JPH04307942A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04307942A
JPH04307942A JP3071998A JP7199891A JPH04307942A JP H04307942 A JPH04307942 A JP H04307942A JP 3071998 A JP3071998 A JP 3071998A JP 7199891 A JP7199891 A JP 7199891A JP H04307942 A JPH04307942 A JP H04307942A
Authority
JP
Japan
Prior art keywords
gate electrode
film
electrode
impurity diffusion
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3071998A
Other languages
Japanese (ja)
Inventor
Shuichi Suzuki
秀一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3071998A priority Critical patent/JPH04307942A/en
Publication of JPH04307942A publication Critical patent/JPH04307942A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66719With a step of forming an insulating sidewall spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors

Abstract

PURPOSE:To prevent an electrode and an interconnection which are extended on the upper surface of a gate electrode and source region from being broken due to the step between the surface of the gate electrode and the surface of the source region by reducing the step and making it the gently-sloping surface in a vertical MISFET which has the thick gate electrode, concerning the method for manufacturing the semiconductor device MISFET which has the surface having reduced unevenness or step. CONSTITUTION:On a one conductivity-type substrate (2), a polycrystalline silicon gate electrode (5) having an oxidation-resistant mask film (6) in the upper part is formed through a gate insulated film (4). With the gate electrode (5) used as a mask, impurities are selectively injected into the substrate (2) by ion implantation. Then, the substrate is heat-treated in an oxidizing atmosphere and the injected impurities are activated and redistributed to form an opposite conductivity-type impurity diffusion region (3). At the same time, on the side face of the gate electrode (5) which is not covered with the oxidation-resistant mask film (6) and on the impurity diffusion region (3), a silicon oxide film (7) is so formed as to reduce the step in the electrode formation surface which is constituted of the surface of the gate electrode (5) and the surface of the impurity diffusion region (3).

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体装置の製造方法、
特にMIS型電界効果トランジスタ(以下MISFET
と称する)表面の凹凸段差を軽減する製造方法に関する
[Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device,
In particular, MIS type field effect transistor (hereinafter MISFET)
The present invention relates to a manufacturing method for reducing surface unevenness (referred to as "Difference in height").

【0002】MIS型半導体装置においては、集積度の
向上に伴うMISFETの微細化、高密度化により、表
面に形成される凹凸段差のアスペクト比は増大している
。一方、素子の微細化に伴うスケール則によって電極、
配線の厚さ(及び幅)も縮小されて来ているために、前
記アスペクト比の大きい段差部における電極、配線の段
切れが顕在化して来ており、特に縦型MISFETにお
いては、深いチャネル領域形成の際のマスクに用いられ
るゲート電極が厚く形成されるためにゲート電極とソー
ス領域面との間に形成される段差が大きくなり、ゲート
電極上に引き出されるソース電極の段切発生の傾向は特
に顕著で、改善が望まれている。
In MIS type semiconductor devices, the aspect ratio of the uneven steps formed on the surface is increasing due to miniaturization and higher density of MISFETs as the degree of integration increases. On the other hand, due to the scale law associated with the miniaturization of devices, electrodes,
As the thickness (and width) of interconnections has also been reduced, disconnections in electrodes and interconnections at step portions with large aspect ratios have become apparent.Especially in vertical MISFETs, deep channel regions Because the gate electrode used as a mask during formation is formed thickly, the step formed between the gate electrode and the source region surface becomes large, and the tendency for the source electrode to be drawn out on the gate electrode to break off is reduced. This is particularly noticeable and improvements are desired.

【0003】0003

【従来の技術】図4は従来の縦型MISFETの一例の
模式図で、(a) は平面図、、(b) はA−A矢視
断面図である。図において、50はn+ 型シリコン基
板、51はn− 型ドレイン層、52はp+ 型チャネ
ル領域、53はn+ 型ソース領域、54はゲート酸化
膜、55はゲート電極、57は酸化膜、58は層間絶縁
膜、59はアルミニウム(Al)ソース電極、61はコ
ンタクトホールを示す。
2. Description of the Related Art FIG. 4 is a schematic diagram of an example of a conventional vertical MISFET, in which (a) is a plan view, and (b) is a sectional view taken along the line A-A. In the figure, 50 is an n+ type silicon substrate, 51 is an n- type drain layer, 52 is a p+ type channel region, 53 is an n+ type source region, 54 is a gate oxide film, 55 is a gate electrode, 57 is an oxide film, and 58 is a An interlayer insulating film, 59 an aluminum (Al) source electrode, and 61 a contact hole.

