JPH04306704A - Deburring and chamfering method for force control robot - Google Patents

Deburring and chamfering method for force control robot

Info

Publication number
JPH04306704A
JPH04306704A JP7113691A JP7113691A JPH04306704A JP H04306704 A JPH04306704 A JP H04306704A JP 7113691 A JP7113691 A JP 7113691A JP 7113691 A JP7113691 A JP 7113691A JP H04306704 A JPH04306704 A JP H04306704A
Authority
JP
Japan
Prior art keywords
control
force
chamfering
deburring
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7113691A
Other languages
Japanese (ja)
Inventor
Ryoji Mukai
良二 向井
Yoichi Kimura
洋一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7113691A priority Critical patent/JPH04306704A/en
Publication of JPH04306704A publication Critical patent/JPH04306704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Milling Processes (AREA)
  • Numerical Control (AREA)
  • Manipulator (AREA)

Abstract

PURPOSE:To execute work which satisfies the finish precision of deburring and chamfering by separating work into two steps even in the case of a casting which has comparatively large burrs and dimension deviation. CONSTITUTION:When a force control robot which can simultaneously control a position and force executes the deburring and chamfering of the case which has the comparatively large burrs and dimension deviation at the same time, work is separated into the two steps. In a first step, rough working is executed with position control, and finish working is executed with specified pressure control in a second step.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、比較的大きなバリと寸
法偏差とを有する鋳物のバリ及び面取りをする方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for burring and chamfering castings having relatively large burrs and dimensional deviations.

【0002】0002

【従来の技術】比較的小さなバリのある鋳物の場合、鋳
物自体の寸法偏差や教示誤差などがあっても、一定の押
付け力制御でバリ及び面取りが可能であった。
2. Description of the Related Art In the case of a casting with a relatively small burr, it has been possible to eliminate the burr and chamfer by controlling a constant pressing force even if there are dimensional deviations or teaching errors of the casting itself.

【0003】0003

【発明が解決しようとする課題】しかしながら、比較的
大きなバリがある鋳物に対しては、次のような問題があ
る。
However, castings with relatively large burrs have the following problems.

【0004】(1)一定の押付け力制御のみでは、設定
押付け力が小さいとバリ自体の部分で設定押付け力に到
達し、面取りをする部分の加工ができない。
(1) If only a constant pressing force is controlled, if the set pressing force is small, the set pressing force will be reached at the burr itself, making it impossible to process the part to be chamfered.

【0005】(2)大きなバリに合わせて設定押付け力
を大きな値にすると、バリの大きさが不規則であるため
、鋳物自体を傷付けてしまう。
(2) If the set pressing force is set to a large value in accordance with large burrs, the casting itself will be damaged because the burrs are irregular in size.

【0006】本発明は以上の問題点を解決するため、位
置制御のみで行う場合と、一定の押付け力制御で行う場
合との2段階に分けて、バリ及び面取りする方法を提供
することを目的とする。
[0006] In order to solve the above problems, the present invention aims to provide a method for burring and chamfering in two stages: one using only position control and the other using constant pressing force control. shall be.

【0007】[0007]

【課題を解決するための手段】ロボット本体に力センサ
を介して加工工具を設け、制御装置によって加工工具の
送り方向に対しては位置制御を行い、加工工具の押付け
方向に対しては力制御を行って、比較的大きなバリと寸
法偏差のある鋳物のバリ及び面取りをする方法において
、第1段階では位置制御でバリ及び面取り作業の粗加工
を行い、第2段階では一定の押付けをする力制御にて仕
上げ加工をするのである。また更には第1段階での位置
制御は、第2段階における力制御を行うために教示した
経路デ−タを基に、自動創生した経路デ−タを用いるよ
うにする。
[Means for solving the problem] A processing tool is installed in the robot body via a force sensor, and a control device performs position control in the feeding direction of the processing tool, and force control in the pressing direction of the processing tool. In this method, the rough machining of the burr and chamfering work is performed by position control in the first step, and the second step is by using a constant pressing force. Finishing is done under control. Furthermore, the position control in the first stage uses automatically generated route data based on the route data taught for performing the force control in the second stage.

