JPH0430506B2 - - Google Patents

Info

Publication number
JPH0430506B2
JPH0430506B2 JP61183060A JP18306086A JPH0430506B2 JP H0430506 B2 JPH0430506 B2 JP H0430506B2 JP 61183060 A JP61183060 A JP 61183060A JP 18306086 A JP18306086 A JP 18306086A JP H0430506 B2 JPH0430506 B2 JP H0430506B2
Authority
JP
Japan
Prior art keywords
layer
synthetic resin
conductive
antistatic
flooring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61183060A
Other languages
Japanese (ja)
Other versions
JPS6340054A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP61183060A priority Critical patent/JPS6340054A/en
Publication of JPS6340054A publication Critical patent/JPS6340054A/en
Publication of JPH0430506B2 publication Critical patent/JPH0430506B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Floor Finish (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は半導体組立工場、病院の手術室、クリ
ーンルーム、電算室、その他の工場、事務所、一
般家庭等の床に適用される帯電防止性のタイル型
床材に関するものである。 (従来技術) 従来、前記したように静電気の帯電や発生を嫌
う部屋の床にはアルミニウムやステンレススチー
ルよりなるフロア材が使用されていたが硬く、歩
行音や振動等の問題があるばかりでなく、外観が
単調でしかも高価である等の問題もあり、近時は
導電性ないし帯電防止性を付与した軟質ビニルの
長尺床材が開発され、この種の床材が多く使用さ
れるに至つた。 (発明が解決しようとする問題点) しかしながら、最近のOA機器の導入の活発化
にともない、配線変えを頻繁に行うことが多く、
これらの信号ケーブルは床材表面に這わせて配線
し、配線変えに備えてケーブルを長くとり、余分
のケーブル線をOA機器の裏側の床材表面上に乱
雑にまとめておくのが常態であり、見栄えが悪い
ばかりでなく、床材表面上の配線のためケーブル
を歩行中に足に引掛けたりするという欠点があつ
た。 この欠点を改善するために、近時種々の形式の
フリーアクセスフロアが開発され、このフリーア
クセスフロアは通常本来の床下地上にもう一層の
床を形成した2重床構造で、床下地と床の間の空
間に動力ケーブル、通信ケーブル、ネツトワーク
機器等を収納出来る様になつており、基本的には
450×450〜500×500m/mの寸法で浮床を形成す
るための支持体及び浮床の床下地となる床板とが
一つのユニツトとなつている。このユニツトを床
面上に敷きつめて前述の如く形成された空間にケ
ーブル類、ネツトワーク機器等を収納し、床板上
に床表装材としての床材を貼り合せるようにする
ものであつて、信号ケーブル等が床材表面上に配
線されることなく、見栄えが良く、配線換えの時
にも必要箇所のユニツトの床板を取り外し簡単に
配線換えができるというメリツトがあるものであ
つた。 この様なフリーアクセスフロア用床表装材とし
てタイルカーペツト、塩ビタイル等タイル状で帯
電防止処理を施こした床材が使用されているが、
タイルカーペツトの場合、表層部が繊維で構成さ
れているため、非常に汚れ易くゴミ、ホコリ、そ
の他飲食物の残渣等の付着しか汚れが除去出来ず
に見栄えが悪くなるばかりでなく、OA機器の誤
動作の原因となるタイルカーペツトに付着したゴ
ミ、ホコリやタイルカーペツト自体から発生する
繊維クズ等の塵が発生し易い等の欠点を有してい
た。一方、塩ビタイルは寸法安定性の確保と価格
の点から多量の粉末状無機質充填剤を含んでいる
ため、非常にもろく使用時に目地の部分が破損し
たり、摩耗により添加されている充填剤が出て来
て、これが塵としてOA機器の誤動作を引き起し
たり、又、寸法安定性が充分でなく使用環境の温
度変化による膨張、収縮のため目地部分で反り
(膨張した場合)や目地開き(収縮した場合)が
発生し易い(特にフリーアクセスフロアを敷設し
た後、配線換えを容易にするため感圧接着剤を使
用し床材を施工する場合に発生し易い)という欠
点があつた。 (問題点を解決するための手段) 本発明のタイル型帯電防止性床材1は、体積固
有抵抗値1011〜106Ωcmの裏打合成樹脂層2に、
非伸縮性でかつ抵抗値100〜105Ωの導電性基材3
を積層し、該導電性基材3上に、樹脂100重量部
に対して0〜100重量部の充填剤を含有し、かつ
体積固有抵抗値1011〜106Ωcmの合成樹脂表面層
4が積層され、積層体としての体積固有抵抗値が
1011〜106Ωcmに構成されてなるものである。 体積固有抵抗値1011〜106Ωcmの裏打合成樹脂
層2は、帯電防止性可塑剤、帯電防止剤、導電性
物質の1種以上を混入した合成樹脂組成物から形
成され、単層でも良いし、複層に構成しても良
い。又この層は、発泡層であつても非発泡層であ
つても良いし、複層の場合非発泡層同志又は発泡
層同志さらには非発泡層と発泡層とを組合せても
何らさしつかえないものである。 合成樹脂としては塩化ビニル樹脂、アクリル樹
脂、酢酸ビニル樹脂、ポリエチレン、ポリプロピ
レン、エチレン−酢酸ビニル共重合樹脂、ウレタ
ン樹脂等一般に使用される合成樹脂であればいず
れのものでも良いが、特に塩化ビニル系樹脂が好
ましい。本発明でいう塩化ビニル系樹脂とはポリ
塩化ビニル樹脂及び塩化ビニルと他のモノマー、
例えばエチレン、酢酸ビニル、ビニルエーテル、
マレイン酸エステル、アクリル、ウレタン等との
共重合体の他、ポリ塩化ビニル樹脂と他のポリマ
ーとのブレンド物も含むものである。 帯電防止性可塑剤としてはトリブトキシエチル
ホスフエート(TBXP、大八化学製)、ブチルジ
グリコールアジペート(BXA、大八化学製)、サ
ンソサイザーC−1100(新日本理化製)、SE−
673、SE−172、SE−871(理研ビタミン油製)が
好ましく、目的する抵抗値に合せてジオクチルフ
タレート、ジブチルフタレート、ブチルペンジル
フタレート、ジオクチルアジペート、ジヘキシル
フタレート、ジイソノニルフタレート等汎用可塑
剤の一部または全部を置換して使用する。この配
合量は合成樹脂100重量部に対し5〜100重量部が
好ましい。 帯電防止剤としてはカチオン系、アニオン系、
ノニオン系等一般的に使用される帯電防止剤であ
ればいずれのものでも良く、その配合量は合成樹
脂100重量部に対し0.2〜10重量部が好ましい。 導電性物質としてはカーボン粉末及び短繊維、
銀、銅、ニツケル、アルミニウム、ステンレス、
鉄等の金属粉末及び短繊維の他、表面導電化処理
した無機繊維や導電化処理を施こした無機充填剤
(導電性炭酸カルシウムT130−250:日東粉化製、
帯電防止炭酸カルシウムEC−1、EC−5:丸尾
カルシウム製等)有機粉末又は短繊維等(デント
ールWK−100S:大塚化学製、サンダーロンSS
−N:日本蚕毛染色製等)が使用出来、導電性粉
末は粒径が0.5〜1000μが好ましく、導電性短繊維
は径1〜600μで長さが0.5〜20m/mの範囲が好
ましい。又、配合量は目的とする抵抗値により適
宜設定する必要があるが、導電性粉末の場合、樹
脂100重量部に対して5重量部以上、又、短繊維
の場合は2重量部以上の添加が好ましい。 以上の帯電防止可塑剤、帯電防止剤、導電性物
質は単独で使用しても2種以上を混合して使用し
ても良い。その他必要に応じて可塑剤、安定剤、
充填剤、発泡剤、防カビ剤、着色剤等通常の添加
剤が使用可能である。 導電性基材3としては、床材の基材として一般
に使用される天然の動物性又は植物性繊維、アス
ベスト、ガラス繊維、ロツクウール、パルプ、合
成繊維等の無機もしくは有機繊維の1種又は少な
くとも2種以上を混合した織布、編布、不織布、
紙等の基材に導電性樹脂液を含浸処理したものの
他、抄紙法により不織布やガラス混抄紙等の紙を
製造する際に、前述の如き導電性繊維や粉末、導
電処理された粉末や繊維を混抄したものや前述の
如き導電性繊維や導電処理された繊維を織込んだ
り編込んだ織布、編布等で、かつ非伸縮性に富む
ものが使用出来る。中でもカーボン繊維や粉末を
不織布、紙(ガラス混抄紙、無機紙、ガラス繊維
紙等)の抄紙時に混抄したものが寸法粘度及び価