【0004】従来、このような縦型MISFETは、以
下に図を参照して説明する方法により形成されていた。 図5(a) 参照即ち、n+ 型シリコン基板50(図
示せず)上に形成されたn− 型ドレイン層51上にゲ
ート酸化膜54を形成した後、この基板上に多結晶シリ
コン層を形成し、パターニングを行ってこの多結晶シリ
コンからなるゲート電極55を形成する。
Conventionally, such a vertical MISFET has been formed by the method described below with reference to the drawings. Refer to FIG. 5(a). In other words, after a gate oxide film 54 is formed on an n- type drain layer 51 formed on an n+-type silicon substrate 50 (not shown), a polycrystalline silicon layer is formed on this substrate. Then, patterning is performed to form a gate electrode 55 made of this polycrystalline silicon.

【0005】図5(b) 参照次いで、ゲート55をマ
スクにして硼素をイオン注入した後、熱処理を行って所
定の深さを有するp+ 型チャネル領域52を形成する
。なお、この際p+ 型チャネル領域52及びゲート電
極55の表面に酸化膜57′が形成される。
Referring to FIG. 5(b), boron ions are implanted using the gate 55 as a mask, and then heat treatment is performed to form a p+ type channel region 52 having a predetermined depth. At this time, an oxide film 57' is formed on the surfaces of the p+ type channel region 52 and the gate electrode 55.

【0006】図5(c) 参照次いで、コンタクトホー
ル形成領域を選択的に覆うレジストパターン60を形成
し、このレジストパターン60をマスクにしてコンタク
トホール形成領域以外の酸化膜57′をエッチング除去
する。
Referring to FIG. 5C, a resist pattern 60 is then formed to selectively cover the contact hole formation region, and using this resist pattern 60 as a mask, the oxide film 57' outside the contact hole formation region is removed by etching.

【0007】図5(d) 参照上記レジストパターン6
0とゲート電極55をマスクにし燐をイオン注入し、レ
ジストパターンを除去した後、熱処理を行い、ゲート電
極55の下部に所定のチャネル長(Lch) を残して
拡がるn+ 型ソース領域53を形成する。この際、ソ
ース領域53、ゲート電極55及びチャネル領域52の
表面に酸化膜57が形成され、前記コンタクトホール形
成領域上の酸化膜57は前記酸化膜57′(図示せず)
の分だけ厚く形成される。
FIG. 5(d) Refer to the above resist pattern 6
After the resist pattern is removed, heat treatment is performed to form an n+ type source region 53 that extends below the gate electrode 55 leaving a predetermined channel length (Lch). . At this time, an oxide film 57 is formed on the surfaces of the source region 53, the gate electrode 55, and the channel region 52, and the oxide film 57 on the contact hole formation region is covered with the oxide film 57' (not shown).
It is formed thicker by the amount of

【0008】図4(b) 参照次いで、上記基板上に層
間絶縁膜58を形成した後、通常のフォトリソグラフィ
によりコンタクトホール形成領域にn+ 型ソース領域
53及びp+ 型チャネル領域52の一部を表出するコ
ンタクトホール61を形成し、次いでこの基板上に前記
コンタクトホール61においてn+ 型ソース領域53
及びp+ 型チャネル領域52に接触するAl若しくは
Al合金からなるAlソース電極59を形成する方法で
ある。
Referring to FIG. 4(b), after forming an interlayer insulating film 58 on the substrate, a part of the n+ type source region 53 and p+ type channel region 52 is exposed in the contact hole forming region by ordinary photolithography. A contact hole 61 is formed to expose the n+ type source region 53 in the contact hole 61 on this substrate.
In this method, an Al source electrode 59 made of Al or an Al alloy is formed in contact with the p+ type channel region 52.

