JPH043070B2 - - Google Patents
Info
- Publication number
- JPH043070B2 JPH043070B2 JP57161390A JP16139082A JPH043070B2 JP H043070 B2 JPH043070 B2 JP H043070B2 JP 57161390 A JP57161390 A JP 57161390A JP 16139082 A JP16139082 A JP 16139082A JP H043070 B2 JPH043070 B2 JP H043070B2
- Authority
- JP
- Japan
- Prior art keywords
- reformer
- fuel cell
- heater
- gas
- hydrogen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000446 fuel Substances 0.000 claims description 29
- 239000007789 gas Substances 0.000 claims description 19
- 239000001257 hydrogen Substances 0.000 claims description 15
- 229910052739 hydrogen Inorganic materials 0.000 claims description 15
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 13
- 238000002485 combustion reaction Methods 0.000 claims description 13
- 238000010248 power generation Methods 0.000 claims description 12
- 239000002737 fuel gas Substances 0.000 claims description 10
- 230000005611 electricity Effects 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 150000002431 hydrogen Chemical class 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 description 16
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 4
- 229910002091 carbon monoxide Inorganic materials 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000006057 reforming reaction Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- -1 methanol Chemical compound 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000002407 reforming Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
- Hydrogen, Water And Hydrids (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は燃料の化学反応エネルギーを電気的エ
ネルギーに変換して発電を行なう燃料電池発電装
置に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel cell power generation device that generates electricity by converting chemical reaction energy of fuel into electrical energy.
燃料の化学的エネルギーを直接電気的エネルギ
ーに変換して発電を行なうようにした燃料電池発
電装置は、火力発電等に比べ変換効率が高いため
最近注目されている。
Fuel cell power generation devices that generate power by directly converting the chemical energy of fuel into electrical energy have recently been attracting attention because of their higher conversion efficiency than thermal power generation and the like.
斯る燃料電池発電装置として一般的な水素−酸
素燃料電池を用いた発電装置は第1図に示す如
く、メタン等の炭化水素或いはメタノール等のア
ルコールに水蒸気を混合してなる燃料ガスAを改
質器1に供給し、この改質器1において例えば炭
化水素燃料を用いた場合にはCnHm+nH2O→
nCO+(n+m/2)H2の反応を生ぜしめ、一酸化
炭素と水素を主成分とする燃料ガスBを製造す
る。そして上記反応は吸熱反応であるため、改質
器1に設けたバーナ2によつて反応促進用の熱を
与えるようにしている。 As shown in Figure 1, a typical fuel cell power generation device using a hydrogen-oxygen fuel cell uses fuel gas A, which is made by mixing water vapor with a hydrocarbon such as methane or an alcohol such as methanol, as shown in Figure 1. For example, when hydrocarbon fuel is used in this reformer 1, CnHm+nH 2 O→
A reaction of nCO+(n+m/2) H2 is caused to produce fuel gas B containing carbon monoxide and hydrogen as main components. Since the above reaction is an endothermic reaction, a burner 2 provided in the reformer 1 provides heat for promoting the reaction.
次いで、上記ガスBを変成器(シフトコンバー
タ)3に送り、この変成器3においてCO+H2O
→CO2+H2なる反応を行なわしめ一酸化炭素を
二酸化炭素と水素とに変換する。而して、変成器
3から出るガスCはガスBよりも更に水素に富ん
だガスとなる。 Next, the gas B is sent to a shift converter 3, where CO+H 2 O
→The reaction CO 2 + H 2 is carried out and carbon monoxide is converted into carbon dioxide and hydrogen. Thus, gas C coming out of the transformer 3 becomes a gas richer in hydrogen than gas B.
そして、ガスCは燃料電池4に送られ、この燃
料電池4において、空気供給管Xを介して送られ
た空気中の酸素と前記ガスC中の水素とが反応
し、この反応に伴なうエネルギーを電気エネルギ
ーに変換し発電を行なうようにしている。 Then, the gas C is sent to the fuel cell 4, and in the fuel cell 4, the oxygen in the air sent through the air supply pipe X reacts with the hydrogen in the gas C. It converts energy into electrical energy and generates electricity.