格的な面で床材の基材として特に適している。 体積固有抵抗値1011〜106Ωcmの合成樹脂表面
層4は帯電防止性可塑剤、帯電防止剤、導電性物
質の1種以上を混入した合成樹脂組成物から形成
され、単層でも良いし複層に構成しても良い。複
層にする場合には最上層の上引層5とその下部に
位置する中間層6とから構成し、上引層5と中間
層6との間に印刷層7を介在させても良い。印刷
層7を介在させる場合には上引層5を透明にする
必要がある。中間層6は発泡層であつても非発泡
層であつても良いが、床材にクツシヨン性が要求
される場合には発泡層にするのが好ましい。又、
この表面層は一部に導電性チツプを使用した合成
樹脂製チツプから形成されたものであつても良
い。 合成樹脂及び帯電防止性可塑剤、帯電防止剤、
導電性物質は前述の裏打合成樹脂層2を形成する
ものが使用出来、配合量も同様に使用出来る。但
し、粉末又は繊維状の固形の充填剤は摩耗により
塵を発生し易いことから、本発明においては、こ
の充填剤は、樹脂100重量部に対し100重量部以下
の添加とする必要がある。 本発明の床材を構成する各層の厚味について
は、合成樹脂表面層4は0.1〜3m/mが好まし
く、導電性基材3は0.2〜2m/m、又裏打合成
樹脂層2は0.2〜2m/mで、これら各層が積層
された床材としての総厚が1〜4m/mの範囲で
あることが好ましい。 又、合成樹脂表面層4が複層の場合はその最上
層の上引層5の厚味は0.1〜1m/mが好ましい。 最上層の上引層5の厚味が0.1m/m未満の場
合、使用時に摩耗し易く短時間で使用不可能とな
り、又その厚味が1m/mを越えると床材が表面
側に反り易く又価格も高くなり好ましくないもの
である。合成樹脂表面層4の厚味が0.1m/m未
満の場合、上記上引層5の場合と同様の理由で好
ましくなく、又その厚味が3m/mを越えると床
材が表面側に反り易くなると同時に、導電性基材
迄の距離が大きくなり帯電防止性能が低下するた
め好ましくない。導電性基材3の厚味が0.2m/
m未満の場合、強度が弱く特に裏打合成樹脂層が
発泡層の場合局部荷重により基材が破断、帯電防
止性能が低下する恐れがあり、又、その厚味が2
m/mを越えると帯電防止性能は向上するが価格
が非常に高くなり経済的ではない。裏打合成樹脂
層2の厚味が0.2m/m未満の場合床材が表面側
に反り易くなり、又その厚味が2m/mを越える
と導電性基材迄の距離が大きくなり帯電防止性能
が低下し好ましくないものである。 次に、本発明のタイル型帯電防止性床材を施工
する場合には施工用接着剤を使用することが必要
であるが、この場合、帯電防止性ないし導電性接
着剤か、または通常床材の施工に使用されている
接着剤でも合成ゴムラテツクス系(感圧型も含
む)、アクリルエマルジヨン系(感圧型も含む)、
エチレン−酢酸ビニル共重合体、酢酸ビニル系等
のように床材中の帯電防止性可塑性、帯電防止剤
等が接着剤層へ移行することで帯電防止性能が付
与できる接着剤が好ましい。また帯電防止性ない
しは導電性のない接着剤で施工する場合にはタイ
ル型床材の周囲のみを接着する袋貼り方式かまた
は部分的に接着する方法で施工することで層方向
の導通を阻害することなく施工可能である。 (作用、効果) 本発明のタイル型帯電防止性床材は、その表面
を構成する層が、樹脂100重量部に対して充填剤
が0〜100重量部と、従来の塩ビタイルに比べ充
填剤を全く含んでいないか、少量含む合成樹脂表
面層4よりなるため、脆くなく使用時の目地部の
破損を防止すると共に、摩耗により出てくる充填
剤の量が少ないため、また従来のタイルカーペツ
トのように表面に繊維等が露出していないため、
OA機器の誤動作を引き起こす原因となる塵の発
生を防止し、該合成樹脂表面層の下に床材の使用
環境の温度変化で伸縮することのない非伸縮性の
導電性基材3を積層することで、床材の膨張、収
縮を防止し、更に該導電性基材の下に裏打合成樹
脂層2を積層することで、導電性基材を介して合
成樹脂表面層と対向させ、もつて合成樹脂表面層
の収縮による表面側への反りを抑えると共に、床
材の裏面は繊維性の基材が露出していないため、
感圧接着剤を使用し現場施工した場合の配線換え
の際に、感圧接着剤により下地と繊維性の基材が
一体化してしまうことがなく、下地と裏打合成樹
脂層の界面にて剥がれ、しかも下地に繊維性の基
材が残着しないことよりこれを剥がす手間が省
け、もつて床材の剥離性と再施工性を改善し、フ
リーアクセスフロアの機能性を損なうことがない
ものである。 なお、本発明の床材は、フリーアクセスフロア
の床板に前述した接着剤を使用し貼り付け、床板
と完全に一体化して配線換えの際には床板と共に
床材を取り外すことも可能である。 また、本発明のタイル型帯電防止性床材は、裏
打合成樹脂層、導電性基材、合成樹脂表面層のい
ずれもが帯電防止性ないし導電性であるため層方
向に導通され、したがつて相隣接するタイル型床
材の接触導通が不完全であつても静電気を除去す
ることができるし、相隣接するタイル型床材が接
触している場合に層方向および水平方向に導通す
るため、さらに効果的に静電気を除去することが
できる。 もちろん、本発明の床材は、フリーアクセスフ
ロアの床板に前述した接着剤を使用し貼り付け、
床板と完全に一体化して配線換えの際には床板と
共に床材を取り外すことも可能である。 (実施例) 次に本発明の実施例をあげるが、本発明は何ら
これに限定されるものではない。 非伸縮性の導電性基材として炭素繊維を5%混
抄してなる(他はガラス繊維、パルプ合成樹脂バ
インダー等を含む)導電性ガラス混抄紙(抵抗
値:1.5×102Ω、厚味:0.4m/m)を使用し、該
導電性ガラス混抄紙の表面に表−1に記載する発
泡性塩化ビニル樹脂ペースト()を0.4m/m
の厚味となる様塗布し180℃×1分間加熱ゲル化
後、一部に発泡抑制剤を含む印刷インクを使用
し、多色印刷を施した後その表面に表−1に記載
する透明性の塩化ビニル樹脂ペースト()を
0.3m/mの厚味となる様塗布した後210℃で1分
40秒間加熱し発泡性塩化ビニル樹脂ペーストを発
泡させ、総厚1.8m/mの印刷模様と凹凸模様の
一致したシートを得た。しかる後該シートの裏面
すなわち発泡性塩化ビニル樹脂ペーストの塗布面
と反対側の面に表−1の裏打ち塩化ビニル樹脂ペ
ースト()を0.5m/mとなる様塗布し、該シ
ートの塩化ビニル樹脂発泡層及び塩化ビニル樹脂
透明層が発泡、熔融しない加熱条件すなわち150
℃×2分30秒で加熱ゲル化して2.3m/mの床材
を得た。この床材の体積固有抵抗値は7.7×1010
Ωcmであり、JIS L 1021ストロール法での帯電
性が20℃×40%RHで(+)0.17KV又、20℃×
20%RHで(+)0.21KVと帯電防止性に優れた
ものであることが判明した。
(Field of Industrial Application) The present invention relates to an antistatic tile flooring material that is applied to the floors of semiconductor assembly factories, hospital operating rooms, clean rooms, computer rooms, other factories, offices, general households, etc. It is. (Prior art) As mentioned above, floor materials made of aluminum or stainless steel have been used for floors in rooms where static electricity should not be charged or generated, but they are hard and not only cause problems such as walking noise and vibration. However, in recent years, long soft vinyl flooring materials with conductive or antistatic properties have been developed, and this type of flooring material has come into widespread use. Ivy. (Problem to be solved by the invention) However, with the recent increase in the introduction of OA equipment, wiring is often changed.