【0009】[0009]

【発明が解決しようとする課題】上記縦型MISFET
において、ゲート電極55は、p+ 型チャネル領域5
2形成の際の硼素のイオン注入における、活性チャネル
形成領域(ch)内への硼素の突き抜け及びソース領域
53の形成に際しての燐の活性チャネル形成領域(ch
)内への突き抜けによる活性チャネル形成領域(ch)
の不純物濃度の変動を回避するために、5000Å程度
に厚く形成される。
[Problem to be solved by the invention] The above vertical MISFET
In the gate electrode 55, the p+ type channel region 5
In the ion implantation of boron during the formation of the source region 53, the penetration of boron into the active channel formation region (ch) and the penetration of phosphorus into the active channel formation region (ch) during the formation of the source region 53.
) Active channel formation region (ch) by penetrating into
In order to avoid fluctuations in impurity concentration, the thickness is formed to be approximately 5000 Å.

【0010】そのため、上記従来の製造方法によると、
ゲート電極55の上部の層間絶縁膜58の上面とソース
領域53上の層間絶縁膜58の上面との間にはゲート電
極55の厚さに相当する5000Å程度の高い段差(h
) が形成され、コンタクトホール61部から層間絶縁
膜58上に延在形成されるAlソース電極59が上記段
差部上で59′に示すように極端に薄くなる。そのため
素子が微細化され、ソース電極59の厚みが5000〜
6000Å程度に薄く形成される際には、動作中にエレ
クトロマイグレーション或いはストレスマイグレーショ
ンにより極端に薄い部分59′においてソース電極59
が断線するという所謂「段切れ」現象が発生するように
なる。
Therefore, according to the above conventional manufacturing method,
There is a high step (h
) is formed, and the Al source electrode 59 formed extending from the contact hole 61 portion onto the interlayer insulating film 58 becomes extremely thin as shown at 59' on the stepped portion. Therefore, the element is miniaturized, and the thickness of the source electrode 59 is 5000~
When formed as thin as about 6000 Å, the source electrode 59 is formed at the extremely thin portion 59' due to electromigration or stress migration during operation.
A so-called "stage break" phenomenon occurs in which the wire breaks.

【0011】そこで本発明は、厚く形成されるゲート電
極の上部と、ソース領域の上部との間に形成される段差
を軽減し且つ緩斜面化して、その上に延在する金属電極
の段切れを防止し、特に縦型MISFETを含んで構成
されるMIS型半導体装置の信頼性を向上せしめること
を目的とする。
Therefore, the present invention reduces the step formed between the upper part of the gate electrode, which is formed thickly, and the upper part of the source region, and makes the slope more gentle, thereby reducing the step discontinuity of the metal electrode extending above the step. It is an object of the present invention to prevent the above problems and improve the reliability of a MIS type semiconductor device including a vertical MISFET.

【0012】0012

【課題を解決するための手段】上記課題は、MIS型半
導体装置の製造方法であって、一導電型半導体基板(1
) 上に、ゲート絶縁膜(4) を介し、耐酸化マスク
膜(6) を上部に有する多結晶シリコンゲート電極(
5) を形成する工程と、該ゲート電極(5) をマス
クにし該半導体基板(1) 内に選択的に反対導電型不
純物をイオン注入する工程と、酸化性雰囲気中で熱処理
を行い、該注入不純物を活性化・再分布させて半導体基
板(1) 内に反対導電型不純物拡散領域(2) を形
成すると同時に、該耐酸化マスク膜(6) に覆われな
い該ゲート電極(5) の側面及び該不純物拡散領域(
2) 上に、該ゲート電極(5) 上部の表面と該不純
物拡散領域(2) 上部の表面との段差を軽減し、且つ
該段差部を緩斜面化する厚さを有する酸化シリコン膜(
7) を形成する工程とを有する本発明による半導体装
置の製造方法によって解決される。
[Means for Solving the Problems] The above object is to provide a method for manufacturing an MIS type semiconductor device, which includes one conductivity type semiconductor substrate (one
) A polycrystalline silicon gate electrode (
5) step of forming an impurity, selectively ion-implanting an opposite conductivity type impurity into the semiconductor substrate (1) using the gate electrode (5) as a mask, and performing heat treatment in an oxidizing atmosphere to complete the implantation. While activating and redistributing impurities to form an opposite conductivity type impurity diffusion region (2) in the semiconductor substrate (1), the side surface of the gate electrode (5) that is not covered by the oxidation-resistant mask film (6) and the impurity diffusion region (
2) Above, a silicon oxide film (
7) The problem is solved by the method for manufacturing a semiconductor device according to the present invention, which includes the step of forming.

