JPH0369372B2 - - Google Patents

Info

Publication number
JPH0369372B2
JPH0369372B2 JP18076086A JP18076086A JPH0369372B2 JP H0369372 B2 JPH0369372 B2 JP H0369372B2 JP 18076086 A JP18076086 A JP 18076086A JP 18076086 A JP18076086 A JP 18076086A JP H0369372 B2 JPH0369372 B2 JP H0369372B2
Authority
JP
Japan
Prior art keywords
epoxy resin
type epoxy
resin
weight
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18076086A
Other languages
Japanese (ja)
Other versions
JPS6337138A (en
Inventor
Kenichi Karya
Masayuki Noda
Kyoshi Oosaka
Takahiro Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP18076086A priority Critical patent/JPS6337138A/en
Publication of JPS6337138A publication Critical patent/JPS6337138A/en
Publication of JPH0369372B2 publication Critical patent/JPH0369372B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、耐熱性、耐湿性、耐ミーズリング性
の良好な積層板および難燃性の積層板の製造法に
関する。 従来の技術 積層板は、ワニスを基材に含浸し乾燥して得た
プリプレグを適当枚数積層し、必要に応じて表面
に金属箔を載置して、これを加熱加圧成形する乾
式法で製造される。積層板の特性はワニス及び基
材の種類により大きく異なるが、含浸工程でワニ
スが基材を良く濡らすことが、成形性を向上さ
せ、積層板の耐熱性、耐湿性、耐ミーズリング性
などを向上させる条件である。特にマルチレイヤ
ー用プリプレグや、金属箔を貼り付けた極薄の積
層板用プリプレグなどでこの要求が強く、ワニス
の基材への濡れ性を充分満足できるものは見当ら
なかつた。 そこで、濡れ性を良くするために、分子量500
以下のエポキシ樹脂と2価のフエノール類、硬化
剤としてノボラツク樹脂を配合したワニスを用い
ることが、既に特開昭58−89615号公報で提案さ
れている。また、前記2価のフエノール類に代え
て、2価のハロゲン化フエノール類を配合し、難
燃性の積層板について同様の目的を達成すること
が、特開昭58−89614号公報で提案されている。 発明が解決しようとする問題点 本発明は、更にガラス転移点を向上させること
により、耐熱性、耐湿性、耐ミーズリング性はも
とより、耐熱性を一段と向上させた積層板或は難
燃性の積層板の製造法を提供するものである。 問題点を解決するための手段 上記目的を達成するために、本発明は、特開昭
58−89615号公報および特開昭58−89614号公報に
記載の内容に改善を加えた。 すなわち、第一の発明は、1分子当り平均で2
個以上のエポキシ基を有し分子量500以下のエピ
ビス型エポキシ樹脂とフエノールノボラツク型エ
ポキシ樹脂或いはクレゾールノボラツク型エポキ
シ樹脂、ビスフエノールA、硬化剤としてフエノ
ール類ノボラツク樹脂を配合したワニスを基材に
含浸し乾燥して得たプリプレグを積層成形するも
のである。 また、第二の発明は、上記第一の発明におい
て、ビスフエノールAに代えてハロゲン化ビスフ
エノールAを用い、難燃性の積層板を製造するも
のである。 作 用 分子量500以下のエピビス型エポキシ樹脂は、
通常室温で液状及至半固型状であり、通常の乾式
法による積層板の製造に多用される。分子量1000
程度のエポキシ樹脂に比べて基材への濡れ性が大
幅に向上する。そして、基材に含浸後これを乾燥
する段階で、ビスフエノールAと選択的に反応
し、分子量が増大して適度の溶融粘度をもつに至
り、かつ粘着性のないプリプレグを得ることを確
認している。 本発明では、この反応系にフエノールノボラツ
ク型エポキシ樹脂或いはクレゾールノボラツク型
エポキシ樹脂を併用しており、前記のエピビス型
エポキシ樹脂と組合せることにより、ビスフエノ
ールAと選択的にかつ均一に反応し、その後のフ
エノール類ノボラツク樹脂を硬化剤とした架橋反
応が密に、より完全に進むことにより硬化物のガ
ラス転移点が高まる。このことは、ハロゲン化ビ
スフエノールAを用いた第二の発明においても同
様である。 フエノールノボラツク型エポキシ樹脂或いはク
レゾールノボラツク型エポキシ樹脂は、エピビス
型エポキシ樹脂より若干反応性に富んでおり、多
用すると、その後に行なわせるべきフエノール類
ノボラツク樹脂とそのは反応も同時に進行するた
め、エピビス型エポキシ樹脂に対して10〜50重量
%程度で用いるのが好ましい実験結果が得られた
が、特に限定するものではない。 本発明では、エポキシ樹脂とビスフエノールA
或いはハロゲン化ビスフエノールAとの反応が先
行し、次いで硬化剤フエノール類ノボラツク樹脂
との架橋反応が起こり硬化することが大切であ
り、この反応順序、均一性などを実験により確認
し、分子量500以下のエピビス型エポキシ樹脂と
フエノールノボラツク型エポキシ樹脂或いはクレ
ゾールノボラツク型エポキシ樹脂の組合せが最も
良好で、ガラス転移点を高める効果が大きいこと
を見い出した。 実施例 次に本発明の適用範囲について説明する。 使用できるエピビス型エポキシ樹脂は、分子量
500以下のエピビス型エポキシ樹脂の全てであり、
加水分解性塩素含率の少ないものが、ビスフエノ
ールA或いはハロゲン化ビスフエノールAとの反
応性に優れるため望ましい。 フエノールノボラツク型エポキシ樹脂は、フエ
ノールとホルマリンの酸性触媒下で反応させたフ
エノールノボラツク樹脂をエポキシ化したもので
ある。クレゾールノボラツク型エポキシ樹脂は、
同様にクレゾールノボラツク樹脂をエポキシ化し
たものである。これらは、基材への濡れ性を考慮
