JPH06289923A - Automatic teaching method for robot - Google Patents

Automatic teaching method for robot

Info

Publication number
JPH06289923A
JPH06289923A JP7655293A JP7655293A JPH06289923A JP H06289923 A JPH06289923 A JP H06289923A JP 7655293 A JP7655293 A JP 7655293A JP 7655293 A JP7655293 A JP 7655293A JP H06289923 A JPH06289923 A JP H06289923A
Authority
JP
Japan
Prior art keywords
robot
teaching
work
force
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7655293A
Other languages
Japanese (ja)
Inventor
Manabu Akishige
学 秋重
Yoichi Kimura
洋一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP7655293A priority Critical patent/JPH06289923A/en
Publication of JPH06289923A publication Critical patent/JPH06289923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manipulator (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To shorten teaching work time and to execute highly precise teaching by operating a robot while pressing a work to a working tool based on coarse teaching points and a pressing force direction, setting the rocus of the force control operation of the robot to be a teaching point and executing storage into a memory in synchronism with the sampling period of force control. CONSTITUTION:The work 4 grasped by a hand 2 is guided on the working route of the work 4 in the working tool 15, the positions P1 and P2 are set to be the coarse teaching points and are stored in the memory of a robot control board 10. A representative normal direction against a work surface between the coarse teaching points P1 and P2 is taught as a pressing direction F1 to an edged tool 17 fixed to the working tool 15. A force control operation is executed for the work 4 in such a way that desired force operates on the edged tool 17 fixed to the working tool 15, and the rocus is generated as the teaching point. The encoder shafts of the motor shafts 6 at positions p1-p16 at every time synchronized with the sampling periods of the force control of the robot rocus are stored in the memory of a robot controller as CP teaching data.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、力制御を利用したロボ
ットにおいて、力制御中のロボットの動作軌跡を教示点
として、制御装置のメモリに記憶するロボットの自動教
示方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic teaching method for a robot using force control, in which a motion locus of the robot under force control is stored as a teaching point in a memory of a control device.

【0002】[0002]

【従来の技術】力制御を応用したロボットの自動教示法
には、本出願人が先に出願した工具把持型について特開
平3−71135号公報がある。ロボット先端の工具ホ
ルダーに加工工具を固着し、ロボットの可動範囲にワー
ク固定治具によって固定されたワークを加工する場合の
ロボットの自動教示法である。
2. Description of the Related Art As an automatic teaching method for a robot to which force control is applied, Japanese Patent Application Laid-Open No. 3-71135 discloses a tool gripping type previously filed by the present applicant. This is an automatic teaching method for a robot when a machining tool is fixed to a tool holder at the tip of the robot and a workpiece fixed by a workpiece fixing jig is machined in the movable range of the robot.

【0003】[0003]

【発明が解決しようとする課題】従来の工具把持型ロボ
ットでは次の問題点がある。 研削、切断、研磨など複数の加工作業を複数個の加工
工具でワークを加工する場合、ATC(Auto Tool Chan
ger)を用いるが、加工工具取り替え作業に時間がかか
る。 加工反力と工具重量がロボットの可搬重量を超える大
型工具が使用できず、加工作業効率が低下する。よっ
て、ワーク形状が比較的小さく、軽量の場合では、ワー
ク把持型ロボットを採用するのが良い。
The conventional tool gripping type robot has the following problems. When machining a workpiece with multiple machining tools such as grinding, cutting, and polishing, ATC (Auto Tool Chan
ger) is used, but it takes time to replace the processing tool. A large tool whose processing reaction force and tool weight exceeds the payload capacity of the robot cannot be used, and processing efficiency decreases. Therefore, when the work shape is relatively small and lightweight, it is preferable to adopt the work holding robot.