【0013】[0013]

【作用】図1は本発明の方法の原理説明用模式工程断面
図である。即ち本発明の方法は、同図(a) に示すよ
うに、一導電型半導体基体例えばp型シリコン基体(1
) 上に、ゲート絶縁膜(4) を介し、耐酸化マスク
膜例えば窒化シリコン膜(6) を上部に有する多結晶
シリコンゲート電極(5) を形成し、次いでこのゲー
ト電極(5) をマスクにしてp型半導体基体(1) 
内に反対導電型不純物例えば燐(P+ ) のイオン注
入(I.I) を行って例えばソース領域になる燐(P
+ ) 注入領域(103) を形成した後、この注入
不純物を活性化・再分布させるための高温熱処理を、酸
化性雰囲気中において行い、これによって同図(b) 
に示すように、前記燐(P+ ) の活性化、再分布に
より反対導電型不純物拡散領域例えばn+ 型ソース領
域(3) を形成すると同時に、前記窒化シリコン膜(
6) を耐酸化マスクにしたシリコン表出面の選択酸化
を行わしめ、反対導電型不純物拡散領域である前記n+
 型ソース領域(3) の上面と多結晶シリコンゲート
電極(5) の側面に選択的に所定の厚さを有する厚い
酸化シリコン膜(7) を形成する。
[Operation] FIG. 1 is a schematic process sectional view for explaining the principle of the method of the present invention. That is, the method of the present invention, as shown in FIG.
) A polycrystalline silicon gate electrode (5) having an oxidation-resistant mask film such as a silicon nitride film (6) on top is formed via a gate insulating film (4), and then this gate electrode (5) is used as a mask. p-type semiconductor substrate (1)
Ion implantation (II) of an impurity of the opposite conductivity type, such as phosphorus (P+), is carried out into the source region.
+) After forming the implanted region (103), high-temperature heat treatment is performed in an oxidizing atmosphere to activate and redistribute the implanted impurities.
As shown in FIG. 2, the activation and redistribution of phosphorus (P+) forms an opposite conductivity type impurity diffusion region, for example, an n+ type source region (3), and at the same time, the silicon nitride film (
6) Perform selective oxidation of the silicon exposed surface using the oxidation-resistant mask to remove the n+ impurity diffusion region of the opposite conductivity type.
A thick silicon oxide film (7) having a predetermined thickness is selectively formed on the upper surface of the type source region (3) and the side surface of the polycrystalline silicon gate electrode (5).

【0014】このようにすることにより、同図(c) 
に示すように、上記酸化シリコン膜(7)の形成された
主面上に形成する層間絶縁膜8の、半導体基体上即ち前
記ソース領域(3) 上表面A1と、ゲート電極(5)
 上表面A2との段差(hS ) は、前記ソース領域
(3) 上に形成される厚い酸化シリコン膜(7A)に
よって低く軽減され、且つその段差部(S) はゲート
電極(5) の側面に形成される下方が順次厚くなる酸
化シリコン膜(7B)により緩斜面化される。
[0014] By doing this, the figure (c)
As shown in FIG. 2, the interlayer insulating film 8 formed on the main surface on which the silicon oxide film (7) is formed is formed on the semiconductor substrate, that is, on the source region (3), on the upper surface A1, and on the gate electrode (5).
The level difference (hS) with the upper surface A2 is reduced to a low level by the thick silicon oxide film (7A) formed on the source region (3), and the level difference (S) is formed on the side surface of the gate electrode (5). The silicon oxide film (7B) gradually thickens at the bottom to form a gentle slope.

【0015】従って、同図(d) に示すように、例え
ばソース領域(3) からコンタクトホール(10)を
介して層間絶縁膜(8)の上記段差部上に延在形成され
る電極或いは配線、例えばAlソース電極(9) がこ
の段差部(S) 上で極端に薄く形成されることがなく
なり、電極や配線のエレクトロマイグレーションやスト
レスマイグレーション効果による段切れが防止される。
Therefore, as shown in FIG. 2D, for example, an electrode or wiring formed extending from the source region (3) through the contact hole (10) onto the stepped portion of the interlayer insulating film (8). For example, the Al source electrode (9) is no longer formed extremely thin on the stepped portion (S), and breakage of the electrode or wiring due to electromigration or stress migration effects is prevented.