して、分子量の小さいものが望ましい。難燃性の
積層板とする場合には、ベンゼン環にハロゲンを
置換したものが望ましい。 第二の発明で用いるハロゲン化ビスフエノール
Aは、 一般式
INDUSTRIAL APPLICATION FIELD The present invention relates to a laminate with good heat resistance, moisture resistance, and measling resistance, and a method for producing a flame-retardant laminate. Conventional technology Laminated boards are produced using a dry method in which an appropriate number of prepregs obtained by impregnating a base material with varnish and drying are laminated, a metal foil is placed on the surface as necessary, and this is heated and press-formed. Manufactured. The characteristics of a laminate vary greatly depending on the type of varnish and base material, but the varnish that wets the base material well during the impregnation process improves formability and improves the heat resistance, moisture resistance, measling resistance, etc. of the laminate. This is a condition for improvement. This requirement is particularly strong for multi-layer prepregs and ultra-thin laminate prepregs with metal foil attached, and no material has been found that satisfies the wettability of the varnish to the base material. Therefore, in order to improve wettability, we decided to use
The use of a varnish containing the following epoxy resin, divalent phenols, and novolak resin as a hardening agent has already been proposed in Japanese Patent Application Laid-Open No. 89615/1989. Furthermore, in place of the divalent phenols, it was proposed in JP-A-58-89614 to blend divalent halogenated phenols to achieve the same objective for flame-retardant laminates. ing. Problems to be Solved by the Invention The present invention further improves the glass transition point to provide not only heat resistance, moisture resistance, and measling resistance, but also laminates or flame-retardant laminates with further improved heat resistance. A method for manufacturing a laminate is provided. Means for Solving the Problems In order to achieve the above object, the present invention
Improvements were made to the contents described in JP-A-58-89615 and JP-A-58-89614. That is, the first invention has an average of 2
The base material is a varnish containing an epibis type epoxy resin with a molecular weight of 500 or less and having more than 3 epoxy groups, a phenol novolac type epoxy resin or a cresol novolac type epoxy resin, bisphenol A, and a phenolic novolac resin as a curing agent. Prepreg obtained by impregnating and drying is laminated and molded. In a second invention, in the first invention, halogenated bisphenol A is used in place of bisphenol A to produce a flame-retardant laminate. Effect Epibis type epoxy resin with a molecular weight of 500 or less is
It is usually in a liquid or semi-solid state at room temperature, and is often used in the production of laminates by the usual dry method. molecular weight 1000