It is common practice to route these signal cables along the surface of the flooring, take longer cables in case you need to change the wiring, and gather up the excess cable wires in a messy manner on the flooring surface behind the OA equipment. Not only did it look bad, but the wiring on the surface of the flooring material had the disadvantage that the cables could get caught on your feet while walking. In order to improve this drawback, various types of raised floors have been developed in recent years, and these raised floors usually have a double floor structure with another layer formed on top of the original subfloor, and the gap between the subfloor and the floor. The space is designed to accommodate power cables, communication cables, network equipment, etc. Basically,
A support for forming a floating floor with dimensions of 450 x 450 to 500 x 500 m/m and a floor plate serving as a subfloor for the floating floor form one unit. This unit is laid out on the floor, cables, network equipment, etc. are stored in the space formed as described above, and a flooring material as a floor covering material is pasted onto the floorboard. This has the advantage that cables and the like are not routed on the surface of the floor material, giving a good appearance, and when changing the wiring, the floor plate of the unit can be removed and the wiring changed easily. Tile-shaped flooring materials such as carpet tiles and PVC tiles that have been treated with antistatic treatment are used as floor covering materials for raised access floors.
In the case of carpet tiles, the surface layer is made up of fibers, so it gets dirty very easily, and the only way to remove stains is dirt, dust, and other food and drink residue, which not only makes the carpet look bad, but also makes it difficult to use for office equipment. This method has drawbacks such as the tendency to generate dust such as dirt and dust attached to the tile carpet and fiber waste generated from the tile carpet itself, which can cause malfunctions. On the other hand, PVC tiles contain a large amount of powdered inorganic filler to ensure dimensional stability and cost, so they are extremely brittle and the joints may break during use, or the added filler may wear out due to wear. This dust may come out and cause malfunctions in OA equipment, or may warp (if it expands) or open the joints due to expansion and contraction due to temperature changes in the usage environment due to insufficient dimensional stability. (In case of shrinkage), this problem is likely to occur (particularly when flooring is installed using a pressure-sensitive adhesive to facilitate wiring changes after a raised floor has been installed). (Means for Solving the Problems) The tile-type antistatic flooring material 1 of the present invention has a backing synthetic resin layer 2 having a volume resistivity value of 10 11 to 10 6 Ωcm,
Conductive base material 3 that is non-stretchable and has a resistance value of 10 0 to 10 5 Ω
A synthetic resin surface layer 4 containing 0 to 100 parts by weight of filler per 100 parts by weight of resin and having a volume resistivity of 10 11 to 10 6 Ωcm is formed on the conductive base material 3. The volume resistivity of the laminate is
10 11 to 10 6 Ωcm. The backing synthetic resin layer 2 having a volume resistivity value of 10 11 to 10 6 Ωcm is formed from a synthetic resin composition mixed with one or more of an antistatic plasticizer, an antistatic agent, and a conductive substance, and may be a single layer. However, it may be configured in multiple layers. In addition, this layer may be a foamed layer or a non-foamed layer, and in the case of multiple layers, there is no problem in combining non-foamed layers or foamed layers, or a combination of a non-foamed layer and a foamed layer. It is. The synthetic resin may be any commonly used synthetic resin such as vinyl chloride resin, acrylic resin, vinyl acetate resin, polyethylene, polypropylene, ethylene-vinyl acetate copolymer resin, urethane resin, etc., but especially vinyl chloride resin. Resins are preferred. In the present invention, the vinyl chloride resin refers to polyvinyl chloride resin, vinyl chloride and other monomers,
