルエーテル8部を混合したもの
を樹脂溶液(I)とする。 樹脂溶液(H)及び樹脂溶液(I)を用い、実施例1と
同様な方法により銅張積層板を得、その試験結果
を第1表に示す。 実施例 5 坪量135g/m2のガラスクロスに、エポキシ樹
脂の樹脂溶液(H)(実施例4の項参照)を含浸し、
150℃で乾燥して、樹脂分45%の接着用プリプレ
グを得た。 実施例1で得られたプリプレグを6枚重ね、そ
の上下に接着用プリプレグを1枚ずつ重ね、さら
にその片面に35μの銅箔を重ね合せ、実施例1と
同様な方法で成形して銅張積層板を得、その試験
結果を第1表に示す。 比較例 1 フエノール100部、37%ホルマリン110部、トリ
エチルアミン5部を混合し、80℃で100分間反応
させ、減圧脱水した後アセトンを加えて、固形分
50%の樹脂溶液(J)を得た。 樹脂溶液(J)及び樹脂溶液(C)(実施例1の項参
照)を用い、実施例1と同様な方法により銅張積
層板を得、その試験結果を第1表に示す。 比較例 2 メラミン100部、37%ホルマリン100部を混合
し、80℃で3時間反応させ、減圧脱水した後メタ
ノールを加えて、固形分80%の樹脂溶液(K)を得
た。 樹脂溶液(K)及び樹脂溶液(E)(実施例2の項参
照)を用い、実施例1と同様な方法により銅張積
層板を得、その試験結果を第1表に示す。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to a method for manufacturing an epoxy resin laminate having excellent flame resistance and processability. In recent years, with the development of various industries, electrical component materials,
BACKGROUND ART Excellent performance is required as a structural material and mechanical component material, and in particular, synthetic resin laminates used in electrical and electronic equipment are required to have extremely excellent performance in a wide variety of performance items. In other words, it has good electrical insulation and high frequency properties, is moisture resistant and water resistant, has good mechanical performance and heat resistance, and has excellent flame resistance and processability. A low cost product is desired. One such synthetic resin laminate is an epoxy resin laminate in which a base material such as paper or glass is impregnated with epoxy resin. However, the expected high performance may not be obtained. Conventionally, as a countermeasure against this problem, it has been proposed to pre-impregnate and dry the base material with a phenolic resin, melamine resin, amino resin or phenolic resin-rubber. With the pretreatment methods using these resins that have been known so far, significant improvements in electrical insulation, water absorption, etc. can be seen compared to cases without pretreatment, but flame resistance and processability are still insufficient. However, the current situation is that there are considerable restrictions on its use. The present invention aims to provide an epoxy resin laminate that has good flame resistance and processability as well as other properties. As a result of various studies on this problem, the present inventors have found that a base material is pre-coated with a product obtained by reacting formaldehyde with melamine or/and a mixture of guanamines and phenols (hereinafter referred to as melamine-modified or guanamine-modified phenolic resin). Through this treatment, we succeeded in obtaining an epoxy resin laminate that has excellent general properties such as electrical insulation, high frequency properties, heat resistance, and water absorption, as well as extremely good flame resistance and workability. That is, in the manufacturing method of the present invention, a base material is pre-impregnated with a melamine-modified or guanamine-modified phenol resin and dried to obtain a pre-impregnated base material containing a resin content of 5 to 30% by weight, and the pre-impregnated base material is pre-impregnated with an epoxy resin. This method of manufacturing an epoxy resin laminate is characterized by impregnating and drying the prepreg to obtain a prepreg containing a total resin content of 29 to 75% by weight, and laminating and molding the obtained prepreg. The base materials used in the manufacturing method of the present invention include epoxy resin, such as linter paper, kraft paper, cotton cloth, synthetic fiber cloth or non-woven fabric thereof, glass non-woven fabric, asbestos cloth, mixed paper of linter and glass, mixed paper of linter and asbestos, etc. It is a base material that does not have sufficient bonding properties, and also includes base materials made from auxiliary materials such as paper made from antimony oxide. The melamine-modified or guanamine-modified phenolic resin used in the present invention includes melamine or/and guanamines (acetoguanamine, benzoguanamine, etc.), phenol, cresol, xylenol,