また反応を終えた空気及びガスCのうち空気は
排出管Yによつて外部に排出され、ガスCは排出
管Dによつて前記バーナ2に送られる。そして、
このバーナ2において未反応の可燃分を含むガス
Cは燃焼用空気の供給系統Zを介して供給された
空気によつて燃焼せしめられ、この燃焼熱が改質
器1での反応に促進用の熱として与えられる。 Of the air and gas C that have completed the reaction, air is discharged to the outside through a discharge pipe Y, and gas C is sent to the burner 2 through a discharge pipe D. and,
In this burner 2, the gas C containing unreacted combustible components is combusted by air supplied through the combustion air supply system Z, and this combustion heat is used to accelerate the reaction in the reformer 1. given as heat.
以上の燃料電池発電装置にあつては、負荷が急
減した場合、燃料電池4に供給する水素に富んだ
ガス量を少なくすべく、改質器1に供給する燃料
の量を速やかに減少する必要がある。そして供給
燃料を減少せしめた場合にはそれに応じてバーナ
2による加熱量も少なくしなければならない。
In the case of the above fuel cell power generation device, when the load suddenly decreases, it is necessary to promptly reduce the amount of fuel supplied to the reformer 1 in order to reduce the amount of hydrogen-rich gas supplied to the fuel cell 4. There is. When the supplied fuel is reduced, the amount of heating by the burner 2 must be reduced accordingly.
しかしながら、従来装置にあつては、改質器1
に供給する燃料を減少させるまでに若干の遅れが
生じ、またバーナ2で用いる燃料ガスは燃料電池
4からの排ガスを用いるようにしているので、負
荷を急減させた場合は燃料電池4における水素消
費量が急減し、これに伴なつて燃料電池4からの
排ガス中の残留水素量が急増してバーナ2から改
質器1に与えられる熱量が改質反応、即ち改質器
1での吸熱反応に必要な熱量を大巾に上回ること
となる。 However, in the conventional device, the reformer 1
There is a slight delay before the fuel supplied to the burner 2 is reduced, and since the fuel gas used in the burner 2 is the exhaust gas from the fuel cell 4, if the load is suddenly reduced, the hydrogen consumption in the fuel cell 4 will be reduced. Along with this, the amount of residual hydrogen in the exhaust gas from the fuel cell 4 rapidly decreases, and the amount of heat given from the burner 2 to the reformer 1 is converted into a reforming reaction, that is, an endothermic reaction in the reformer 1. This greatly exceeds the amount of heat required for
この結果、改質器1の温度が所定の温度よりも
高くなり、改質器1の反応管の損傷を招き、触媒
を劣化せしめることとなる。そのため、従来にあ
つては負荷減少をゆるやかに行なわなければなら
なかつた。 As a result, the temperature of the reformer 1 becomes higher than a predetermined temperature, causing damage to the reaction tube of the reformer 1 and deteriorating the catalyst. Therefore, in the past, the load had to be reduced slowly.
本発明は上述した従来の問題点に鑑み、これを
改善すべくなされたものであり、その目的とする
ところは、負荷急減に応じて改質器における吸熱
反応の促進を速やかに低減せしめ、もつて装置の
健全性を保持し得るようにした燃料電池発電装置
を提供するにある。
The present invention was made in view of the above-mentioned conventional problems and to improve them.The purpose of the present invention is to quickly reduce the promotion of endothermic reactions in the reformer in response to a sudden load reduction, and to An object of the present invention is to provide a fuel cell power generation device that can maintain the integrity of the device.