For example, ethylene, vinyl acetate, vinyl ether,
In addition to copolymers with maleic acid esters, acrylics, urethanes, etc., it also includes blends of polyvinyl chloride resins and other polymers. Antistatic plasticizers include tributoxyethyl phosphate (TBXP, manufactured by Daihachi Chemical), butyl diglycol adipate (BXA, manufactured by Daihachi Chemical), Sansocizer C-1100 (manufactured by Shinnihon Rika), SE-
673, SE-172, SE-871 (manufactured by Riken Vitamin Oil) are preferable, and one of general-purpose plasticizers such as dioctyl phthalate, dibutyl phthalate, butylpenzyl phthalate, dioctyl adipate, dihexyl phthalate, diisononyl phthalate, etc. Use with partial or complete replacement. The blending amount is preferably 5 to 100 parts by weight per 100 parts by weight of the synthetic resin. Antistatic agents include cationic, anionic,
Any commonly used antistatic agent such as nonionic antistatic agent may be used, and the amount thereof is preferably 0.2 to 10 parts by weight per 100 parts by weight of the synthetic resin. Carbon powder and short fibers are used as conductive substances.
silver, copper, nickel, aluminum, stainless steel,
In addition to metal powders such as iron and short fibers, inorganic fibers with surface conductivity treatment and inorganic fillers with conductivity treatment (conductive calcium carbonate T130-250: manufactured by Nitto Funka,
Antistatic calcium carbonate EC-1, EC-5: manufactured by Maruo Calcium, etc.) Organic powder or short fibers, etc. (Dentor WK-100S: manufactured by Otsuka Chemical, Thunderon SS
-N: made by Nippon Kage Sensing Co., Ltd.) can be used, the conductive powder preferably has a particle size of 0.5 to 1000 μm, and the conductive short fiber preferably has a diameter of 1 to 600 μm and a length of 0.5 to 20 m/m. In addition, the blending amount needs to be set appropriately depending on the desired resistance value, but in the case of conductive powder, it should be added at least 5 parts by weight per 100 parts by weight of resin, and in the case of short fibers, it should be added at least 2 parts by weight. is preferred. The above antistatic plasticizers, antistatic agents, and conductive substances may be used alone or in combination of two or more. Other plasticizers, stabilizers, etc. as necessary.
Usual additives such as fillers, blowing agents, antifungal agents, colorants, etc. can be used. As the conductive base material 3, one or at least two of inorganic or organic fibers such as natural animal or vegetable fibers, asbestos, glass fibers, rock wool, pulp, and synthetic fibers commonly used as base materials for flooring materials can be used. Woven fabrics, knitted fabrics, non-woven fabrics made by mixing more than one species,
In addition to base materials such as paper that are impregnated with conductive resin liquid, conductive fibers and powders such as those mentioned above, and conductive treated powders and fibers are It is possible to use woven or knitted fabrics in which conductive fibers or conductive treated fibers such as those described above are woven or knitted, and which are highly non-stretchable. Among them, nonwoven fabrics and papers (glass mixed paper, inorganic paper, glass fiber paper, etc.) mixed with carbon fibers and powder during paper making are particularly suitable as base materials for flooring materials in terms of dimensional viscosity and cost. The synthetic resin surface layer 4 having a volume resistivity value of 10 11 to 10 6 Ωcm is formed from a synthetic resin composition containing one or more of an antistatic plasticizer, an antistatic agent, and a conductive substance, and may be a single layer. It may be configured in multiple layers. In the case of a multilayer structure, it may be composed of an uppermost layer 5 and an intermediate layer 6 located below it, and a printed layer 7 may be interposed between the upper layer 5 and the intermediate layer 6. When the printed layer 7 is interposed, the upper layer 5 needs to be transparent. The intermediate layer 6 may be a foamed layer or a non-foamed layer, but if the flooring material is required to have cushioning properties, it is preferably a foamed layer. or,