A mixture of phenols such as isopropylphenol and bisphenol A is reacted with formaldehyde in the presence of an alkaline catalyst such as a metal hydroxide or an alkylamine. The amount of denaturation of melamine or guanamine is not limited. The epoxy resin used in the present invention is a compound obtained by reacting a polyvalent phenol, a polyvalent polynuclear phenol, or an aliphatic polyhydric alcohol with an epihalohydrin or a dihalohydrin in an alkaline catalyst by a known method, and an alicyclic resin containing a diene. Examples include compounds obtained by epoxidizing a compound of the formula or an aliphatic compound by peracid oxidation, and halogenated compounds of the above and above. Curing agents can be used alone or in conjunction with curing accelerators. Examples of the curing agent include aliphatic or aromatic polyamines, acid anhydrides, polyamides, dicyandiamide, benzyldimethylamine, and the like. Further, known flame retardants (for example, tricresyl phosphate, dibromophenyl glycidyl ether) and other additives can be mixed as necessary. The resin content of the melamine-modified or guanamine-modified phenolic resin to be impregnated into the base material in the pre-impregnation treatment is suitably in the range of 5 to 30% by weight based on the pre-impregnated base material that has been impregnated and dried. Next, the amount of epoxy resin impregnated into the pre-impregnated base material is:
It is suitable that the total resin content of the melamine-modified or guanamine-modified phenolic resin and the epoxy resin is in the range of 29 to 75% by weight based on the impregnated and dried prepreg. The resin content is calculated from the dry weight of a certain area of the substrate, pre-impregnated substrate and prepreg left in an air dryer at 150° C. for 30 minutes. The loss on drying at that time is considered the volatile content. In this way, the melamine or guanamine component of the melamine-modified or guanamine-prepared phenolic resin that is pre-impregnated contributes to improving heat resistance, and the phenol component improves impact resistance and processability. Impregnation provides excellent general properties such as electrical insulation, high frequency properties, heat resistance, and water absorption. The resin content range of the above-mentioned melamine-modified or guanamine-modified phenolic resin and epoxy resin is a range in which the flame resistance, processability and general properties can be maintained. Laminate molding of prepreg made by impregnating a pre-impregnated base material with epoxy resin and drying it is usually done by sandwiching a predetermined number of prepreg sheets between two patch plates, using a hydraulic press with a hot plate, etc., at a temperature of 100 to 200℃, and 30 to 150 kg. / cm2
Heat and pressurize to integrate at a pressure of . An epoxy resin laminate can be obtained by using only the prepreg of the present invention, and a copper-clad epoxy laminate can be obtained by stacking and molding copper foil on at least one outside surface of the prepreg. In addition to the shape of a laminated plate, those in the shape of a laminated tube or a laminated rod are also available. Furthermore, a resin-impregnated base material other than the present invention can be used in combination with a part of the prepreg of the present invention. Since the epoxy resin laminate produced by the manufacturing method of the present invention uses an appropriate amount of melamine-modified or guanamine-modified phenolic resin as the pre-impregnated resin,
It was possible to simultaneously improve flame resistance and crack resistance due to impact, that is, punching workability and shearing workability, which had not been sufficient in the past. It has good general properties such as electrical insulation, high frequency properties, heat resistance, and water absorption on average, and has well-balanced performance in addition to flame resistance and workability. In particular, the performance of epoxy resin laminates using cellulose-based, synthetic fiber-based, or asbestos-based substrates is significantly improved compared to laminates made by conventional methods. Examples of the present invention will be described below. Below part, %
"" means parts by weight and weight %, respectively. Example 1 100 parts of phenol, 1050 parts of melamine, 1200 parts of 37% formalin, and 10 parts of triethylamine were mixed, reacted at 80°C for 90 minutes, dehydrated under reduced pressure, and then methanol was added to prepare a resin solution with a solid content of 50% ( A) was obtained. 100 parts of an epoxy resin (bisphenol A type epoxy resin: epoxy equivalent: 500) and 35 parts of het's acid anhydride as a hardening agent were dissolved in acetone to obtain a resin solution (B) with a solid content of 50%. This resin solution (B) is mixed with 7 parts of dibromophenyl glycidyl ether and 4 parts of tricresyl phosphate to form a resin solution (C). Linter paper with a basis weight of 150 g/m 2 was pre-impregnated with the resin solution (A) and dried at 150° C. to obtain a B-stage pre-impregnated paper with a resin content of 30% and a volatile content of 1.9%. The obtained pre-impregnated paper was impregnated with the resin solution (C) and