上記目的を達成すべく本発明に係る燃料電池発
電装置は、改質器のバーナに燃焼用の空気を供給
する供給系統を供給空気を加熱する加熱器の系統
と、この加熱器をバイパスする系統とによつて構
成し、これら加熱器の系統及び加熱器をバイパス
する系統のうち少くとも一方の系統に調節弁を設
け、一方改質器の温度を検出する温度検出器から
の信号と改質器内部温度の目標値信号とのズレを
演算器によつて演算し、この演算器からの出力で
前記調節弁を調節する調節器を操作するようにし
たことをその概要としている。
In order to achieve the above object, a fuel cell power generation device according to the present invention includes a supply system that supplies combustion air to the burner of a reformer, a heater system that heats the supply air, and a system that bypasses this heater. A control valve is provided in at least one of the heater system and a system that bypasses the heater, and a signal from a temperature sensor that detects the temperature of the reformer and a reformer are provided. The outline of the system is that the difference between the internal temperature of the chamber and the target value signal is calculated by a calculating unit, and the output from the calculating unit is used to operate a regulator that adjusts the control valve.
以下本発明の実施の一例を第2図に基いて詳述
する。
An example of the implementation of the present invention will be described in detail below with reference to FIG.
第2図は本発明に係る燃料電池発電装置の概略
構成を示すブロツク図であり、前記した従来装置
と同一の部材については同一の符号をもつて表わ
している。 FIG. 2 is a block diagram showing a schematic configuration of a fuel cell power generation apparatus according to the present invention, and the same members as those in the conventional apparatus described above are designated by the same reference numerals.
即ち、炭化水素或いはアルコールに水蒸気を混
合してなる燃料ガスAを改質器1に供給し、バー
ナ2からの熱の供給により改質反応を生ぜしめ、
一酸化炭素と水素とを主成分とするガスBとして
変成器(シフトコンバータ)3に送る。そして、
この変成器3において上記一酸化炭素を二酸化炭
素と水素とに変換せしめ、更に水素に富んだガス
Cとして燃料電池4に送る。この燃料電池4にお
いては、ガスC中の水素と供給管Xを介して供給
された空気等の酸化剤ガスとが反応して発電を行
なう。 That is, a fuel gas A made by mixing water vapor with hydrocarbon or alcohol is supplied to the reformer 1, and a reforming reaction is caused by the supply of heat from the burner 2.
It is sent to a shift converter 3 as a gas B whose main components are carbon monoxide and hydrogen. and,
In the shift converter 3, the carbon monoxide is converted into carbon dioxide and hydrogen, which are further sent to the fuel cell 4 as a hydrogen-rich gas C. In this fuel cell 4, hydrogen in the gas C reacts with an oxidizing gas such as air supplied via the supply pipe X to generate electricity.
更に反応後の酸化剤ガスは排出管Yを介して外
部に排出され、また反応後の燃料ガスは排出管D
を介してバーナ2に送られ、この排出ガス中の在
留水素が燃焼用空気の供給系統Zを介して供給さ
れた空気によつて燃焼せしめられ、この燃焼熱を
改質器1での改質反応促進用の熱として改質器1
に与えるようにしている。 Furthermore, the oxidizing gas after the reaction is discharged to the outside through the exhaust pipe Y, and the fuel gas after the reaction is discharged through the exhaust pipe D.
The hydrogen resident in this exhaust gas is combusted by the air supplied via the combustion air supply system Z, and this combustion heat is used for reforming in the reformer 1. Reformer 1 as heat for reaction promotion
I try to give it to
また、上記燃焼用空気の供給系統Zは燃焼用空
気を加熱する加熱器5を備えた加熱器の系統E
と、この加熱器5をバイパスする系統Fとからな
つている。そして系統Fには流量調節弁6を設け
ている。 Further, the combustion air supply system Z is a heater system E equipped with a heater 5 that heats the combustion air.
and a system F that bypasses this heater 5. The system F is provided with a flow control valve 6.
一方、前記改質器1内には改質器1内の温度を
検出する温度検出器7を配設し、この温度検出器
7からの信号を演算器8に入力するようにしてい
る。この演算器8においては温度検出器7からの
信号と改質器の内部温度の目標値信号とのズレを
演算する。そして演算結果は調節弁6の開度を調
節する調節9に出力される。 On the other hand, a temperature detector 7 is disposed within the reformer 1 to detect the temperature within the reformer 1, and a signal from the temperature detector 7 is input to a computing unit 8. This calculator 8 calculates the difference between the signal from the temperature detector 7 and the target value signal of the internal temperature of the reformer. The calculation result is then output to a controller 9 that adjusts the opening degree of the regulator valve 6.