The wettability to the base material is significantly improved compared to epoxy resins. After impregnating the base material and drying it, it was confirmed that the prepreg selectively reacted with bisphenol A, increasing the molecular weight, achieving an appropriate melt viscosity, and producing a non-tacky prepreg. ing. In the present invention, a phenol novolac type epoxy resin or a cresol novolac type epoxy resin is used in combination with this reaction system, and by combining it with the epibis type epoxy resin, it reacts selectively and uniformly with bisphenol A. However, the subsequent crosslinking reaction using the phenolic novolac resin as a curing agent proceeds more closely and more completely, thereby raising the glass transition point of the cured product. This also applies to the second invention using halogenated bisphenol A. Phenol novolac type epoxy resins or cresol novolac type epoxy resins are slightly more reactive than epibis type epoxy resins, and if they are used too much, the reaction with the phenolic novolac resin that should be carried out afterwards will proceed at the same time. Experimental results have shown that it is preferable to use it in an amount of about 10 to 50% by weight based on the epibis type epoxy resin, but this is not particularly limited. In the present invention, epoxy resin and bisphenol A
Alternatively, it is important that the reaction with halogenated bisphenol A precedes the reaction, followed by a crosslinking reaction with the curing agent phenolic novolak resin, and curing occurs.The order of this reaction, uniformity, etc. are confirmed through experiments, and the molecular weight is 500 or less. It has been found that a combination of an Epibis type epoxy resin and a phenol novolak type epoxy resin or a cresol novolak type epoxy resin is the best and has a great effect of increasing the glass transition point. Examples Next, the scope of application of the present invention will be explained. The epibis type epoxy resin that can be used has a molecular weight of
All epivis type epoxy resins below 500,
Those with a low hydrolyzable chlorine content are desirable because they have excellent reactivity with bisphenol A or halogenated bisphenol A. Phenol novolak type epoxy resin is obtained by epoxidizing a phenol novolak resin which is reacted with phenol and formalin under an acidic catalyst. Cresol novolac type epoxy resin is
Similarly, it is an epoxidized version of cresol novolac resin. In consideration of wettability to the base material, it is desirable that these have a small molecular weight. In the case of making a flame-retardant laminate, one in which the benzene ring is substituted with halogen is desirable. The halogenated bisphenol A used in the second invention has the general formula