【0016】[0016]

【実施例】以下本発明を縦型MOSFETを形成する際
の一実施例について、図2及び図3に示す工程断面図を
参照して具体的に説明する。なお、全図を通じ同一対象
物は同一符合で示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention for forming a vertical MOSFET will be specifically described below with reference to process cross-sectional views shown in FIGS. 2 and 3. Note that the same objects are indicated by the same reference numerals throughout the figures.

【0017】図2(a) 参照 本発明の方法を用いてnチャネル縦型MOSFETを形
成するに際しては、例えば、ドレイン電極層となる10
18〜1020cm−3程度の不純物濃度を有するn+
 型シリコン基板(図示せず)上に厚さ10〜100 
μm、不純物濃度1013〜1015cm−3程度のn
− 型ドレイン層11が形成されてなる被加工基板を用
い、先ず、熱酸化によりn− 型ドレイン層11上に厚
さ 500Å程度のゲート酸化膜14を形成し、次いで
この基板上に、気相成長により厚さ5000Å程度の多
結晶シリコン層を形成し、気相成長により前記多結晶シ
リコン層上に厚さ1000Å程度の窒化シリコン膜を形
成し、通常のフォトリソグラフィによりパターニングを
行って、前記ゲート酸化膜14上に、耐酸化マスク膜と
なる厚さ1000Å程度の窒化シリコン膜16を上部に
有する厚さ5000Å程度の多結晶シリコンゲート電極
15を形成する。
Refer to FIG. 2(a) When forming an n-channel vertical MOSFET using the method of the present invention, for example, 10
n+ having an impurity concentration of about 18 to 1020 cm-3
10-100 mm thick on a mold silicon substrate (not shown)
μm, n with an impurity concentration of about 1013 to 1015 cm-3
- Using a substrate to be processed on which a - type drain layer 11 is formed, first, a gate oxide film 14 with a thickness of about 500 Å is formed on the n- type drain layer 11 by thermal oxidation, and then a vapor phase film is formed on this substrate. A polycrystalline silicon layer with a thickness of about 5,000 Å is formed by growth, a silicon nitride film with a thickness of about 1,000 Å is formed on the polycrystalline silicon layer by vapor phase growth, and patterning is performed by ordinary photolithography to form the gate. A polycrystalline silicon gate electrode 15 with a thickness of about 5000 Å is formed on the oxide film 14, and has a silicon nitride film 16 with a thickness of about 1000 Å on top, which serves as an oxidation-resistant mask film.

【0018】図2(b) 参照 次いで、ゲート電極15をマスクにしてn− 型ドレイ
ン層11内に硼素(B+ ) を所定のドーズ量でイオ
ン注入し、窒素(N2)雰囲気中で1100〜1200
℃、60分程度及び酸化性雰囲気中で1000℃、10
分程度の活性化、再分布用の熱処理を行って、n− 型
ドレイン層11内に、不純物濃度1017〜1018c
m−3程度で3μm程度の深さを有する所定深さのp+
 型チャネル領域12を形成する。この際、窒化シリコ
ン膜16に覆われないp+ 型チャネル領域12上及び
ゲート電極15の側面に、1000Å以下程度の薄い第
1の酸化シリコン(SiO2)膜17′が形成される。
Referring to FIG. 2(b), boron (B+) is ion-implanted into the n- type drain layer 11 at a predetermined dose using the gate electrode 15 as a mask.
℃ for about 60 minutes and 1000℃ in an oxidizing atmosphere for 10 minutes.
Heat treatment for activation and redistribution is performed for about 10 minutes, and the impurity concentration is 1017 to 1018c in the n- type drain layer 11.
P+ of a predetermined depth having a depth of about 3 μm at about m−3
A mold channel region 12 is formed. At this time, a first silicon oxide (SiO2) film 17' having a thickness of about 1000 Å or less is formed on the p+ type channel region 12 not covered by the silicon nitride film 16 and on the side surfaces of the gate electrode 15.