そして調節弁6の開度を調節することによつて
加熱器5の系統Eを通る空気の流量と加熱器5を
バイパスする系統Fを通る空気の流量との分配比
を変え、バーナ2に供給される空気の温度を制御
し、温度検出器7によつて検出される温度が目標
値に等しくなるようにする。而して改質器1の温
度は常に一定範囲に保たれる。 By adjusting the opening degree of the control valve 6, the distribution ratio between the flow rate of air passing through the system E of the heater 5 and the flow rate of air passing through the system F bypassing the heater 5 is changed, and the air is supplied to the burner 2. The temperature of the air is controlled so that the temperature detected by the temperature detector 7 is equal to the target value. Thus, the temperature of the reformer 1 is always maintained within a certain range.
尚、図示例では加熱器5をバイパスする系統F
に調節弁6を設けたものを示したが、調節弁6は
加熱器5の系統Eに設けるようにしてもよく、更
には系統E,Fの双方に設けるようにしてもよ
い。 In the illustrated example, the system F bypasses the heater 5.
Although the control valve 6 is shown in FIG. 1, the control valve 6 may be provided in the system E of the heater 5, or may be provided in both the systems E and F.
以上の説明で明らかな如く本発明によれば、改
質器のバーナに燃焼用空気を供給する加熱器を備
えた系統にバイパス系統を設け、これらの系統の
少くとも一方に空気流量を調節する調節弁を設
け、この調節弁の開度を演算器によつて制御し、
負荷急減時にバーナに供給する空気の温度を低下
せしめ、改質器の温度上昇を抑えるようにしたの
で、改質器の反応管、触媒の耐久性を大巾に向上
せしめることができ、改質器の健全性を保持し得
る等多くの効果を奏する。
As is clear from the above description, according to the present invention, a bypass system is provided in the system equipped with the heater that supplies combustion air to the burner of the reformer, and the air flow rate is adjusted in at least one of these systems. A control valve is provided, and the opening degree of the control valve is controlled by a computer,
By lowering the temperature of the air supplied to the burner when the load suddenly decreases and suppressing the temperature rise in the reformer, the durability of the reformer's reaction tube and catalyst can be greatly improved, making it possible to It has many effects such as maintaining the health of the vessel.
第1図は従来の燃料電池発電装置の概略構成を
示すブロツク図、第2図は本発明に係る燃料電池
発電装置の概略構成を示すブロツク図である。
1……改質器、2……バーナ、3……変成器、
4……燃料電池、5……加熱器、6……調節弁、
7……温度検出器、8……演算器、9……調節
器、E……加熱器の系統、F……加熱器をバイパ
スする系統、Z……燃焼用空気の供給系統。
FIG. 1 is a block diagram showing a schematic configuration of a conventional fuel cell power generation device, and FIG. 2 is a block diagram showing a schematic configuration of a fuel cell power generation device according to the present invention. 1... Reformer, 2... Burner, 3... Transformer,
4... Fuel cell, 5... Heater, 6... Control valve,
7... Temperature detector, 8... Arithmetic unit, 9... Regulator, E... Heater system, F... Heater bypass system, Z... Combustion air supply system.