【式】(但 し、Rは水素またはハロゲンであり、少なくとも
1つはハロゲンである)で示され、テトラブロモ
ビスフエノールA、テトラクロロビスフエノール
A等がある。一般に、ハロゲンがブロムである方
が熱安定性が良いが、特に限定するものでない。
難燃助剤として、三酸化アンチモン、リン化合物
等を併用してもよい。 硬化剤であるフエノール類ノボラツク樹脂は、
フエノールやクレゾールのフエノール類とホルま
リンを酸性触媒下で反応させたものである。未反
応のフエノール類が少ないものが望ましい。必要
に応じて第3級アミンやイミダゾールなどの促進
剤を併用する。これ等促進剤の添加量は、均一反
応を考慮して適宜実験により求めればよい。 次に、本発明の実施例を説明する。 実施例 エポキシ樹脂(分子量370、エポキシ当量186)
80重量部、ビスフエノールA20重量部、ノボラツ
ク型フエノール樹脂(水酸基当量103)20重量部、
2−エチル−、4−メチルイミダゾール0.3重量
部、フエノールノボラツク型エポキシ樹脂(分子
量650、エポキシ当量220)30重量部をメチルエチ
ルケトン溶媒中で混合して固型分60重量%の樹脂
組成物を得た。これを、ガラス布基材に含浸乾燥
し樹脂量40重量%のプリプレグを得た。該プリプ
レグを8枚積層して加熱加圧して1.6m/m厚さ
の積層板を得た。 実施例 2 実施例1に於て、フエノールノボラツク型エポ
キシ樹脂の代りにクレゾールノボラツク型エポキ
シ樹脂(分子量950、エポキシ当量200)30重量部
を混合し、他は実施例1と同様にし、これをガラ
ス不織布基材に含浸、乾燥し樹脂量65重量%のプ
リプレグを得た。該プリプレグ6枚の両表面に実
施例1のガラス布基材エポキシ樹脂プリプレグを
1枚ずつ載置して、実施例1と同様にして1.6
m/m厚さの積層板を得た。 従来例 1 エポキシ樹脂(分子量950、エポキシ当量480)
100重量部、実施例1と同様のノボラツク型フエ
ノール樹脂(水酸基当量103)20重量部、2−エ
ルル、4−メチルイミダゾール0.3重量部をメチ
ルエチルケトン溶媒中で混合して固型分60重量%
の樹脂組成物を得た。これを、ガラス布基材に含
浸乾燥して、実施例1と同様にして1.6m/m厚
さの積層板を得た。 従来例 2 実施例1と同様に、但しフエノールノボラツク
型エポキシ樹脂を含まない樹脂組成物をガラス布
基材に含浸乾燥してプリプレグを得、実施例1と
同様にして1.6m/m厚さの積層板を得た。 従来例 3 実施例2と同様に、但しクレゾールノボラツク
型エポキシ樹脂を含まない樹脂組成物をガラス不
織布基材に含浸乾燥して樹脂量65重量%のプリプ
レグを得た。該プリプレグ6枚の両表面に従来例
2のガラス布基材エポキシ樹脂プリプレグを1枚
ずつ載置して、実施例2と同様にして1.6m/m
厚さの積層板を得た。 次に、上記各例に於ける樹脂組成物の基材に対
する濡れ性と積層板の特性を第1表に示す。
It is represented by the formula: (wherein R is hydrogen or halogen, and at least one is halogen), and includes tetrabromobisphenol A, tetrachlorobisphenol A, and the like. Generally, the thermal stability is better when the halogen is bromine, but this is not particularly limited.
As a flame retardant aid, antimony trioxide, a phosphorus compound, etc. may be used in combination. The curing agent, phenolic novolak resin, is
It is produced by reacting phenols such as phenol or cresol with formalin under an acidic catalyst. It is desirable that the amount of unreacted phenols is small. If necessary, a promoter such as a tertiary amine or imidazole is used in combination. The amount of these accelerators to be added may be determined by appropriate experiments in consideration of uniform reaction. Next, examples of the present invention will be described. Example Epoxy resin (molecular weight 370, epoxy equivalent weight 186)
80 parts by weight, 20 parts by weight of bisphenol A, 20 parts by weight of novolak type phenolic resin (hydroxyl group equivalent: 103),