【0008】[0008]

【実施例】本発明の一実施例を図面に基づいて詳説する
。図2は本本発明を実施する構成図である。1はロボッ
トア−ムで、先端には力センサ3を介して工具本体と工
具ホルダ−から成る加工工具2を設け、4は減速機構5
を介してロボットア−ム1を駆動するサ−ボモ−タであ
り、6はサ−ボモ−タ4の位置を検出するエンコ−ダで
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be explained in detail with reference to the drawings. FIG. 2 is a block diagram for implementing the present invention. 1 is a robot arm, and a processing tool 2 consisting of a tool body and a tool holder is installed at the tip via a force sensor 3, and 4 is a reduction mechanism 5.
A servo motor drives the robot arm 1 via the servo motor 1, and 6 is an encoder that detects the position of the servo motor 4.

【0009】制御装置7には演算装置8と、演算装置8
により演算処理したデ−タを記憶する記憶装置9を設け
、エンコ−ダ6からの信号を制御装置7に送り、演算処
理したデ−タにより、サ−ボアンプ10を介してサ−ボ
モ−タ4により駆動し、加工工具2は教示された位置、
姿勢でバリ及び面取りをする。また、エンコ−ダ6と力
センサ3からの信号を制御装置7に送り演算処理するこ
とにより、加工工具2は教示された位置、姿勢で、鋳物
に対し一定の押付け力を保ちながら、バリ及び面取りを
する。このように、力センサ3からの信号により、位置
制御のみと位置と力の同時制御の各制御モ−ドに切り替
えることができる。
The control device 7 includes an arithmetic device 8 and an arithmetic device 8.
A storage device 9 is provided to store the data processed by the encoder 6, and the signal from the encoder 6 is sent to the control device 7, and the processed data is used to control the servo motor via the servo amplifier 10. 4, the machining tool 2 is moved to the taught position,
Make burrs and chamfers depending on the posture. In addition, by sending signals from the encoder 6 and force sensor 3 to the control device 7 for calculation processing, the machining tool 2 maintains a constant pressing force against the casting at the taught position and posture, and eliminates burrs. Make a chamfer. In this way, the signal from the force sensor 3 can be used to switch between control modes of only position control and simultaneous control of position and force.

【0010】図3は比較的大きなバリと寸法偏差とを有
する鋳物の模式図である。このような鋳物としてはアル
ミホイ−ルがある。■は教示デ−タから定まる鋳物の基
準位置であり、図3では鋳物の位置と鋳物の基準位置と
が一致しているが、鋳物の寸法偏差や教示誤差などによ
り、鋳物の位置と鋳物の基準位置との間に誤差が発生す
る。■は本実施例の第2段階に行う最終的な仕上げ加工
を行う位置■は一定の押付け力制御により、鋳物の寸法
偏差を許容し仕上げ加工が可能となる最大限度のバリの
大きさ■は本実施例の第1段階に行う粗加工を行う位置
を示す。
FIG. 3 is a schematic diagram of a casting having relatively large burrs and dimensional deviations. Aluminum wheels are examples of such castings. ■ is the reference position of the casting determined from the teaching data. In Fig. 3, the position of the casting and the reference position of the casting match, but due to dimensional deviations of the casting, teaching errors, etc., the position of the casting and the reference position of the casting An error occurs between the reference position and the reference position. ■ is the position where the final finishing machining is performed in the second stage of this example; ■ is the maximum burr size ■ that allows for dimensional deviation of the casting and allows finishing machining by controlling a constant pressing force. The position where the rough machining performed in the first stage of this embodiment is performed is shown.