【0019】図2(c) 参照 次いで、p+ 型チャネル領域12上に第1のSiO2
膜17′を介しコンタクトホール形成領域上を覆うレジ
ストパターン20を形成し、レジストパターン20に覆
われない第1のSiO2膜17′を選択的にエッチング
した後、次いでこのレジストパターン20及びゲート電
極15をマスクにし、p+ 型チャネル領域12内に所
定のドーズ量で燐(P+ ) をイオン注入する。11
3 はp+ 注入領域を示す。
Referring to FIG. 2(c), a first SiO2 layer is then formed on the p+ type channel region 12.
After forming a resist pattern 20 covering the contact hole formation region through the film 17' and selectively etching the first SiO2 film 17' that is not covered by the resist pattern 20, this resist pattern 20 and the gate electrode 15 are then etched. Using a mask, phosphorus (P+) is ion-implanted into the p+ type channel region 12 at a predetermined dose. 11
3 indicates the p+ implanted region.

【0020】図2(d) 参照 次いで前記レジストパターン20を除去した後、加湿酸
素等の酸化性の雰囲気中において1000℃、60分程
度の熱処理を行い、前記p+注入領域113 を活性化
、再分布させ、p+ 型チャネル領域12の端部に、例
えば1μm程度のチャネル長(Lch) を有するチャ
ネル形成領域(ch)を残してゲート電極15の下部に
所定の幅の拡がりを有するn+ 型ソース領域13を形
成する。なお、この熱処理が酸化性雰囲気中で行われる
ことにより、前記耐酸化マスクとなる窒化シリコン膜1
6に覆われていないn+ 型ソース領域13の表面及び
ゲート電極15の側面は選択的に熱酸化され、それらの
部分に厚さ2000〜3000Å程度の第2のSiO2
膜17が形成される。なおこの際、コンタクトホール形
成領域上の第2のSiO2膜17は前記第1のSiO2
膜17′が存在した分だけ厚く形成される。
Referring to FIG. 2(d), after removing the resist pattern 20, a heat treatment is performed at 1000° C. for about 60 minutes in an oxidizing atmosphere such as humidified oxygen to activate and reactivate the p+ implanted region 113. A channel forming region (ch) having a channel length (Lch) of, for example, about 1 μm is left at the end of the p+ type channel region 12, and an n+ type source region having a predetermined width is formed under the gate electrode 15. form 13. Note that by performing this heat treatment in an oxidizing atmosphere, the silicon nitride film 1 serving as the oxidation-resistant mask is
The surface of the n+ type source region 13 and the side surface of the gate electrode 15 that are not covered by the oxide film 6 are selectively thermally oxidized, and a second SiO2 film with a thickness of about 2000 to 3000 Å is deposited on those parts.
A film 17 is formed. At this time, the second SiO2 film 17 on the contact hole formation region is
The thickness is increased by the presence of the film 17'.

【0021】図3参照 以後、通常通り上記基板の全面上に、CVD 法により
厚さ3000〜5000Å程度の PSG等の層間絶縁
膜18を形成し、次いで通常のフォトリソグラフィによ
り、前記コンタクトホール形成領域に、前記層間絶縁膜
18と第2のSiO2膜17を貫通し、p+ 型チャネ
ル領域12とn+ 型ソース領域13の一部を一括表出
するコンタクトホール21を形成し、次いでこの基板の
全面上に厚さ5000Å程度のAl若しくはAl合金層
を形成し、次いで通常のフォトリソグラフィによりこの
Al若しくはAl合金層をパターニングして、上記Al
若しくはAl合金からなり、前記コンタクトホール21
内に表出するp+ 型チャネル領域12及びn+ 型ソ
ース領域13上から層間絶縁膜18上に導出されて広く
延在するAlソース電極19を形成し、本発明を用いた
nチャネル縦型MOSFETが完成する。
After referring to FIG. 3, an interlayer insulating film 18 such as PSG with a thickness of about 3000 to 5000 Å is formed on the entire surface of the substrate by CVD as usual, and then the contact hole forming area is formed by normal photolithography. Then, a contact hole 21 is formed that penetrates the interlayer insulating film 18 and the second SiO2 film 17 and exposes a part of the p+ type channel region 12 and the n+ type source region 13, and then the contact hole 21 is formed on the entire surface of this substrate. An Al or Al alloy layer with a thickness of about 5000 Å is formed on the substrate, and then this Al or Al alloy layer is patterned by ordinary photolithography to form the Al or Al alloy layer.
Alternatively, the contact hole 21 is made of Al alloy.
An n-channel vertical MOSFET using the present invention is formed by forming an Al source electrode 19 that extends widely and is led out onto the interlayer insulating film 18 from above the p+ type channel region 12 and the n+ type source region 13 exposed inside. Complete.