This surface layer may be formed from a synthetic resin chip partially using a conductive chip. Synthetic resins and antistatic plasticizers, antistatic agents,
The conductive material that forms the aforementioned backing synthetic resin layer 2 can be used, and the amount can be used in the same manner. However, since powdery or fibrous solid fillers tend to generate dust due to abrasion, in the present invention, it is necessary to add 100 parts by weight or less of this filler to 100 parts by weight of the resin. Regarding the thickness of each layer constituting the flooring material of the present invention, the synthetic resin surface layer 4 preferably has a thickness of 0.1 to 3 m/m, the conductive base material 3 has a thickness of 0.2 to 2 m/m, and the backing synthetic resin layer 2 has a thickness of 0.2 to 3 m/m. 2 m/m, and the total thickness of the floor material in which these layers are laminated is preferably in the range of 1 to 4 m/m. Further, when the synthetic resin surface layer 4 is a multilayer, the thickness of the uppermost layer 5 is preferably 0.1 to 1 m/m. If the thickness of the top layer 5 is less than 0.1 m/m, it will easily wear out during use and become unusable in a short time, and if the thickness exceeds 1 m/m, the flooring will warp toward the surface. This is undesirable because it is easy to use and expensive. If the thickness of the synthetic resin surface layer 4 is less than 0.1 m/m, it is undesirable for the same reason as the above-mentioned top layer 5, and if the thickness exceeds 3 m/m, the flooring material will warp toward the surface side. This is not preferable because it increases the distance to the conductive substrate and reduces the antistatic performance. The thickness of the conductive base material 3 is 0.2m/
If the thickness is less than 2 m, the strength will be weak, especially if the synthetic resin backing layer is a foam layer, and the base material may break due to local loads, reducing the antistatic performance.
If it exceeds m/m, the antistatic performance will improve, but the price will become very high and it will not be economical. If the thickness of the backing synthetic resin layer 2 is less than 0.2 m/m, the flooring material tends to warp toward the surface, and if the thickness exceeds 2 m/m, the distance to the conductive base material increases, resulting in poor antistatic performance. This is undesirable as it reduces the Next, when installing the tile-type antistatic flooring of the present invention, it is necessary to use a construction adhesive, but in this case, an antistatic or conductive adhesive or a regular flooring material The adhesives used for construction are synthetic rubber latex type (including pressure sensitive type), acrylic emulsion type (including pressure sensitive type),
Adhesives such as ethylene-vinyl acetate copolymer, vinyl acetate, etc. that can impart antistatic performance by transferring antistatic plasticity, antistatic agent, etc. in the flooring material to the adhesive layer are preferred. In addition, when installing with an adhesive that is not antistatic or conductive, conduction in the layer direction can be inhibited by using a bag-applying method that adheres only the periphery of the tile flooring material, or a method that partially adheres it. It can be constructed without any (Functions and Effects) The tile-type antistatic flooring material of the present invention has a layer constituting its surface that contains 0 to 100 parts by weight of filler per 100 parts by weight of resin, which is higher than that of conventional PVC tiles. Since the synthetic resin surface layer 4 does not contain any or a small amount of filler, it is not brittle and prevents damage to the joints during use. Unlike PETSU, there are no exposed fibers on the surface,