【0011】本実施例では、■及び■の経路デ−タをそ
れぞれ教示にして実現可能である。しかし、■の経路デ
−タを教示するには、■のバリの状態まで人手加工が入
用であるし、また■の経路デ−タと合わせて2回の教示
をすることは非能率である。よって■の経路デ−タは■
の経路デ−タを基に力制御を利用して自動創生するよう
にする。この方法についての手順を図4、及び図1に基
づき説明する。
This embodiment can be realized by teaching the route data of (1) and (2), respectively. However, in order to teach the route data of ■, manual processing is required to reach the burr state of ■, and it is inefficient to teach the route data twice along with the route data of ■. be. Therefore, the route data for ■ is
Automatic creation using force control based on route data. The procedure for this method will be explained based on FIG. 4 and FIG. 1.

【0012】(1)まず始めに第2段階の一定の押付け
力制御を行うために必要な経路デ−タの教示を行う。こ
の経路デ−タの教示では、位置の教示点P1〜P5の他
に、加工工具を押付ける方向の教示も行う。具体的には
、それぞれの教示点間の任意の位置F1〜F4で、加工
工具の先端を直接押付けたい方向に任意の大きさの力で
ワ−クに押付け、このときに力センサで検出された3軸
方向の分力から方向余弦を演算し、記憶装置に記憶する
。以上の教示方法により再生時には、それぞれの区間で
教示した方向に一定の押付け力制御を行いながら、加工
工具をワ−クに倣わせる動作ができる。
(1) First, path data necessary for performing the second stage constant pressing force control is taught. In this path data teaching, in addition to the positional teaching points P1 to P5, the direction in which the machining tool is to be pressed is also taught. Specifically, at arbitrary positions F1 to F4 between the respective teaching points, press the tip of the processing tool directly against the workpiece in the desired direction with an arbitrary force, and at this time, the force sensor detects the force. The direction cosine is calculated from the component forces in the three axial directions and stored in the storage device. With the teaching method described above, during playback, it is possible to cause the machining tool to follow the workpiece while controlling the pressing force at a constant level in the taught direction in each section.

【0013】(2)次に第1段階の経路デ−タの自動創
生をする。これは(1)で作成した教示点を基に位置と
力を同時に制御し、ワ−クに一定の押付け力を与えなが
らロボットの再生運転を行い、この時のロボットの軌跡
(●印で表す)から、押付け方向と逆方向に規定量だけ
ずらせた位置(○で表す)を、力制御のサンプリング周
期に同期した時間毎に制御装置の記憶装置に記憶させる
(2) Next, the first stage of automatic generation of route data is performed. This is done by simultaneously controlling the position and force based on the teaching point created in (1), performing regenerative operation of the robot while applying a constant pressing force to the workpiece, and reproducing the robot's trajectory (represented by the ● mark). ), a position (represented by a circle) shifted by a specified amount in the opposite direction to the pressing direction is stored in the storage device of the control device at every time synchronized with the sampling period of force control.

【0014】この方法を図5に基づき詳細に説明する。 TP1,TP2は位置の教示デ−タであり、加工工具は
TP1からTP2に向い直線補間で移動する。  この
とき力制御のサンプリング周期毎に、現在位置P(PX
,PY,PZ)からの位置制御方向の目標値Pp(Pp
X,PpY,PpZ)と、力制御方向の目標値Pf(P
fX,PfY,PfZ)の演算をする。Ppの演算は、
一般のTP1,TP2の教示点による再生方式で成す。
This method will be explained in detail with reference to FIG. TP1 and TP2 are position teaching data, and the processing tool moves from TP1 to TP2 by linear interpolation. At this time, the current position P(PX
, PY, PZ) in the position control direction from the target value Pp (Pp
X, PpY, PpZ) and the target value Pf (P
fX, PfY, PfZ). The calculation of Pp is
This is done using the general reproduction method using the teaching points of TP1 and TP2.