It was dried at °C to obtain a B-stage prepreg with a total resin content of 60% and a volatile content of 1.9%. Seven sheets of this prepreg are stacked, and one side has a thickness of
Copper foils with a thickness of 35μ were laminated, heated under pressure at 170°C and 70Kg/cm 2 for 70 minutes, and cooled to obtain a copper-clad laminate with a thickness of 1.6mm. Table 1 shows the results of testing its properties and the applicable test methods. Example 2 Mix 100 parts of phenol, 11 parts of melamine, 280 parts of 37% formalin, and 1 part of triethylamine,
After reacting at ℃ for 110 minutes and dehydrating under reduced pressure, methanol was added to obtain a resin solution (D) with a solid content of 50%. 100 parts of epoxy resin (bisphenol A type epoxy resin: epoxy equivalent 500, Br content 18%) and 15 parts of phthalic anhydride (curing agent) are dissolved in acetone to create a resin solution (E) with a solid content of 50%. I got it. Linter paper with a basis weight of 150 g/m 2 was pre-impregnated with the resin solution (D) and dried at 150° C. to obtain a B-stage pre-impregnated paper with a resin content of 30% and a volatile content of 1.9%. The obtained pre-impregnated paper was impregnated with resin solution (E) and heated at 150℃.
The total resin content of B stage is 60%, volatile content is
A prepreg of 1.9% was obtained. Using this prepreg, a copper-clad laminate was obtained in the same manner as in Example 1, and the test results are shown in Table 1. Example 3 100 parts of phenol, 1100 parts of benzoguanamine,
850 parts of 37% formalin were mixed, reacted at 80°C for 4 hours, dehydrated under reduced pressure, and then acetone was added to obtain a resin solution (F) with a solid content of 80%. Copper-clad laminates were obtained in the same manner as in Example 1 using resin solution (F) and resin solution (E) (see Example 2), and the test results are shown in Table 1. Example 4 100 parts of phenol, 1050 parts of acetoguanamine,
1160 parts of 37% formalin and 10 parts of triethylamine were mixed, reacted at 80°C for 3 hours, dehydrated under reduced pressure, and then acetone was added to obtain a resin solution (G) with a solid content of 50%. 100 parts of epoxy resin (bisphenol A type epoxy resin: epoxy equivalent: 500) and 40 parts of Hett's acid anhydride (curing agent) were dissolved in acetone to obtain a solid content.
A 50% resin solution (H) was obtained. This resin solution (H) was mixed with 8 parts of tetrabromodiphenyl ether to form a resin solution (I). A copper-clad laminate was obtained using the resin solution (H) and the resin solution (I) in the same manner as in Example 1, and the test results are shown in Table 1. Example 5 A glass cloth with a basis weight of 135 g/m 2 was impregnated with an epoxy resin resin solution (H) (see the section of Example 4),
It was dried at 150°C to obtain an adhesive prepreg with a resin content of 45%. Layer 6 sheets of prepreg obtained in Example 1, layer one layer of adhesive prepreg on top and bottom, and then layer 35μ copper foil on one side, mold in the same manner as Example 1, and form copper clad. A laminate was obtained and the test results are shown in Table 1. Comparative Example 1 100 parts of phenol, 110 parts of 37% formalin, and 5 parts of triethylamine were mixed, reacted at 80°C for 100 minutes, dehydrated under reduced pressure, and then acetone was added to reduce the solid content.
A 50% resin solution (J) was obtained. Copper-clad laminates were obtained in the same manner as in Example 1 using resin solution (J) and resin solution (C) (see Example 1), and the test results are shown in Table 1. Comparative Example 2 100 parts of melamine and 100 parts of 37% formalin were mixed, reacted at 80°C for 3 hours, dehydrated under reduced pressure, and then methanol was added to obtain a resin solution (K) with a solid content of 80%. Copper-clad laminates were obtained in the same manner as in Example 1 using resin solution (K) and resin solution (E) (see Example 2), and the test results are shown in Table 1. 【table】