【0022】以上実施例に示したように、本発明の方法
によれば半導体基板面例えばソース領域13面とゲート
電極15の側面に、不純物拡散領域例えばソース領域1
3を形成する際の不純物の活性化・再分布のための熱処
理で、同時に、ソース領域13の表面及びゲート電極1
5の側面を選択酸化し、それらの部分に厚い酸化膜17
を形成することによりゲート電極15によって生ずる基
板上面の凹凸段差が低く且つ緩やかに緩和される。従っ
てゲート電極が厚く形成される縦型MOSFET等にお
いてゲート電極配設面上に広く形成される金属電極例え
ばAl電極19が前記段差部において極端に薄くなるこ
とがなくなり、動作中に生ずるエレクトロマイグレーシ
ョンやストレスマイグレーションによるAl電極の段切
れは防止される。
As shown in the embodiments above, according to the method of the present invention, impurity diffusion regions, for example, the source region 1 are formed on the semiconductor substrate surface, for example, the source region 13 surface and the side surface of the gate electrode 15.
At the same time, the surface of the source region 13 and the gate electrode 1 are
5 is selectively oxidized to form a thick oxide film 17 on those parts.
By forming the gate electrode 15, the unevenness level difference on the upper surface of the substrate caused by the gate electrode 15 is reduced and moderated. Therefore, in a vertical MOSFET or the like in which the gate electrode is formed thickly, the metal electrode, for example, the Al electrode 19, which is widely formed on the gate electrode placement surface, will not become extremely thin at the stepped portion, and this will prevent electromigration that occurs during operation. Breaking of the Al electrode due to stress migration is prevented.

【0023】なお本発明は、縦型MOSFETに限らず
、通常の横型MOSFETにも勿論適用され、配線の段
切れ防止に効果を生ずる。
The present invention is of course applicable not only to vertical MOSFETs but also to ordinary horizontal MOSFETs, and is effective in preventing disconnection of wiring.

【0024】[0024]

【発明の効果】以上説明のように本発明によれば、MO
SFET特に縦型MOSFETを有する半導体装置の、
電極・配線形成面の凹凸段差が低く且つ緩やかに緩和さ
れるので、電極・配線の段切れが防止されて、その信頼
性が向上する。
[Effects of the Invention] As explained above, according to the present invention, MO
A semiconductor device having an SFET, especially a vertical MOSFET,
Since the unevenness level difference on the electrode/wiring forming surface is low and moderated, breakage of the electrode/wiring is prevented and reliability thereof is improved.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】  本発明の原理説明用模式工程断面図[Figure 1] Schematic process cross-sectional diagram for explaining the principle of the present invention

【図2
】  本発明の方法の一実施例の工程断面図(その1)
[Figure 2
] Process cross-sectional diagram of one embodiment of the method of the present invention (Part 1)

【図3】  本発明の方法の一実施例の工程断面図(そ
の2)
[Figure 3] Process cross-sectional diagram of one embodiment of the method of the present invention (Part 2)

【図4】  従来の縦型MOSFETの模式図[Figure 4] Schematic diagram of conventional vertical MOSFET

【図5】
  従来の製造方法の工程断面図
[Figure 5]
Process cross-sectional diagram of conventional manufacturing method

【符号の説明】[Explanation of symbols]

2  p型シリコン基体 3  n+ 型ソース領域 4  ゲート絶縁膜 5  多結晶シリコンゲート電極 6  窒化シリコン膜 7  酸化シリコン膜 8  層間絶縁膜 9  Alソース電極 103   P+ 注入領域 A1  ソース領域上表面 A2  ゲート電極上表面 S  段差部 h s   段差 2 P-type silicon substrate 3 n+ type source region 4 Gate insulating film 5 Polycrystalline silicon gate electrode 6 Silicon nitride film 7 Silicon oxide film 8 Interlayer insulation film 9 Al source electrode 103 P+ injection area A1 Upper surface of source region A2 Upper surface of gate electrode S Step part h s  step