0.3 parts by weight of 2-ethyl-, 4-methylimidazole and 30 parts by weight of a phenol novolac type epoxy resin (molecular weight 650, epoxy equivalent 220) were mixed in a methyl ethyl ketone solvent to obtain a resin composition with a solid content of 60% by weight. Ta. This was impregnated into a glass cloth base material and dried to obtain a prepreg with a resin content of 40% by weight. Eight sheets of the prepreg were laminated and heated and pressed to obtain a laminate with a thickness of 1.6 m/m. Example 2 In Example 1, 30 parts by weight of a cresol novolak type epoxy resin (molecular weight 950, epoxy equivalent weight 200) was mixed instead of the phenol novolac type epoxy resin, and the other conditions were the same as in Example 1. was impregnated into a glass nonwoven fabric base material and dried to obtain a prepreg with a resin content of 65% by weight. One sheet of the glass cloth base epoxy resin prepreg of Example 1 was placed on both surfaces of the six sheets of prepreg, and the same procedure as in Example 1 was carried out to obtain 1.6 sheets of prepreg.
A laminate with a thickness of m/m was obtained. Conventional example 1 Epoxy resin (molecular weight 950, epoxy equivalent 480)
100 parts by weight, 20 parts by weight of the same novolac type phenolic resin (hydroxyl equivalent: 103) as in Example 1, and 0.3 parts by weight of 2-eryl, 4-methylimidazole were mixed in a methyl ethyl ketone solvent to obtain a solid content of 60% by weight.
A resin composition was obtained. This was impregnated into a glass cloth base material and dried to obtain a laminate having a thickness of 1.6 m/m in the same manner as in Example 1. Conventional Example 2 In the same manner as in Example 1, a glass cloth base material was impregnated with a resin composition that did not contain the phenol novolak type epoxy resin and dried to obtain a prepreg, and a prepreg was obtained in the same manner as in Example 1 to a thickness of 1.6 m/m. A laminate was obtained. Conventional Example 3 In the same manner as in Example 2, a glass nonwoven fabric base material was impregnated with a resin composition that did not contain a cresol novolak type epoxy resin and dried to obtain a prepreg having a resin content of 65% by weight. One sheet of the glass cloth base epoxy resin prepreg of Conventional Example 2 was placed on both surfaces of the six sheets of prepreg, and the sheet was heated to 1.6 m/m in the same manner as in Example 2.
A thick laminate was obtained. Next, Table 1 shows the wettability of the resin composition to the substrate and the properties of the laminate in each of the above examples.