A non-stretchable conductive base material 3 that does not expand or contract due to temperature changes in the environment in which the flooring material is used is laminated under the synthetic resin surface layer to prevent the generation of dust that may cause malfunctions of OA equipment. This prevents expansion and contraction of the flooring material, and by laminating the backing synthetic resin layer 2 under the conductive base material, it faces the synthetic resin surface layer through the conductive base material. In addition to suppressing warpage toward the front side due to shrinkage of the synthetic resin surface layer, the back side of the flooring material does not expose the fibrous base material, so
When rewiring is performed on-site using a pressure-sensitive adhesive, the pressure-sensitive adhesive prevents the base material and the fibrous base material from becoming integrated, and peels off at the interface between the base material and the backing synthetic resin layer. In addition, since no fibrous base material remains on the base, there is no need to remove it, which improves the removability and reinstallation of the flooring material, and does not impair the functionality of the raised floor. be. Note that the flooring material of the present invention can be attached to the floorboard of a raised floor using the above-mentioned adhesive, completely integrated with the floorboard, and removed together with the floorboard when wiring is changed. In addition, in the tile-type antistatic flooring material of the present invention, the backing synthetic resin layer, the conductive base material, and the synthetic resin surface layer are all antistatic or conductive, so they are electrically conductive in the layer direction. Static electricity can be removed even if contact conduction between adjacent tile flooring materials is incomplete, and conduction occurs in the layer direction and horizontal direction when adjacent tile flooring materials are in contact. Static electricity can be removed more effectively. Of course, the flooring material of the present invention can be attached to the floorboard of a raised floor using the adhesive described above.
It is also possible to completely integrate with the floorboards and remove the flooring together with the floorboards when changing wiring. (Example) Next, examples of the present invention will be given, but the present invention is not limited thereto in any way. Conductive glass mixed paper (resistance value: 1.5×10 2 Ω, thickness: 0.4 m/m), and the foamable vinyl chloride resin paste () described in Table 1 was applied to the surface of the conductive glass mixed paper at 0.4 m/m.
After applying the coating to a thickness of PVC resin paste ()
After coating to a thickness of 0.3m/m, heat at 210℃ for 1 minute.
The foamable vinyl chloride resin paste was foamed by heating for 40 seconds to obtain a sheet having a total thickness of 1.8 m/m and having a printed pattern and an uneven pattern that matched each other. Thereafter, the backing vinyl chloride resin paste () shown in Table 1 is applied to the back surface of the sheet, that is, the surface opposite to the surface to which the expandable vinyl chloride resin paste is applied, at a thickness of 0.5 m/m. Heating conditions that do not foam or melt the foam layer and vinyl chloride resin transparent layer, i.e. 150
The mixture was gelatinized by heating at °C for 2 minutes and 30 seconds to obtain a 2.3 m/m flooring material. The volume resistivity value of this flooring material is 7.7×10 10
Ωcm, and the charging property according to JIS L 1021 Stroll method is (+) 0.17KV at 20℃×40%RH, and 20℃×
It was found to have excellent antistatic properties with (+) 0.21KV at 20%RH.