【0015】Pfについては、力センサにより検出され
た加工工具とワ−クとの間で生じた力と、押付け力の大
きさを示す設定押付け力との偏差に基づいて、演算され
る速度指令値として与えられる。このようにして得られ
たPpとPfを用い(3)式で示す演算を行い、力制御
のサンプリング周期毎に現在位置を更新してゆくことに
より、一定の押付け力制御が実現されるが、このとき(
4)式で示すように(3)式で演算された値から力制御
の逃げ方向に規定量Pk(PkX,PkY,PkZ)ず
れた位置P1(P1X,P1Y,P1Z)の演算を行い
、逆座標変換の演算により得られたロボット各軸のエン
コ−ダ値を記憶装置に記憶する。         PX  =  PX  +  PpX
  +  PfX        PY  =  PY
  +  PpY  +  PfY         
       (3)            PZ 
 =  PZ  +  PpZ  +  PfZ   
                         
      PX1=  PX  +  PpX  +
  PfX  −  PkX            
          PY1=  PY  +  Pp
Y  +  PfY  −  PkY    (4) 
           PZ1=  PZ  +  P
pZ  +  PfZ  −  PkZ       
       この前記規定量Pkを、鋳物の寸法誤差
を許容し、仕上げ加工部分までの大きさに取ることによ
り、第1段階の位置制御による粗加工が可能になる。
Regarding Pf, the speed command is calculated based on the deviation between the force generated between the processing tool and the workpiece detected by the force sensor and the set pressing force indicating the magnitude of the pressing force. Given as a value. Using Pp and Pf obtained in this way, the calculation shown in equation (3) is performed and the current position is updated every sampling period of force control, thereby achieving constant pressing force control. At this time(
4) As shown in formula (3), calculate the position P1 (P1X, P1Y, P1Z) that is shifted by a specified amount Pk (PkX, PkY, PkZ) in the escape direction of force control from the value calculated by formula (3), and The encoder values for each axis of the robot obtained by the coordinate transformation calculation are stored in a storage device. PX = PX + PpX
+ PfX PY = PY
+ PpY + PfY
(3) PZ
= PZ + PpZ + PfZ

PX1= PX + PpX +
PfX − PkX
PY1=PY+Pp
Y + PfY − PkY (4)
PZ1= PZ + P
pZ + PfZ − PkZ
By allowing the dimensional error of the casting and setting the predetermined amount Pk to a size up to the finish-machined portion, rough machining by position control in the first stage can be performed.

【0016】以上に述べた方法により、1度の教示で第
1段階では(2)で作成したデ−タで粗加工をし、第2
段階では(1)で作成した教示デ−タで、一定の押付け
力制御で仕上げ加工をするのである。
By the method described above, in the first stage, rough machining is performed using the data created in (2) in one teaching, and in the second stage, the rough machining is performed using the data created in (2).
In step (1), the teaching data created in step (1) is used to perform finishing machining with constant pressing force control.

【発明の効果】本発明により、比較的大きなバリと寸法
偏差とを有する鋳物であっても、一定の押付け力制御に
よってバリ及び面取りができ、仕上げ精度を満足するこ
とができる。
According to the present invention, even if a casting has relatively large burrs and dimensional deviations, burrs and chamfers can be removed by constant pressing force control, and finishing accuracy can be satisfied.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明のフロ−チャ−ト図[Fig. 1] Flowchart diagram of the present invention

【図2】本発明を実施する構成図[Figure 2] Configuration diagram for implementing the present invention

【図3】本発明が対象とする比較的大きなバリと寸法偏
差とを有する鋳物を表した模式図
[Fig. 3] A schematic diagram showing a casting having relatively large burrs and dimensional deviations, which is the object of the present invention.

【図4】本発明の第一段階で用いる経路デ−タを自動創
生する方法の概念図
[Fig. 4] Conceptual diagram of a method for automatically generating route data used in the first step of the present invention

【図5】本発明の第一段階で用いる経路デ−タを自動創
生する方法の具体図
[Figure 5] Specific diagram of a method for automatically creating route data used in the first step of the present invention

【符号の説明】[Explanation of symbols]

1    アーム 2    加工工具 3    力センサ 4    サーボモータ 7    制御装置 8    演算装置 9    記憶装置 1 Arm 2 Processing tools 3 Force sensor 4 Servo motor 7 Control device 8 Arithmetic device 9. Storage device