Claims (1)
えた改質器によつて燃料ガスを水素に富んだもの
とし、この水素に富んだ燃料ガスを変成器に送つ
て更に水素の富んだ燃料ガスとし、この燃料ガス
を燃料電池に供給し酸化剤ガスと反応せしめるこ
とで発電を行うとともに、前記燃料電池から排出
された燃料ガスを前記バーナに送つて前記燃焼用
空気により燃焼させる燃料電池発電装置におい
て、前記燃焼用空気の供給系統は、供給空気を加
熱する加熱器の系統と、この加熱器をバイパスす
る系統と、これら加熱器の系統及び加熱器をバイ
パスする系統のうち少なくとも一方の系統に設け
た調節弁と、前記改質器の温度を検出する温度検
出器と、この温度検出器からの信号と改質器内部
温度の目標値信号とのズレを演算する演算器と、
この演算器からの出力で前記調節弁を調節する調
節器とからなることを特徴とする燃料電池発電装
置。1 Fuel gas is enriched with hydrogen by a reformer equipped with a burner connected to a combustion air supply system, and this hydrogen-rich fuel gas is sent to a shift converter to further produce hydrogen-rich fuel gas. A fuel cell power generation device in which this fuel gas is supplied to a fuel cell and reacted with an oxidizing gas to generate electricity, and the fuel gas discharged from the fuel cell is sent to the burner to be combusted by the combustion air. In the combustion air supply system, the combustion air supply system includes a heater system that heats the supply air, a system that bypasses the heater, and at least one of the heater system and the heater bypass system. a control valve provided, a temperature detector that detects the temperature of the reformer, and a calculator that calculates the difference between the signal from the temperature detector and the target value signal of the reformer internal temperature;
A fuel cell power generation device comprising: a regulator that controls the control valve using the output from the computing unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57161390A JPS5951479A (en) | 1982-09-16 | 1982-09-16 | Power generation system of fuel battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57161390A JPS5951479A (en) | 1982-09-16 | 1982-09-16 | Power generation system of fuel battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5951479A JPS5951479A (en) | 1984-03-24 |
JPH043070B2 true JPH043070B2 (en) | 1992-01-21 |
Family
ID=15734177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57161390A Granted JPS5951479A (en) | 1982-09-16 | 1982-09-16 | Power generation system of fuel battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5951479A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0766826B2 (en) * | 1984-11-06 | 1995-07-19 | 三洋電機株式会社 | Fuel cell system control method |
JPS61227374A (en) * | 1985-03-30 | 1986-10-09 | Toshiba Corp | Fuel cell power generation system |
-
1982
- 1982-09-16 JP JP57161390A patent/JPS5951479A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5951479A (en) | 1984-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3607419A (en) | Fuel cell system control | |
Yen et al. | Experimental investigation of 1 kW solid oxide fuel cell system with a natural gas reformer and an exhaust gas burner | |
JP4147659B2 (en) | Control device for reformer | |
JPH0789493B2 (en) | Fuel system controller for fuel cell power plant | |
JPH0752649B2 (en) | Fuel reforming method for fuel cell | |
JP3212181B2 (en) | Method and apparatus for controlling combustion air amount of fuel cell fuel off-gas | |
JPH043070B2 (en) | ||
JP2001114502A (en) | Fuel reformer and fuel cell system | |
JPH07192742A (en) | Catalyst layer temperature control system of fuel reformer for fuel cell | |
JPH08329967A (en) | Fuel cell power generating plant | |
JPH07106881B2 (en) | Fuel cell reformer device | |
JP2860208B2 (en) | Operation control device for fuel cell power generator | |
JPS58119166A (en) | Fuel cell device incorporating fuel reformer | |
JP3513933B2 (en) | Fuel cell power generator | |
JPS6318307B2 (en) | ||
JPH03167759A (en) | Catalyst temperature controller of fuel reformer for use in fuel cell | |
JP3921391B2 (en) | Fuel cell power generation system and power generation method using fuel cell | |
JP3467759B2 (en) | Control method of outlet temperature of reformer | |
JPH08255621A (en) | Power generating device for fuel cell | |
JPH0556628B2 (en) | ||
JPH04284365A (en) | Fuel cell power generating device | |
JPH04243538A (en) | Method and device for controlling catalyst layer temperature of fuel reformer for fuel battery use | |
JP2002025598A (en) | Fuel cell system and its operating method | |
JPH03266367A (en) | Fuel system control unit of fuel cell system | |
JPS61101970A (en) | Fuel flow rate control device for fuel cell generation plant |