【表】【table】

【表】 この様にして得られた床材を500×500m/mの
寸法に裁断し、フリーアクセスフロア上にアクリ
ルエマルジヨン系感圧接着剤(住友3M製ピール
ボンド)を使用し敷設したところ、静電気除去性
に優れ床材の伸縮による目地開き、反り等もな
く、又、配線換えの際に施工接着剤と裏打ち塩化
ビニル樹脂層2の界面から簡易に剥離し、再施工
時も施工接着剤に床材を圧着するだけで仕上り状
態も良好であつた。 (比較例) 床材用基材として通常使用されるガラス混抄紙
を使用し、該ガラス混抄紙の表面に表−2に記載
する発泡性塩化ビニル樹脂ペースト()を0.58
m/mの厚味となる様塗布し180℃×1分間加熱
ゲル化後、一部に発泡抑制剤を含む印刷インクを
使用し多色印刷を施こした後、その表面に表−2
に記載する透明性の塩化ビニル樹脂ペースト
()を0.3m/mの厚味となる様塗布した後、発
泡性塩化ビニル樹脂ペースト組成物の発泡温度
210℃×1分50秒加熱し、総厚2.3m/mの印刷模
様と凹凸模様の一致した床材を得た。この床材の
体積固有抵抗値は2.0×1012Ωcmであり、JIS L
1021ストロール法での帯電性が20℃×40%RH
で(+)1.65KV又、20℃×20%RHで(+)
2.03KVと帯電し易いものであつた。
[Table] The flooring material obtained in this way was cut into a size of 500 x 500 m/m and laid on a raised floor using an acrylic emulsion pressure-sensitive adhesive (Peel Bond manufactured by Sumitomo 3M). , has excellent static electricity removal properties, does not cause joint opening or warping due to expansion and contraction of the flooring material, and can be easily peeled off from the interface between the construction adhesive and the lining vinyl chloride resin layer 2 when changing wiring, and the construction adhesive remains stable even when re-installation. The finish was good just by pressing the flooring onto the adhesive. (Comparative example) Glass mixed paper, which is commonly used as a base material for flooring, was used, and 0.58% of the expandable vinyl chloride resin paste () described in Table 2 was applied to the surface of the glass mixed paper.
After coating to a thickness of m/m and gelling by heating at 180°C for 1 minute, multicolor printing was performed using printing ink that partially contained a foaming inhibitor, and then Table 2 was applied to the surface.
After applying the transparent vinyl chloride resin paste () described in 2018 to a thickness of 0.3 m/m, the foaming temperature of the foamable vinyl chloride resin paste composition
Heating was carried out at 210°C for 1 minute and 50 seconds to obtain a flooring material with a total thickness of 2.3 m/m and a matching printed pattern and uneven pattern. The volume resistivity value of this flooring material is 2.0×10 12 Ωcm, which is JIS L
1021Charging property by Stroll method is 20℃ x 40%RH
(+) 1.65KV and (+) at 20℃×20%RH
It was 2.03KV and easily charged.

【表】 この様にして得られた床材を500×500m/mの
寸法に裁断し、フリーアクセスフロア上に実施例
と同様に敷設したところ、約3ケ月で反りとこれ
に伴う目地開きが発生し、実用上支障のあるもの
であつた。又、配線換えの際にはガラス混抄紙の
層間で剥離し再施工の際はフリーアクセスフロア
の床材に付着したガラス混抄紙を剥離することが
必要で、再施工性の非常に悪いものであつた。 尚、本発明でいう体積固有抵抗値とは東亜電波
工業製SM−10E型極超絶縁計で測定した値であ
り、又、導電性基材の抵抗値は通常の抵抗計で測
定した2点間の値である。 又、合成樹脂層の抵抗値は、各々合成樹脂組成
物をシート状に加工した状態の値である。
[Table] When the flooring material obtained in this way was cut into a size of 500 x 500 m/m and laid on a raised floor in the same manner as in the example, warping and resulting joint opening occurred in about 3 months. This caused problems in practical use. In addition, when changing the wiring, the layers of glass-mixed paper will peel off, and when re-installing, it will be necessary to peel off the glass-mixed paper that has adhered to the flooring of the raised floor, making it extremely difficult to re-install. It was hot. In addition, the volume resistivity value as used in the present invention is a value measured with a SM-10E ultra-super insulation meter manufactured by Toa Denpa Kogyo, and the resistance value of the conductive base material is a value measured at two points with an ordinary resistance meter. The value is between. Further, the resistance value of the synthetic resin layer is the value in the state where each synthetic resin composition is processed into a sheet shape.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のタイル型帯電防止性床材の一
例を示す断面図である。 1……タイル型帯電防止性床材、2……裏打合
成樹脂層、3……導電性基材、4……表面層、5
……上引層、6……中間層、7……印刷層。
FIG. 1 is a sectional view showing an example of the tile-type antistatic flooring material of the present invention. DESCRIPTION OF SYMBOLS 1... Tile-type antistatic flooring material, 2... Backing synthetic resin layer, 3... Conductive base material, 4... Surface layer, 5
...Top layer, 6...Middle layer, 7...Printing layer.