【0004】しかし、ワーク把持型ロボットでは、 精度を要する複雑形状ワークを加工する場合、教示点
数が多く教示作業に時間がかかる。 複雑形状ワークを加工する場合、ワークへの加工工具
の刃具に対して適切な位置で精度良く当てる作業は、接
触面を作業者の目で確認出来ないことが多く困難であ
る。本発明の目的は、ワーク把持型ロボットでの教示作
業時間の短縮を図り、高精度の教示が可能なロボットの
自動教示法を提供することである。
However, in the work-holding type robot, when machining a complex-shaped work that requires high precision, the number of teaching points is large and the teaching work takes time. When machining a complex-shaped workpiece, it is often difficult to accurately check the contact surface with the operator's eyes in order to accurately apply the workpiece to the blade of the machining tool at an appropriate position. An object of the present invention is to provide an automatic teaching method for a robot, which can shorten the teaching work time in a workpiece gripping robot and can perform highly accurate teaching.

【0005】[0005]

【課題を解決するための手段】本発明は、力制御を応用
した産業用ロボットにおいて、教示再生ロボットと、該
ロボットのハンドで把持した加工対象ワークと、該ロボ
ットの可動範囲に固定配置した研削、切断、研磨等の加
工工程に合わせた、該研削、切断、研磨等に要する複数
個の加工工具と、該ロボット先端と該ハンドの間に設け
た力センサと、該ロボットの制御装置とで構成し、加工
工具に対してワークの位置をラフにロボットに教示し、
ワークの位置を粗教示点とし、該粗教示点間でワークの
加工工具への押し付け力方向を教示し、粗教示点とワー
クの加工工具への押し付け力方向を基に、所望の力で連
続的にワークを加工工具に押し付けながらロボットを動
作させ、ロボットの該力制御動作の軌跡をCP教示点と
して該教示点データを制御装置のメモリに記憶し、該ロ
ボットの力制御動作を力制御のサンプリング周期に同期
した時間毎に行なうロボットの自動教示法である。ま
た、前記CP教示点データを制御装置のメモリに記憶す
るロボットの力制御動作を、ロボットが一定距離移動し
た時点毎に行なうロボットの自動教示法である。
According to the present invention, in an industrial robot to which force control is applied, a teaching reproduction robot, a workpiece to be held by a hand of the robot, and grinding fixedly arranged in a movable range of the robot. , A plurality of processing tools required for the grinding, cutting, polishing, etc. according to processing steps such as cutting, polishing, a force sensor provided between the robot tip and the hand, and a controller for the robot. Configure and teach the robot roughly the position of the workpiece with respect to the machining tool,
The position of the work is used as a rough teaching point, the direction of the pressing force of the work on the machining tool is taught between the rough teaching points, and the desired force is applied continuously based on the rough teaching point and the direction of the pressing force of the work on the machining tool. The robot while operating the workpiece against the machining tool, the locus of the force control operation of the robot is used as a CP teaching point, the teaching point data is stored in the memory of the control device, and the force control operation of the robot is controlled by the force control operation. This is an automatic teaching method for robots that is performed at each time synchronized with the sampling cycle. Further, it is an automatic teaching method for a robot, in which the force control operation of the robot for storing the CP teaching point data in the memory of the control device is carried out every time the robot moves a certain distance.

【0006】[0006]

【実施例】本発明の実施例を図1から図3に基づいて詳
説する。図2は粗教示点からCP教示点を生成する図、
図3は本発明の自動教示法を実施するための研削加工用
ロボットの構成を示す。ロボット本体1とこれを制御す
る制御装置10を主構成とする。
Embodiments of the present invention will be described in detail with reference to FIGS. FIG. 2 is a diagram for generating CP teaching points from rough teaching points,
FIG. 3 shows the structure of a grinding robot for carrying out the automatic teaching method of the present invention. The robot main body 1 and a control device 10 for controlling the main body are the main components.