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  MIS型半導体装置の製造方法であっ
て、一導電型半導体基体(1) 上に、ゲート絶縁膜(
4) を介し、耐酸化マスク膜(6)を上部に有する多
結晶シリコンゲート電極(5) を形成する工程と、該
ゲート電極(5) をマスクにし該半導体基体(1) 
内に選択的に反対導電型不純物をイオン注入する工程と
、酸化性雰囲気中で熱処理を行い、該注入不純物を活性
化・再分布させて該半導体基体(1) 内に反対導電型
不純物拡散領域(2) を形成すると同時に、該耐酸化
マスク膜(6) に覆われない該ゲート電極(5) の
側面及び該不純物拡散領域(2) 上に、該ゲート電極
(5) 上部の表面と該不純物拡散領域表面(2) 上
部の表面との段差を軽減し且つ該段差部を緩斜面化する
酸化シリコン膜(7) を形成する工程とを有すること
を特徴とする半導体装置の製造方法。
1. A method for manufacturing an MIS type semiconductor device, comprising: forming a gate insulating film (1) on a semiconductor substrate (1) of one conductivity type;
4) Forming a polycrystalline silicon gate electrode (5) having an oxidation-resistant mask film (6) on top of the semiconductor substrate (1) using the gate electrode (5) as a mask.
A process of selectively ion-implanting impurities of opposite conductivity type into the semiconductor substrate (1) and heat treatment in an oxidizing atmosphere to activate and redistribute the implanted impurities to form an impurity diffusion region of opposite conductivity type within the semiconductor substrate (1). (2) At the same time, a layer is formed on the side surface of the gate electrode (5) that is not covered by the oxidation-resistant mask film (6) and on the impurity diffusion region (2). A method for manufacturing a semiconductor device, comprising the step of forming a silicon oxide film (7) that reduces the level difference between the surface of the impurity diffusion region (2) and the upper surface and makes the level difference part a gentle slope.
JP3071998A 1991-04-05 1991-04-05 Manufacture of semiconductor device Withdrawn JPH04307942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3071998A JPH04307942A (en) 1991-04-05 1991-04-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3071998A JPH04307942A (en) 1991-04-05 1991-04-05 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04307942A true JPH04307942A (en) 1992-10-30

Family

ID=13476655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3071998A Withdrawn JPH04307942A (en) 1991-04-05 1991-04-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04307942A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168796A1 (en) * 2012-05-11 2013-11-14 ローム株式会社 Semiconductor device and method for producing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013168796A1 (en) * 2012-05-11 2013-11-14 ローム株式会社 Semiconductor device and method for producing semiconductor device
US9508803B2 (en) 2012-05-11 2016-11-29 Rohm Co., Ltd. Semiconductor device and method for producing semiconductor device

Similar Documents

Publication Publication Date Title
US11804545B2 (en) Semiconductor device
US6821858B2 (en) Semiconductor devices and methods for manufacturing the same
US20030127702A1 (en) Termination structure for a semiconductor device
JP2010021176A (en) Semiconductor device and method of manufacturing the same
JPH1126758A (en) Trench type mos semiconductor device and manufacture thereof
JPS622465B2 (en)
JPH03171672A (en) Manufacture of misfet
JPH0586673B2 (en)
US7413954B2 (en) Insulated gate semiconductor device and manufacturing method of the same
US6383884B1 (en) Method of manufacturing semiconductor device
JP4186318B2 (en) Manufacturing method of semiconductor device
JP2834058B2 (en) Method for manufacturing semiconductor device
JP3106757B2 (en) Method for manufacturing MOS field effect semiconductor device
JPH04307942A (en) Manufacture of semiconductor device
JPH11145457A (en) Vertical field effect transistor
JPS6225457A (en) Manufacture of vertical semiconductor device
JP2009117412A (en) Insulated gate semiconductor device and its manufacturing method
KR100347149B1 (en) Manufacturing method for semiconductor device
JP3714396B2 (en) Manufacturing method of semiconductor device
KR0170891B1 (en) Method of manufacturing semiconductor mosfet
JPH06204472A (en) Manufacture of trench-type source/ drain mosfet
JPH0453234A (en) Manufacture of insulating gate type field effect transistor
JPH0778983A (en) Semiconductor device and fabrication thereof
JPS6154661A (en) Manufacture of semiconductor device
JPH0555589A (en) Insulated-gate field-effect transistor and its manufacture

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980711