Claims (1)

【特許請求の範囲】[Claims] 1 体積固有抵抗値1011〜106Ωcmの裏打合成樹
脂層上に、非伸縮性でかつ抵抗値100〜105Ωの導
電性基材を積層し、該導電性基材上に、樹脂100
重量部に対して0〜100重量部の充填剤を含有し、
かつ体積固有抵抗値1011〜106Ωcmの合成樹脂表
面層が積層され、積層体としての体積固有抵抗値
が1011〜106Ωcmのタイル型帯電防止性床材。
1 A non-stretchable conductive base material having a resistance value of 10 0 to 10 5 Ω is laminated on a backing synthetic resin layer having a volume resistivity of 10 11 to 10 6 Ωcm, and a resin layer is placed on the conductive base material. 100
Contains 0 to 100 parts by weight of filler based on parts by weight,
A tile-type antistatic flooring material in which a synthetic resin surface layer having a volume resistivity of 10 11 to 10 6 Ωcm is laminated, and the laminate has a volume resistivity of 10 11 to 10 6 Ωcm.
JP61183060A 1986-08-04 1986-08-04 Tile type antistatic floor material Granted JPS6340054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61183060A JPS6340054A (en) 1986-08-04 1986-08-04 Tile type antistatic floor material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61183060A JPS6340054A (en) 1986-08-04 1986-08-04 Tile type antistatic floor material

Publications (2)

Publication Number Publication Date
JPS6340054A JPS6340054A (en) 1988-02-20
JPH0430506B2 true JPH0430506B2 (en) 1992-05-21

Family

ID=16129039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61183060A Granted JPS6340054A (en) 1986-08-04 1986-08-04 Tile type antistatic floor material

Country Status (1)

Country Link
JP (1) JPS6340054A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02101253A (en) * 1988-10-06 1990-04-13 Taku Kenchiku Kouzou Sekkei:Kk Block-shaped floor material for floor wiring
JPH0413742U (en) * 1990-05-23 1992-02-04
JP2624418B2 (en) * 1992-02-05 1997-06-25 東リ株式会社 Laying tiles
JP2003090123A (en) * 2001-09-14 2003-03-28 Tajima Inc Synthetic resin-made conductive floor material
JP4587692B2 (en) * 2004-03-31 2010-11-24 大日本印刷株式会社 Decorative sheet for flooring and flooring decorative material using the same
JP2006299615A (en) * 2005-04-19 2006-11-02 Tajima Inc Synthetic resin electrification preventive floor material
CN107073926A (en) 2014-08-01 2017-08-18 康宁股份有限公司 Screen printing apparatus and method

Also Published As

Publication number Publication date
JPS6340054A (en) 1988-02-20

Similar Documents

Publication Publication Date Title
CN104995362B (en) Floor mat and device, floor system and its floor mounting method
CA2743287C (en) Articles and methods for laying ceramic tile floor
US8590269B2 (en) Easily replaceable ceramic tile floor
JPH0430506B2 (en)
JPH0430507B2 (en)
JP2624418B2 (en) Laying tiles
US20150191916A1 (en) Articles and methods for laying ceramic tile floor
JP5248080B2 (en) Flooring
RU77891U1 (en) ELEMENT KIT AND PANEL FOR DOUBLE FLOOR FLOORING (OPTIONS)
JP3300631B2 (en) Construction method of floor finishing material using sheet-like base material for loose lay construction
RU77626U1 (en) SET OF ELEMENTS AND PLATE FOR DOUBLE FLOORING
RU77313U1 (en) KIT OF ELEMENTS AND PLATE FOR DOUBLE FLOOR FLOORING (OPTIONS)
JPH0830310B2 (en) Cushioning heavy walking floor material
JPH0235478Y2 (en)
JPS6367141A (en) Antistatic laminated sheet
JP4098602B2 (en) Anti-slip flooring
JP5466433B2 (en) Structure of a heated floor using a planar heating element
RU77624U1 (en) ELEMENT KIT AND PANEL FOR DOUBLE FLOORING
JPH0354753B2 (en)
EP3070232A1 (en) Articles and methods for laying ceramic tile floor
RU77890U1 (en) SET OF ELEMENTS AND PLATE FOR DOUBLE FLOORING
JPS6138952Y2 (en)
JP2006009498A (en) Roof built-up roofing material
JP2003184292A (en) Antistatic mat for synthetic resin floorboard material
JPS63171953A (en) Method for executing conductive connection of antistatic tile carpet