【0007】ワーク4を把持するハンド2を有し、把持
したワーク4を回転するためのサーボモータM1 、ひね
るためのサーボモータM2 、曲げるためのサーボモータ
3、前進後退させるためのサーボモータM4 、昇降さ
せるためのサーボモータM5、旋回させるためのサーボ
モータM6 、および力制御を行なうための力センサ3を
ロボット本体1の先端とハンド2の間に設けた。回転機
構を有する研削、切断、研磨等の加工工程に合わせた前
記研削、切断、研磨等に要する複数個の加工工具15を
ロボット本体1の可動範囲内に固定して設ける。加工工
具15は、回転装置16にエンドミル等の刃具17を固
着する。加工工具については、研削、切断、研磨など用
途によって回転装置、刃具を選択する。
It has a hand 2 for gripping the work 4, and a servo motor M 1 for rotating the gripped work 4, a servo motor M 2 for twisting, a servo motor M 3 for bending, and a servo for moving forward and backward. A motor M 4 , a servo motor M 5 for moving up and down, a servo motor M 6 for rotating, and a force sensor 3 for performing force control are provided between the tip of the robot body 1 and the hand 2. A plurality of processing tools 15 required for the grinding, cutting, polishing, etc., which have a rotating mechanism and are adapted to processing steps such as grinding, cutting, polishing, etc., are fixedly provided within the movable range of the robot body 1. The processing tool 15 fixes a blade 17 such as an end mill to a rotating device 16. For processing tools, select a rotating device or cutting tool depending on the application such as grinding, cutting, or polishing.

【0008】ワーク4は母材5と突起物6とで構成され
ており、さらに突起物6は母材5の外郭縁の外方に不定
形状に突出している。このようなワークには例えば鋳物
があり、バリや湯口跡が突起物になる。ロボット本体1
と、制御装置10は、動力線11および信号線12によ
り結線する。
The work 4 is composed of a base material 5 and projections 6, and the projections 6 project in an irregular shape outside the outer edge of the base material 5. Such workpieces include, for example, castings, and burrs and sprue marks become projections. Robot body 1
Then, the control device 10 is connected by the power line 11 and the signal line 12.

【0009】以上に述べたような図3の構成によって、
次の作用をする。回転機構を持ち、研削、切断、研磨等
の加工工程に合わせた複数個の加工工具15を加工工具
台30に固定する。図3では、ただ1つの加工工具を示
した。粗教示、自動教示時に用いるワークは、手加工等
にて突起物6を除去したモデルワークを用い、モデルワ
ークをロボットのハンド2にて把持する。加工工具15
にハンド2で把持したワーク4をワーク4の加工経路に
ティーチングボックス(図示せず)にて誘導し、その位
置P1,P2(図2に示す)を粗教示点としてロボット
制御盤10のメモリに記憶する(粗教示作業)。
With the configuration of FIG. 3 as described above,
It has the following effects. It has a rotating mechanism and fixes a plurality of machining tools 15 to the machining tool base 30 according to machining processes such as grinding, cutting and polishing. In FIG. 3, only one machining tool is shown. As the work used for rough teaching and automatic teaching, a model work from which the protrusions 6 have been removed by hand machining or the like is used, and the model work is gripped by the robot hand 2. Processing tool 15
Then, the work 4 gripped by the hand 2 is guided to the machining path of the work 4 by a teaching box (not shown), and its positions P1 and P2 (shown in FIG. 2) are set as rough teaching points in the memory of the robot control panel 10. Memorize (rough teaching work).

【0010】この時、教示点は力制御動作にてワークが
工具に倣う距離内であれば、加工工具から3〜6ミリの
位置に離して教示しても良い。この精度の粗さは、力制
御のゲインの大きさに依る。力制御のゲインを大きくと
るほど、ワークと工具の間を離してラフに教示すること
ができる。図2に示すように、ワークと刃具を離して粗
教示した位置をワークの任意の位置Gと同位置のP1,
P2で示す。自動教示では、ワークが工具に倣うため、
粗教示点P1,P2はワークの任意の位置Gとは一致し
ないことになる。また粗教示点間P1,P2でのワーク
表面に対する代表的な法線方向を加工工具15に固着し
た刃具17への押し付け力方向F1として教示する。
At this time, the teaching point may be taught at a position 3 to 6 mm away from the machining tool as long as the work is within the distance that the work follows the tool in the force control operation. The roughness of this accuracy depends on the magnitude of the gain of force control. The larger the force control gain, the farther the teaching can be performed from the work and the tool. As shown in FIG. 2, the position where the work and the cutting tool are roughly taught is the position P1, which is the same position as the arbitrary position G of the work.
This is indicated by P2. With automatic teaching, the workpiece follows the tool,
The rough teaching points P1 and P2 do not coincide with the arbitrary position G of the work. Further, a typical normal direction to the work surface between the rough teaching points P1 and P2 is taught as a pressing force direction F1 to the cutting tool 17 fixed to the machining tool 15.