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  ロボット本体に力センサを介して加工
工具を設け、制御装置によって加工工具の送り方向に対
しては位置制御を行い、加工工具の押付け方向に対して
は力制御を行って、比較的大きなバリと寸法偏差のある
鋳物のバリ及び面取りをする方法において、第1段階で
は位置制御でバリ及び面取り作業の粗加工を行い、第2
段階では一定の押付けをする力制御にて仕上げ加工をす
ることを特徴とする力制御ロボットにおけるバリ及び面
取り方法。
1. A processing tool is provided on the robot body via a force sensor, and a control device performs position control in the feeding direction of the processing tool, and performs force control in the pressing direction of the processing tool, In the method of burring and chamfering castings with relatively large burrs and dimensional deviations, the first step is to perform rough machining of burrs and chamfering using position control, and the second step is
A method for burring and chamfering in a force-controlled robot, characterized in that finishing is performed by force control with constant pressing in each step.
【請求項2】  第1段階での位置制御は、第2段階に
おける力制御を行うために教示した経路デ−タを基に、
自動創生した経路デ−タを用いる請求項1記載の力制御
ロボットにおけるバリ及び面取り方法。
[Claim 2] The position control in the first stage is based on the path data taught to perform the force control in the second stage.
A burr and chamfering method in a force-controlled robot according to claim 1, which uses automatically generated path data.
JP7113691A 1991-04-03 1991-04-03 Deburring and chamfering method for force control robot Pending JPH04306704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7113691A JPH04306704A (en) 1991-04-03 1991-04-03 Deburring and chamfering method for force control robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7113691A JPH04306704A (en) 1991-04-03 1991-04-03 Deburring and chamfering method for force control robot

Publications (1)

Publication Number Publication Date
JPH04306704A true JPH04306704A (en) 1992-10-29

Family

ID=13451866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7113691A Pending JPH04306704A (en) 1991-04-03 1991-04-03 Deburring and chamfering method for force control robot

Country Status (1)

Country Link
JP (1) JPH04306704A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322020A (en) * 2000-05-15 2001-11-20 Mazda Motor Corp Deburring method and device for forging member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001322020A (en) * 2000-05-15 2001-11-20 Mazda Motor Corp Deburring method and device for forging member

Similar Documents

Publication Publication Date Title
JP6140130B2 (en) Numerical control device for protecting tools and workpieces
US5261768A (en) Automated edge finishing using an active XY table
JP6646027B2 (en) Post-processor device, machining program generation method, CNC machining system, and machining program generation program
US9244456B2 (en) Tool path generation method and apparatus
CN109725602B (en) Numerical controller, CNC machine tool, computer-readable information recording medium, and numerical control method
US20160274560A1 (en) Numerical controller performing reciprocal turning in complex fixed cycle
JP2019070953A (en) Machining program processing device and multiple-spindle machine equipped with the same
US6223095B1 (en) Numeric control command generator and method
JP3459516B2 (en) Superposition control method by numerical controller
JP5765557B2 (en) Trajectory tracking device and method for machining robot
EP0487738B1 (en) System for correcting quantity of deformation of tool
JPH04306704A (en) Deburring and chamfering method for force control robot
JP2919754B2 (en) Backlash measurement and correction device for spherical or circular surface machining
JP2020019126A (en) Automatic deburring and/or edge finishing device, and automation method of deburring and/or edge finishing
JP3051576B2 (en) Workpiece deformation prevention clamp method
JPH07308879A (en) Automatic teaching method for robot
JP3064043B2 (en) Machining method in which workpiece deformation due to clamp is corrected, and NC machine tool for implementing the method
JP3086172B2 (en) Industrial robot controller
JPH06110534A (en) Position control method for machine tool
JPH0573124A (en) Automatic teaching method for robot
JP2624174B2 (en) Automatic operation method of numerical controller
JPH11194813A (en) Operation command generating method for industrial machine
JPH06262562A (en) Operation teaching method for working robot
JPH06289923A (en) Automatic teaching method for robot
JPH07136904A (en) Deburring robot control method