【表】【table】

【表】 次に難燃性の積層板の場合について実施例を説
明する。 実施例 3 エポキシ樹脂(分子量370、エポキシ当量186)
80重量部、テトラブロモビスフエノールA35重量
部、ボラツク型フエノール樹脂(水酸基当量103)
20重量部、2−エチル、4−メチルイミダゾール
0.3重量部、フエノールノボラツク型エポキシ樹
脂(分子量650、エポキシ当量220)、30重量部を
メチルエチルケトン溶媒中で混合して固型分60重
量%の樹脂組成物を得た。これをガラス布基材に
含浸乾燥し樹脂量45重量%のプリプレグを得た。
該プリプレグを8枚積層して加熱加圧して1.6
m/m厚さの難燃性積層板を得た。 実施例 4 実施例3に於いて、フエノールノボラツク型エ
ポキシ樹脂の代りにクレゾールノボラツク型エポ
キシ樹脂(分子量950、エポキシ当量220)30重量
部を混合し、他は実施例3と同様にし、これをガ
ラス不織布基材に含浸乾燥し樹脂量65重量%のプ
リプレグを得た。該プリプレグ6枚の両表面に実
施例3のガラス布基材エポキシ樹脂プリプレグを
1枚ずつ載置して、実施例3と同様にして1.6
m/m厚さの難燃性積層板を得た。 従来例 4 ブロム付加エポキシ樹脂(分子量1000、当量
500)100重量部、実施例3と同様のノボラツク型
フエノール樹脂(水酸基当量103)20重量部、2
−エチル、4−メチルイミダゾール0.3重量部を
メチルエチルケトン溶媒中で混合して固型分60重
量%の樹脂組成物を得た。これをガラス布基材に
含浸乾燥して実施例3と同様にして1.6m/m厚
さの難燃性積層板を得た。 従来例 5 実施例3と同様に、但しフエノールノボラツク
型エポキシ樹脂を含まない樹脂組成物をガラス布
基材に含浸乾燥して、実施例3と同様にして1.6
m/m厚さの難燃性積層板を得た。 従来例 6 実施例4と同様に、但しクレゾールノボラツク
型エポキシ樹脂を含まない樹脂組成物をガラス不
織布基材に含浸乾燥して樹脂量65重量%のプリプ
レグを得た。該プリプレグ6枚の両表面に従来例
5のガラス布基材エポキシ樹脂プリプレグを1枚
ずつ載置して、実施例4と同様に1.6m/m厚さ
の難燃性積層板を得た。 次に、上記各例における樹脂組成物の基材に対
する濡れ性と難燃性積層板の特性を第2表に示
す。
[Table] Next, an example will be described in the case of a flame-retardant laminate. Example 3 Epoxy resin (molecular weight 370, epoxy equivalent weight 186)
80 parts by weight, 35 parts by weight of tetrabromobisphenol A, volac type phenol resin (hydroxyl group equivalent: 103)
20 parts by weight, 2-ethyl, 4-methylimidazole
0.3 parts by weight and 30 parts by weight of a phenol novolak type epoxy resin (molecular weight 650, epoxy equivalent 220) were mixed in a methyl ethyl ketone solvent to obtain a resin composition with a solid content of 60% by weight. This was impregnated into a glass cloth base material and dried to obtain a prepreg with a resin content of 45% by weight.
Laminate 8 sheets of prepreg and heat and pressurize to 1.6
A flame retardant laminate with a thickness of m/m was obtained. Example 4 In Example 3, 30 parts by weight of a cresol novolac type epoxy resin (molecular weight 950, epoxy equivalent weight 220) was mixed instead of the phenol novolac type epoxy resin, and the other conditions were the same as in Example 3. A prepreg with a resin content of 65% by weight was obtained by impregnating a glass nonwoven fabric base material and drying it. One sheet of the glass cloth base epoxy resin prepreg of Example 3 was placed on both surfaces of the six sheets of prepreg, and 1.6 sheets were prepared in the same manner as in Example 3.
A flame retardant laminate with a thickness of m/m was obtained. Conventional example 4 Brominated epoxy resin (molecular weight 1000, equivalent weight
500) 100 parts by weight, 20 parts by weight of novolac type phenolic resin (hydroxyl equivalent: 103) similar to Example 3, 2
-ethyl and 0.3 parts by weight of 4-methylimidazole were mixed in a methyl ethyl ketone solvent to obtain a resin composition with a solid content of 60% by weight. This was impregnated into a glass cloth base material and dried to obtain a flame retardant laminate having a thickness of 1.6 m/m in the same manner as in Example 3. Conventional Example 5 In the same manner as in Example 3, a glass cloth base material was impregnated with a resin composition that did not contain the phenol novolac type epoxy resin and dried.
A flame retardant laminate with a thickness of m/m was obtained. Conventional Example 6 In the same manner as in Example 4, a glass nonwoven fabric base material was impregnated with a resin composition not containing a cresol novolac type epoxy resin and dried to obtain a prepreg having a resin content of 65% by weight. One glass cloth-based epoxy resin prepreg of Conventional Example 5 was placed on both surfaces of the six prepregs to obtain a flame-retardant laminate having a thickness of 1.6 m/m in the same manner as in Example 4. Next, Table 2 shows the wettability of the resin composition to the base material and the properties of the flame-retardant laminate in each of the above examples.

【表】 発明の効果 第1表、第2表の結果より、本発明における樹
脂組成物は、基材に対する濡れ性は従来とほぼ同
等であり、本発明による積層板或いは難燃性の積
層板は、ガラス転移点が大幅に向上していること
により、耐湿性、耐ミーズリング性、耐熱性を一
層向上できる点、その工業的価値は極めて大であ
る。
[Table] Effects of the Invention From the results in Tables 1 and 2, the resin composition of the present invention has almost the same wettability to the base material as the conventional one, and the laminate of the present invention or the flame-retardant laminate Because the glass transition point has been significantly improved, moisture resistance, measling resistance, and heat resistance can be further improved, and its industrial value is extremely large.