【0011】このようにしてワーク4の動作経路におけ
る粗教示点P1,P2、加工工具への押し付け力方向F
1及びワークの送り速度(図示しない)を順次教示し、
制御装置10のメモリに粗教示プログラムを記憶する。
In this way, the rough teaching points P1 and P2 in the operation path of the work 4 and the direction F of the pressing force to the machining tool are set.
1 and work feed speed (not shown) are taught in sequence,
The rough teaching program is stored in the memory of the control device 10.

【0012】力制御を用いてワーク4に倣わせて力制御
動作の軌跡を教示するとき(自動教示)は、ワーク4と
刃具17の摩擦抵抗を軽減するために、刃具と同一寸
法、同一形状の刃の付いていない教示用刃具モデルを用
いても本発明のロボット自動教示法が支障無く適用でき
る。ロボット本体1は、図3では6軸円筒座標型として
いるが、ワークの突起物を加工する姿勢及び加工反力、
対負荷力、合成が満たされれば、他の形式のロボットを
用いても良い。
When the trajectory of the force control operation is taught by following the work 4 using the force control (automatic teaching), in order to reduce the frictional resistance between the work 4 and the cutting tool 17, the same size and shape as the cutting tool are used. The robot automatic teaching method of the present invention can be applied without any problem even if a teaching tool model without a blade is used. Although the robot main body 1 is of a 6-axis cylindrical coordinate type in FIG. 3, the posture and the processing reaction force for processing the protrusion of the work are
Other types of robots may be used as long as the load resistance and the composition are satisfied.

【0013】図3のように構成されたロボットで、ワー
ク4が加工工具15に固着された刃具17に所望の力が
作用するように力制御動作させ、その軌跡を教示点とし
て生成していく。この自動教示では、ロボットアーム先
端のワークと加工工具を力制御方向に所望の力で連続的
に押し付ける力制御と、粗教示点を基にロボットを位置
制御再生する、2つの制御を同時に行なうハイブリッド
制御を行なう。
In the robot constructed as shown in FIG. 3, the work 4 is force-controlled so that a desired force acts on the cutting tool 17 fixed to the machining tool 15, and the locus is generated as a teaching point. . In this automatic teaching, a hybrid control that performs two controls at the same time, that is, force control that continuously pushes the workpiece and machining tool at the robot arm tip in the force control direction with a desired force, and position control reproduction of the robot based on the rough teaching point. Take control.

【0014】本発明のフローチャート(図1)、粗教示
点からCP教示点を生成するモデル図(図2)に基づい
て本発明の自動教示法について説明する。自動教示の基
となる粗教示作業を作業者のロボット操縦によって行な
う。図2の加工部に曲線を持つワークに対して、P1,
P2を粗教示点とする。また、ワークに対する押し付け
力の方向F1を教示する。また、加工再生時の速度を教
示する。
The automatic teaching method of the present invention will be described based on the flow chart of the present invention (FIG. 1) and a model diagram (FIG. 2) for generating CP teaching points from rough teaching points. The rough teaching work, which is the basis of automatic teaching, is performed by the operator's robot control. For the workpiece with a curved line in the machining part of FIG. 2, P1,
P2 is the rough teaching point. Further, the direction F1 of the pressing force against the work is taught. Also, the speed at the time of processing and reproducing is taught.