Claims (1)

【特許請求の範囲】[Claims] 1 基材をメラミン変性又はグアナミン変性フエ
ノール樹脂で予備含浸乾燥して樹脂分5〜30重量
%を含む予備含浸基材となし、上記予備含浸基材
をエポキシ樹脂で含浸乾燥して合計樹脂分29〜75
重量%を含むプリプレグとなし、得られたプリプ
レグを積層成形することを特徴とするエポキシ樹
脂積層板の製造方法。
1 A base material is pre-impregnated and dried with a melamine-modified or guanamine-modified phenolic resin to obtain a pre-impregnated base material containing a resin content of 5 to 30% by weight, and the pre-impregnated base material is impregnated with an epoxy resin and dried to obtain a total resin content of 29%. ~75
1. A method for producing an epoxy resin laminate, which comprises preparing a prepreg containing % by weight, and laminating and molding the obtained prepreg.
JP14224581A 1981-09-11 1981-09-11 Manufacture of epoxy resin laminated board Granted JPS5845234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14224581A JPS5845234A (en) 1981-09-11 1981-09-11 Manufacture of epoxy resin laminated board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14224581A JPS5845234A (en) 1981-09-11 1981-09-11 Manufacture of epoxy resin laminated board

Publications (2)

Publication Number Publication Date
JPS5845234A JPS5845234A (en) 1983-03-16
JPS6365091B2 true JPS6365091B2 (en) 1988-12-14

Family

ID=15310813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14224581A Granted JPS5845234A (en) 1981-09-11 1981-09-11 Manufacture of epoxy resin laminated board

Country Status (1)

Country Link
JP (1) JPS5845234A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067663Y2 (en) * 1984-01-20 1994-02-23 三洋電機株式会社 Composite speaker
US5955184A (en) * 1995-09-29 1999-09-21 Toshiba Chemical Corporation Halogen-free flame-retardant epoxy resin composition as well as prepreg and laminate containing the same
US20100272551A1 (en) 2007-12-21 2010-10-28 Kenichi Kumashiro Powder/granular material feeder

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4883170A (en) * 1972-02-12 1973-11-06
JPS4884163A (en) * 1972-02-12 1973-11-08
JPS5114967A (en) * 1974-07-27 1976-02-05 Sumitomo Bakelite Co
JPS51109966A (en) * 1975-03-25 1976-09-29 Sumitomo Bakelite Co DENKIZETSUENYOSE KISOBANNO SEIZOHO
JPS5212224A (en) * 1975-07-18 1977-01-29 Kanebo Ltd Apparatus for producing cement products highly reinforced with glass fibres

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4883170A (en) * 1972-02-12 1973-11-06
JPS4884163A (en) * 1972-02-12 1973-11-08
JPS5114967A (en) * 1974-07-27 1976-02-05 Sumitomo Bakelite Co
JPS51109966A (en) * 1975-03-25 1976-09-29 Sumitomo Bakelite Co DENKIZETSUENYOSE KISOBANNO SEIZOHO
JPS5212224A (en) * 1975-07-18 1977-01-29 Kanebo Ltd Apparatus for producing cement products highly reinforced with glass fibres

Also Published As

Publication number Publication date
JPS5845234A (en) 1983-03-16

Similar Documents

Publication Publication Date Title
KR910008866B1 (en) Flame-resistant laminates
CZ70397A3 (en) Mixtures of expoxy resins for prepregs and sandwiches
JPS6365091B2 (en)
JPH0722718A (en) Epoxy resin composition for printed wiring board, manufacture of prepreg for printed wiring board, and manufacture of composite laminated sheet
JPH09143247A (en) Resin composition for laminate, prepreg and laminate
JPS6011742B2 (en) Manufacturing method for resin laminates
JPH0218689B2 (en)
JPH1177892A (en) Manufacture of copper-card laminate
JP3735911B2 (en) Epoxy resin composition and laminate using the same
JPS5857447B2 (en) Method of manufacturing laminates
JP3089522B2 (en) Method for producing prepreg for electric laminate, electric laminate using the prepreg, and printed wiring board using the laminate
JPS6119640A (en) Preparation of heat-resistant laminate
JPH05309789A (en) Production of composite copper clad laminated sheet
JPH08165334A (en) Production of prepreg
JPH0369372B2 (en)
JPS62169828A (en) Production of substrate for printed circuit
JPH08151507A (en) Epoxy resin composition for laminate
JPS6341937B2 (en)
JPH03166218A (en) Resin composition for laminated board
JPH0892393A (en) Production of prepreg
JPH09227699A (en) Production of prepreg
JPS63234014A (en) Production of laminate
JPS5929427B2 (en) Manufacturing method for thermosetting resin products
JPS6037812B2 (en) Method of manufacturing laminates
JPH0518711B2 (en)