Claims (1)

【特許請求の範囲】 1 1分子当り平均で2個以上のエポキシ基を有
し分子量500以下のエピビス型エポキシ樹脂とフ
エノールノボラツク型エポキシ樹脂或いはクレゾ
ールノボラツク型エポキシ樹脂、ビスフエノール
A、硬化剤としてフエノール類ノボラツク樹脂を
配合したワニスを基材に含浸し乾燥して得たプリ
プレグ積層成形する積層板の製造法。 2 1分子当り平均で2個以上のエポキシ基を有
し分子量500以下のエピビス型エポキシ樹脂とフ
エノールノボラツク型エポキシ樹脂、或いはクレ
ゾールノボラツク型エポキシ樹脂、ハロゲン化ビ
スフエノールA、硬化剤としてフエノール類ノボ
ラツク樹脂を配合したワニスを基材に含浸し乾燥
して得たプリプレグ積層成形する積層板の製造
法。
[Scope of Claims] 1. Epibis type epoxy resin having an average of two or more epoxy groups per molecule and a molecular weight of 500 or less, a phenol novolac type epoxy resin or a cresol novolac type epoxy resin, bisphenol A, and a curing agent. A method for producing a laminate board by laminating and molding prepregs obtained by impregnating a base material with a varnish containing a phenolic novolac resin and drying the base material. 2 Epibis type epoxy resin and phenol novolak type epoxy resin having an average of two or more epoxy groups per molecule and a molecular weight of 500 or less, or cresol novolak type epoxy resin, halogenated bisphenol A, and phenols as a curing agent. A method for manufacturing laminates by laminating and molding prepregs obtained by impregnating a base material with varnish containing novolac resin and drying it.
JP18076086A 1986-07-31 1986-07-31 Production of laminated sheet Granted JPS6337138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18076086A JPS6337138A (en) 1986-07-31 1986-07-31 Production of laminated sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18076086A JPS6337138A (en) 1986-07-31 1986-07-31 Production of laminated sheet

Publications (2)

Publication Number Publication Date
JPS6337138A JPS6337138A (en) 1988-02-17
JPH0369372B2 true JPH0369372B2 (en) 1991-10-31

Family

ID=16088840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18076086A Granted JPS6337138A (en) 1986-07-31 1986-07-31 Production of laminated sheet

Country Status (1)

Country Link
JP (1) JPS6337138A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4110219A1 (en) * 1991-03-28 1992-10-01 Huels Troisdorf METHOD FOR PRODUCING PREPREGS WITH SOLVENT-FREE EPOXY RESIN
JPH06239963A (en) * 1993-02-18 1994-08-30 Mitsui Petrochem Ind Ltd Epoxy resin composition for laminate
US5614600A (en) * 1994-06-03 1997-03-25 Kashima Oil Co., Ltd. Fiber-reinforced resin plate and process for producing the same

Also Published As

Publication number Publication date
JPS6337138A (en) 1988-02-17

Similar Documents

Publication Publication Date Title
US5075155A (en) Novel prepregs
EP0466299B1 (en) Epoxy resin composition, epoxy resin cured material, and laminated sheet lined with copper
US4529790A (en) Epoxy resin composition
JPS6159330B2 (en)
EP0355563A2 (en) Curable compositions containing an epoxy resin, a difunctional phenol and a polyfunctional phenol
JPH0369372B2 (en)
JPH0113422B2 (en)
JPH09143247A (en) Resin composition for laminate, prepreg and laminate
JP3119578B2 (en) Manufacturing method of printed circuit board
JPS6119621A (en) Epoxy resin composition
JPS6119640A (en) Preparation of heat-resistant laminate
JPH05286074A (en) Copper-clad laminate
JPS6365091B2 (en)
EP0590463A2 (en) Halogen containing epoxy resin composition and copper-clad laminate
JPH05286075A (en) Manufacture of copper-clad laminate
JPS63260933A (en) Copper-clad laminate
JPH03166218A (en) Resin composition for laminated board
JPH0226579B2 (en)
JPS6119623A (en) Composition containing epoxy resin
JPS6119639A (en) Preparation of laminate
JPH075768B2 (en) Epoxy resin laminate
JPS624406B2 (en)
JPS6178843A (en) Production of epoxy resin laminated sheet
JPS63122725A (en) Epoxy resin composition, prepreg and laminated board
JPH0226580B2 (en)

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term