【0015】粗教示点P1の粗教示位置データを読み出
し(ステップ1)、通常の再生動作によってロボットを
P1の位置へ動作させる(ステップ2)。P1からハイ
ブリッド制御を行なうものとする。次に、ワークへの押
し付け力方向F1と次の粗教示点位置P2を読み出す
(ステップ3−5)押し付け力方向F1の方向へ工具を
ワークに押し付けながら、工具をP1からP2に移動す
る(ステップ6)。その際にロボット軌跡の、力制御の
サンプリング周期に同期した時間毎の位置p1〜p16
のモータ6軸のエンコーダ値をロボット制御装置のメモ
リにCP教示データとして記憶させる(ステップ7)。
図2に示すCP教示点p1〜p16はワークの任意の定
位置Gの移動を示す。CP教示点間の距離は、粗教示作
業時に教示した加工再生時の速度によって決まる。粗教
示点P2付近に達するまでこの動作を繰り返す(ステッ
プ8−9)。P2に達したら、次の粗教示点に到達する
まで同様の動作を行なう(ステップ4−10)。
The rough teaching position data of the rough teaching point P1 is read (step 1), and the robot is moved to the position P1 by a normal reproducing operation (step 2). Hybrid control is performed from P1. Next, the pressing force direction F1 to the work and the next rough teaching point position P2 are read (step 3-5), while the tool is pressed to the work in the pressing force direction F1 while moving the tool from P1 to P2 (step 6). At that time, the positions p1 to p16 of the robot trajectory for each time synchronized with the sampling cycle of force control
The encoder values of the motor 6-axis are stored as CP teaching data in the memory of the robot controller (step 7).
CP teaching points p1 to p16 shown in FIG. 2 indicate movements of an arbitrary fixed position G of the work. The distance between the CP teaching points is determined by the speed at the time of machining reproduction taught at the rough teaching work. This operation is repeated until the rough teaching point P2 is reached (step 8-9). When P2 is reached, the same operation is performed until the next rough teaching point is reached (step 4-10).

【0016】[0016]

【発明の効果】実施例ではCP再生用の教示点の自動生
成について述べたが、モータ6軸のエンコーダ値のロボ
ット制御装置のメモリへの記憶をロボットが一定距離移
動した時点毎に行ない、補間再生用の教示点データする
ことも容易に実現できる。本発明の構成により、教示作
業時間の短縮を図り、複雑曲線経路の高精度な教示点の
教示が可能となる。
In the embodiment, the automatic generation of the teaching point for the CP reproduction is described, but the interpolation of the interpolation of the encoder value of the motor 6 axis is stored in the memory of the robot controller every time the robot moves a certain distance. It is possible to easily realize teaching point data for reproduction. With the configuration of the present invention, it is possible to shorten the teaching work time and teach a teaching point on a complicated curved path with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のフローチャート図FIG. 1 is a flowchart of the present invention.

【図2】粗教示点からCP教示点を生成する図FIG. 2 is a diagram for generating CP teaching points from rough teaching points.

【図3】自動教示法を実施する実機構成図FIG. 3 is a block diagram of an actual machine that implements an automatic teaching method.

【符号の説明】[Explanation of symbols]

1 教示再生ロボット本体 2 ハンド 3 力センサ 4 ワーク 10 制御装置 15 加工工具 16 回転装置 17 刃具 ○ 粗教示点P1〜P2 × ワークの任意の定位置G → 押し付け力方向F1 ● CP教示点p1〜p16 1 Teaching reproduction robot main body 2 Hand 3 Force sensor 4 Workpiece 10 Control device 15 Machining tool 16 Rotating device 17 Cutting tool ○ Rough teaching point P1 to P2 × Workpiece fixed position G → Pressing force direction F1 ● CP teaching point p1 to p16

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ロボットと、該ロボットのハンドで把持
した加工対象ワークと、該ロボットの可動範囲に固定配
置した研削、切断、研磨等の加工工程に合わせた、該研
削、切断、研磨等に要する複数個の加工工具と、該ロボ
ット先端と該ハンドの間に設けた力センサと、該ロボッ
トの制御装置とで構成し、加工工具に対してワークの位
置をラフにロボットに教示し、ワークの位置を粗教示点
とし、該粗教示点間でワークの加工工具への押し付け力
方向を教示し、粗教示点とワークの加工工具への押し付
け力方向を基に、所望の力で連続的にワークを加工工具
に押し付けながらロボットを動作させる力制御を応用し
た教示再生型ロボットにおいて、ロボットの該力制御動
作の軌跡を力制御のサンプリング周期に同期した時間毎
にCP教示点として該教示点データを制御装置のメモリ
に記憶することを特徴とするロボットの自動教示法。
1. A robot, a workpiece to be machined grasped by a hand of the robot, and grinding, cutting, polishing, etc., which are fixedly arranged in a movable range of the robot, according to processing steps such as grinding, cutting, and polishing. The robot is composed of a plurality of required machining tools, a force sensor provided between the tip of the robot and the hand, and a controller for the robot, and roughly teaches the position of the workpiece to the machining tool. Is set as a rough teaching point, and the direction of the pressing force of the workpiece on the machining tool is taught between the rough teaching points. Based on the rough teaching point and the pressing force direction of the workpiece on the machining tool, the desired force is continuously applied. In a teaching playback robot that applies force control to move a robot while pressing a workpiece against a machining tool, the locus of the force control operation of the robot is used as CP teaching points at each time synchronized with the sampling cycle of force control. An automatic teaching method for a robot, characterized in that the teaching point data is stored in a memory of a control device.
【請求項2】 請求項1において、ロボットの力制御動
作の軌跡をロボットが一定距離移動した時点毎に教示点
データとして制御装置のメモリに記憶することを特徴と
するロボットの自動教示法。
2. The automatic teaching method for a robot according to claim 1, wherein the locus of the force control operation of the robot is stored in a memory of the control device as teaching point data every time the robot moves a certain distance.
JP7655293A 1993-04-02 1993-04-02 Automatic teaching method for robot Pending JPH06289923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7655293A JPH06289923A (en) 1993-04-02 1993-04-02 Automatic teaching method for robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7655293A JPH06289923A (en) 1993-04-02 1993-04-02 Automatic teaching method for robot

Publications (1)

Publication Number Publication Date
JPH06289923A true JPH06289923A (en) 1994-10-18

Family

ID=13608429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7655293A Pending JPH06289923A (en) 1993-04-02 1993-04-02 Automatic teaching method for robot

Country Status (1)

Country Link
JP (1) JPH06289923A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001277066A (en) * 2000-03-30 2001-10-09 Toyoda Mach Works Ltd Working device using robot
JP2015085496A (en) * 2013-11-01 2015-05-07 セイコーエプソン株式会社 Robot, robot system and control device
JP2016221653A (en) * 2015-06-03 2016-12-28 セイコーエプソン株式会社 Robot control device and robot system
US9829878B2 (en) 2013-11-01 2017-11-28 Seiko Epson Corporation Robot, robot system, and robot control device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001277066A (en) * 2000-03-30 2001-10-09 Toyoda Mach Works Ltd Working device using robot
JP2015085496A (en) * 2013-11-01 2015-05-07 セイコーエプソン株式会社 Robot, robot system and control device
US9829878B2 (en) 2013-11-01 2017-11-28 Seiko Epson Corporation Robot, robot system, and robot control device
JP2016221653A (en) * 2015-06-03 2016-12-28 セイコーエプソン株式会社 Robot control device and robot system

Similar Documents

Publication Publication Date Title
WO2010109536A1 (en) Numerical control device and method of controlling the numerical control device
JP2003195917A (en) Numerical control device
JP5452788B1 (en) Numerical controller
JPH074765B2 (en) Curved surface processing equipment
JPH06289923A (en) Automatic teaching method for robot
US6024001A (en) Method of turning works and lathe for carrying out the method
JP2771458B2 (en) Industrial robot deflection correction method
JPH06262562A (en) Operation teaching method for working robot
JPH02279286A (en) Positioning method for work
JPH0655408A (en) Deformation preventively cramping method for work
KR102491387B1 (en) Metal processing method
JPH05265537A (en) Automatic teaching method for robot
KR102491385B1 (en) Material processing method
JP7100491B2 (en) Machining load reproduction jig and machine tool machining load measurement method
JP2922617B2 (en) Designation method of pressing force direction in force control robot
Nagata et al. New finishing system for metallic molds using a hybrid motion/force control
Reddy et al. Development and analysis of reconfigurable robotic end-effector for machining and part handling
JP3010328B2 (en) 6-axis control machine tool
JP3099197B2 (en) Work delivery device for machine tools
JPH06102924A (en) Automatic calibration method for teaching point of robot
JPH06262403A (en) Position control device for moving body in machine tool
JPS6091406A (en) Method and device for teaching robot
JP2023046753A (en) Deburring/edge finishing method, and deburring/edge finishing device
JP2023131524A (en) Processing device
Asakawa et al. Automation of chamfering by an industrial robot; for the case of machined hole on a cylindrical workpiece